
A. In the present manuscript the Authors studied theoretically the transition between gapped 
and gapless states in s-wave superconductors driven by magnetic impurities. Two main result 
are presented: a reinterpretation of the gapped-gapless transition as a topological transition 
and the prediction of the enhancement of the quasiparticle thermoelectric effect related to 
this transition. The results are presented in a clear way and appear absent of noticeable error. 
However, I am not convinced that the results constitute a significant advance in the field. The 
topological invariant the Authors propose does not reflect in any observable quantized 
properties, and does not indicate the presence of a topological state of matter (unlike, e.g., 
Chern number in a p+ip 2D superconductor). 
 
We do not agree that the topological invariant in the form of the Euler characteristic does not 
reflect in any observable quantized properties. We would like to recall very briefly that the 
introduction of the same Chern number is directly based on the Euler characteristic.  
It is well-known that Chern number arises from the topology of the band structure. In turn, 
the Euler characteristic dictates that the flux through a Gaussian curvature is always quantized 
via the so-called genus g, relating to the Euler characteristic χ = 2 - 2g.  
Considering the integer Hall effect R.B. Laughlin in his seminal paper [Phys. Rev. B 23, 5632 
(1981)] found out that localized cyclotron orbits form a periodic lattice, which renders a 
gapless edge state due to skipping orbits mechanism. This periodic lattice in a 2D plane can 
be represented by a torus with a non-trivial Gaussian curvature. The magnetic flux through 
the magnetic torus is quantized by means of the Euler characteristic. Latter allows to rewrite 
the expression for the Hall conductivity via another topological invariant in the form of Chern 
number. 
Later it was shown that the band topology can be compactified to the Riemann surface, which 
resembles n-torus (see figure below).  The genius of this surface g = q—1, where q is the 
number of the gaps as a two-dimensional problem.  
 

 
Figure from the paper Y. Hatsugai, Chem number and edge states in the integer quantum Hall effect. Phys. Rev. 
Lett. 71, 3697 (1993). 



Since the genus of the surface can be defined in terms of the Euler characteristic one can say 
that the Euler characteristic can represent another physical observable: the number of gaps 
in a system under consideration. 
 
B. The transition to the gapless phase, as pointed out by the Authors, does not reflect a new 
universality class and belongs to the same class as the Lifshitz transition. 
 
The highlight of our work is that we did not reveal the subclass of Lifshitz transitions. We 
prove the existence of the topological transition in a s-wave conventional superconductor. It 
is widely accepted now that topological transitions in superconducting systems emerges 
under certain conditions such as a proximity effect with a topological 
insulator/semiconductor or the presence of the complex unconventional structure of the 
order parameter. Here we argue the emergence of the topological transition in a conventional 
superconductor with the s-wave pairing mechanism without of its destruction. Also, we would 
like to emphasize the additional importance of our work. This gap-gapless transition is known 
for more than 60 years and to the best of our knowledge there is no evidence of the 
topological nature of this phase transition. 
 
C. Moreover, thermoelectric effect has been investigated in superconductors with magnetic 
impurities previously (Refs. 32,32) using various approximations; the Authors do not make it 
clear how their approach is different and if their results offer anything new except for the 
discussion.  
 
In our manuscript we follow the scheme proposed by Ambegaokar and Griffin. The 
thermoelectric coefficient is calculated by considering the electron-impurity interaction in the 
ladder approximation. We do not consider other various approximations for the calculation 
of the thermoelectric effect; however, they do not give any new qualitatively results and do 
not change the general picture. 
 
D. Finally, there are also questions regarding the generality of results (for example, whether 
the same results will hold if the gap is not isotropic) and the approximations used (in 
particular, the Born approximation appears to be implied). 
 
In the paper [P. Hohenberg, Anisotropic Superconductors with Nonmagnetic Impurities, JETP 
18, 834 (1964)] the effect of impurities on the density of states in anisotropic superconductors 
as a function of energy and direction was investigated. It was shown that the impurities lead 
to the transformation of the smeared DOS to the isotropic one at comparatively small 
concentration. Moreover, the region of smearing decreases to zero as the concentration of 
impurities increases.  
To this end we added the phrases to the text of the manuscript: 
For the case of superconductors with the anisotropic gap the effect of impurities on the DOS 
as a function of energy and the anisotropy degree has been investigated in Ref. 35 . It was 
shown that the impurities lead to the isotropisation of the density of states at relatively small 
concentration and the subsequent reduction of smearing over energy. With the increase of the 



concentration of impurities the region of smearing decreases to zero.  This means that the 
superconductor becomes effectively isotropic. A full analysis of this problem is outside of the 
scope of the present paper and therefore left for future studies. 
 
