
Referee 3

We thank the referee for their consideration of our work and the useful and detailed comments
and questions. Here we respond to their requested changes directly and outline how we have
improved the manuscript accordingly.

1 Quantum synchronization (QS) is a timely subject and several original ap-
proaches and results have been reported in the last years. In this context, this
manuscript complements previous work of some of the authors on dynamical sym-
metries, as in https://doi.org/10.1088/1367-2630/ab60f5, and on the Liouvillian
formalism in QS, as in https://doi.org/10.1103/PhysRevA.95.043807. Looking at
theorems and examples in comparison with these works, it is not always clear this
work novelty.

Our previous work gave certain sufficient criteria for purely imaginary eigenvalues (limit
cycles) of quantum Liouvillians and discussed how synchronization cases arise from strong dy-
namical symmetries in specific cases. Our present work gives both necessary and sufficient
conditions for purely imaginary eigenvalues in addition to sufficient conditions for synchroniza-
tion. Moreover, we show that in cases when the stationary state is invertible, the previous
criteria of our Nature Communications 10 (1), 1730 (2019) are both necessary and sufficient.
We now explain this in the main text.

2 After reading the whole manuscript it appears that it deals with QS of finite-
dimensional systems, with interaction with the environment described by a specific
class of master equations, not applicable in a master-slave scenario, nor in presence
of significantly different subsystems, nor to phase synchronization. Actually the
analysis is restricted to the case of identical subsystems (Sect 3.2) and to weak
deviations from this scenario (perturbed Liouvillian, Sect 4).

The claim that we cannot treat subsystems that are not identical is incorrect. We now
give an explicit example in Sec. 6.2.1 where the subsystems are not identical since each site
is subject to a different on-site potential and interaction strength. We can treat any type of
identical synchronization that results from time-independent master equations, including time-
independent master-slave scenarios if such exist. We now discuss this specifically in the abstract.
Generalizing to time-dependent master equations will be the topic of future work. Moreover, we
can treat chaotic synchronization. This can occur if the purely imaginary eigenvalues become
dense and incommensurate, as discussed in the manuscript.

3 The main change this manuscript will benefit from is a clear initial statement
about the relevance/applicability of the described framework: the authors should
identify (ideally avoiding a technical language) the systems and the kind of syn-
chronization that can be formally described by the framework described in Sections
3 and 4. The abstract claim “[. . . ] no comprehensive theory has been found [on
quantum synchronization]. We give such a general theory” should be replaced by
a fair statement on the specific reported results. See also 5-.

We have now amended the abstract to clarify that our theory applies to spontaneous (or
time-independent) synchronization between undriven subsystems. In our introduction to the
Lindblad formalism, we have also clarified that there is no restriction as to whether the envi-
ronment is Markovian or non-Markovian. Importantly, we now note that our theory allows for
a full Hamiltonian treatment of an environment, as well as a Markovian one. One example we
give is explicitly non-Markovian, i.e. the three spin model for which one of the spins play the
role of the environment for the other two.
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4 Section 1.1.1 should focus on the relevant synchronization context and prop-
erly refer to it. For instance, the authors claim that ref 123 (well-known book on
synchronization) considers “synchronization to be a purely periodic phenomenon”
when there is even a dedicated chapter on synchronization in chaotic systems. It is
also not correct that “In contrast to identical synchronization, phase synchroniza-
tion does require periodic motion in order to meaningfully define a relative phase
difference between the two subsystems.” This is not the case, see for instance
https://doi.org/10.1103/PhysRevLett.81.321 On the other hand, the authors long
discussion about getting identical synchronization by rescaling different system ob-
servables is not really insightful.

Section 1.1.1 has now been streamlined to remove less relevant discussions, and we have
corrected our misinterpretation of the introduction of Ref 123 as pointed out by the referee.
We have also studied the interesting reference they suggest. However, we note that this work
does not refer to phase-synchronization as we describe in the introduction. The suggested
work describes synchronization between a physical angle within each subsystem (which the
authors label as a phase) rather than temporal phase differences between given variables. It is
unfortunate that the literature has identical terms for different phenomena (and equally multiple
terms for the same phenomenon), but we have tried to be as clear as possible when describing
the phenomena we consider. With appropriate modification, our theory could treat a temporal
phase difference as in the reference. We now comment on this when we discuss future work.