(1) The Authors offer a reinterpretation of this transition in terms of a topological invariant - 
the Euler characteristic calculated for the DOS surface. Are any physical quantities of the 
system uniquely determined by this invariant? 
 
As we mentioned above Euler characteristic can be used for the determination of the number 
of gaps in a system under consideration. 
As such, the Euler characteristic can be applied also for the description of the well-known 
physically observable topological transition, which is mentioned in the manuscript, - Lifshitz 
transition.  

 
Figure from the seminal paper of Lifshitz (Ref. 3 in our manuscript). 

 
In figure (a) a one-sheet hyperboloid (top left surface) is not compact. Its deformation retracts 
onto a circle, and the Euler characteristic is a homotopy invariant, so χ = 0.  
By tightening the neck of the hyperboloid, it is deformed into a cone (top middle surface). The 
cone could be simplexized into 6 singular 2-simplexes that is homotopic to the figure below. 
Hence, this cone has χ = 1.  



 
Simplexized cone 

 
By detaching the pieces of the cone and smoothing it, one finds a two-sheet hyperboloid (top 
right surface). In this case each sheet is topologically equivalent to the disc that has χ=1. The 
Euler characteristic of the disjoint union of two discs is the sum of their Euler characteristics, 
so χ=1+1=2.  
Therefore, throughout the Lifshitz transition the Euler characteristics alternates from 0 to 1 
and then to 2.  
The same interpretation of the Lifshits transition in term of Euler characteristic can be 
performed for bottom figures 1 (b). Here the Euler characteristic changes from 2 because of 
the sphere (bottom left) to χ= 2+1+1=4, where we consider the additive contributions from 
the sphere and two points (bottom middle). Finally, for the bottom right figure there three 
spheres and correspondingly χ = 2+2+2=6. 
 

(•) Is there any interplay of the Euler characteristic with the known cases of topology in 
superconductors (e.g. p+ip state in 2D)? Being a property of DOS, I believe that it will not 
distinguish between trivial (s-wave) and topological (p+ip in 2D) states. 
 
You raise a very interesting equation. However, the topic of our manuscript is devoted solely 
to a s-wave superconductor. Unambiguously, the complex structure of the order parameter 
can complicate the description of the topological gap-gapless transition in a chiral p+ip 
superconductor. Our study can be considered as the first milestone on the road towards the 
understanding of the gap-gapless topological transition in unconventional superconducting 
systems. 
We added a phrase to the text of the manuscript: 
It is important to note that we confine our study to the case of a s-wave isotropic 
superconductor and do not consider unconventional and exotic pairing symmetries. 
 
(2) All calculations were performed for the case of an ideally isotropic gap. How will gap 
anisotropy affect the results? In particular, for strong anisotropy with deep minima, can the 
behavior of DOS and free energy near the transition change qualitatively? 



 
As it was mentioned above the effect of impurities on the density of states in anisotropic 
superconductors has been studied in the paper of P. Hohenberg, Anisotropic Superconductors 
with Nonmagnetic Impurities, JETP 18, 834 (1964). It was revealed that the transformation of 
the smeared DOS to the isotropic one at comparatively small concentration occurs. With the 
increase of the concentration of impurities the region of smearing decreases to zero and the 
superconductor becomes effectively isotropic.  
We added a paragraph with the explanation of this effect before Conclusions. 
 
(3) The Authors refer to Abrikosov-Gor'kov theory for the disordered superconductivity 
throughout the text - does that imply that Born approximation for scattering is used? In 
particular, does the justification for the stability of the mean-field description given in 
"Smearing of the transition due to spacial fluctuations of the magnetic impurities 
concentration", rely on Born approximation? How will rare region effects and the presence of 
impurity bound states affect the argument? 
 
We perform our calculation in the assumption of validity of the weak enough scattering and 
applicability of the Born approximation. Let us stress, that the main results in superconducting 
alloys including the effect of magnetic impurities were obtained namely in these 
approximations. The same concerns the theory of Lifshitz transitions. The origin of the giant 
Seebeck coefficient close to the transition point is the small, but energy dependent 
contribution to the relaxation time, which is perfectly seen already in the case of a weak 
scattering, amendable to the Born approximation consideration. What concerns the rare 
regions and impurities bound states this is the exotics lying far away from the scope of our 
consideration. 
 
(4) The relation to previous works on thermoelectric coefficients in superconductors with 
magnetic impurities has to be discussed in more detail. In Ref. 33, multiple scattering effects 
were considered beyond the Born approximation, so it appears that the results of Ref. 33 are 
more general. In Ref. 32, on the other hand, results in Born approximation were reported and 
Eq. (11) and (12) there are indeed quite similar to Eq. (13) and (8) of the current work. 
However, the denominators in Eq. (13) and Eq. (11) of Ref. 32 appear different - could the 
Authors explain this difference? 
 
Despite the more general consideration in Ref. 34 from figure 3 of this paper one can see the 
same strong enhancement of a thermoelectric coefficient in a dependence of the 
concentration impurities which is the equivalent to the parameter zeta in our manuscript. The 
only difference that the authors of that paper did not realize the amplification of the 
thermoelectric coefficient as the hallmark of the topological gap-gapless phase transition.  
At the same time in Ref. 33 it was assumed that the exchange scattering is much smaller than 
the nonexchange scattering. This yields that the first and last terms in the denominator of Eq. 
(11) in the present manuscript can be neglected. Thus, we obtain Eq. (11) of Ref. 33. 
 
To clarify this point we added phrases: 



We perform our calculation in the assumption of validity of the weak enough scattering and 
applicability of the Born approximation. 
 
Although different assumptions have been used in Refs. 33 and 34 for the calculation of the 
thermoelectric coefficient the effect of its enhancement remain the same on the qualitative 
level. 
 
 

(•) Since results at finite T are reported in Fig. 3, was Δ(ζ) calculated self-consistently for finite 
T or were the zero-temperature expressions used? If the latter is true, this has to be 
mentioned and justified. 
 
For the calculations of Δ(ζ) we used approximations for the low-temperature behaviour of the 
order parameter. We added these expressions for the gap and the gapless regimes to the 
supplemental material. 
 
 Minor comments/suggestions: 
 
--- Fig. 1 misses a color scale; the drastic change from purple to blue seems to suggest a jump, 
which can be confusing to readers, since the transition is actually continuous. 
 
To clarify this point we added sentences in the legend of Figure 1: 
Purple and cyan colors in the background of the plot illustrate separation between gap and 
gapless state respectively. Weak blur near zeta=1 represents smearing of the transition due 
to spacial fluctuations of the magnetic impurities’ concentration (see the corresponding 
chapter of the paper). 
 
--- Mentions of the applications to s++/s± transition and color superconductivity in QCD and 
string theory are not really substantiated or discussed. The Authors should either provide a 
discussion of what new physics can their approach reveal in those systems or refrain from 
stating the connection (at least in the abstract and conclusion). 
 
We extended the part regarding the applications to s++/s± transition and color 
superconductivity in QCD: 
 
In the case of a dirty multi-band superconductor with increasing of the nonmagnetic impurities 
concentration, one of the gaps is seen to close, leading to a finite residual DOS, followed by a 
reopening of the gap. Such a behavior allows to speculate about the topological nature of 
s++/s±  transition. For a color superconductor it was shown that, at zero temperature and 
small values of the strange quark mass, the ground state of neutral quark matter corresponds 
to the so-called color-flavor-locked phase. At some critical value of the strange quark mass, 
there is a transition to the gapless color-flavor-locked phase, where the energy gap in the 
quasiparticle spectrum is not mandatory [38, 39]. As in the case of multi-band 



superconductivity one can again speculate about the emergence of topological phase 
transition in the phase diagram of the neutral quark matter. 
 
--- Some links in citations are not working (e.g. 17,18); Ref. 17 links to the same URL as Ref. 
18; Ref. 18 is missing the journal information. 
 
We corrected these links. 
 
To conclude we thank the Referee for the very careful reading and for the detailed criticism 
which as we hope resulted in a significantly improved of manuscript. 
 
 
 
 