5 The scenario of metastability of section 4 is a form of known transient synchro-
nization http://dx.doi.org/https://doi.org/10.1007/978-3-030-31146-9_6 or Ref
43, but no clear connection is discussed.

We have now included this reference and pointed out that this phenomenon has been studied
under an alternative name.

6 Complete synchronization has been already proposed in https://doi.org/10.

1038/s41598-019-56468-x This previous work should be acknowledged when pre-
senting this concept.

We have now included this reference.

7 Referring to 36 and 37, the authors claim that synchronization between spin
½ systems is possible because of non-Markovianity. On the other hand, many
works also cited in this manuscript deal with synchronization between spins ½
systems in the Markovian case. Do the authors framework predicts that no stable
synchronization can be achieved there? What would “fail” if the authors considered
a system of only 2 instead of 3 identical units and a common bath under Markovian
dissipation? Mentioning/discussing cases where this formalism cannot be applied
while synchronization has been reported would be as useful as the already included
examples, adding strength to this work.

Our theory can be applied to show that there is no stable synchronization in several spin-
1/2 systems in the Markovian case. This may be accomplished using Th. 4, under the mild
assumption of having a full rank stationary state. As we now discuss in Sec. 5, we may employ
the construction of Prosen in Ref. [169]. This is applicable to the system in Ref. [42], which is
also consistent with their claim that there is no stable synchronization in the system.

There is nothing in the formalism that would ‘fail’ in the case of two spin-1/2 units with a
common Markovian bath. For instance if we take the Hamiltonian

H = σxAσ
x
B,
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with a single Lindblad operator
L = σ−Aσ

−
B ,

we find a pair of purely imaginary eigenmodes

ρ± = (|1, 0〉 ∓ |0, 1〉)(〈1, 0| ± 〈0, 1|),

which have eigenvalues λ = ±2i. Notice that under the exchange of subsystems, A ↔ B, the
expected value of σzj in either state is anti-symmetric. In the long time , for any choice of initial
state, this leads to

〈σzA(t)〉 → α+ β cos(2t− θ),
〈σzB(t)〉 → α− β cos(2t− θ),

for α, β, θ ∈ R determined by the initial state. This is almost anti-synchronization, but un-
fortunately the expected value of σzj in the NESS manifold leads to α 6= 0 which spoils the
anti-synchronization (this is similar to the example in the manuscript). Clearly under a weaker
definition of synchronization we could consider this system to be synchronized. The purpose of
the example included in the manuscript was to demonstrate that our theory indicates how to
easily construct a non-Markovian environment that does synchronize the two spin-1/2’s, and
was motivated by the claim of [37] that two spin-1/2’s cannot be synchronised.

8 The classification presented in Section 1.1.1 is a bit misleading, mixing the form
of synchronization (e.g. in phase or amplitude) with the systems configuration
(autonomous vs driven). Also, the very first definition of synchronization in the
abstract is not the generally accepted one. Same criticism for the definition in
sect.3.2 “Recall, that the crucial feature of quantum synchronization is that the
various parts of the subsystem lock into the same phase, frequency and amplitude.”
Synchronization is a broader phenomenon.

We have now made it more evident that we consider only spontaneous synchronization in
undriven systems. The introduction and abstract have been amended accordingly. This should
now avoid confusion around terminology. However, as we stated in the conclusion, going beyond
spontaneous synchronization requires extending our theory to time-dependent Liouvillians, and
we plan to study this in future work.

9 The physical ground of the strong coupling case described in Eq 21 should be
commented and related to possible microscopic derivation. Also the assumption
after eq 25 of L1 anticommuting with the permutation operator should be clarified.

The physical microscopic derivations for the strong coupling ‘Zeno’ limit are discussed in the
cited references, and references therein. We now explicitly direct the reader to these works for
further details, as such discussions are beyond the scope of our work. Here we take the limit as
an assumption. We have explained in the text that this limit corresponds to a situation where
the noise is the dominant contribution to the dynamics and point the reader to the experimental
example in Sec. 6.3 as a situation where this limit is relevant.

We have now clarified that the anti-commutation between L1 and the permutation operator
corresponds to anti-symmetric symmetry breaking (as per Referee 1’s comments too).
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