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The authors of this commentary are: Enrico Brehm (AEI Potsdam), Diptarka Das (IIT Kanpur)
and Shouvik Datta (CERN).

In the preprint [1] the authors claim to confirm the OPE randomness hypothesis [2] proposed
earlier by a subset of them. In the following we point out some logical flaws and shortcomings of the
preprint.

1. One of the starting assumptions of the preprint is that random matrix universality applies to 2d
CFTs. It is unclear where this assumption stems from. In the preprint, the notion of ‘a chaotic
CFT’ is misleading as it has not been phrased appropriately in 2d CFT terms. Recent work
on wormholes in AdS3 gravity [3] reveal some similarities with RMT regarding level-repulsion.
However, it is far from clear whether a conventional RMT description applies; the authors of
[3] do mention what are the obstructions towards a RMT description. Furthermore, even if a
RMT description applies, it is only for extremal microstates (i.e. in the JT gravity limit of low
temperatures and fixed spin). The preprint [1] does not take these details into account. Hence,
the assumption that RMT universality applies to 2d CFTs is naive.

2. The authors define a ‘simple probe’ OPE coefficients in equation (1.5), Z(τ1, τ2, τ3). It is
ambiguous what class of states (primaries or all states?) over which the summation acts in
equation (1.5). It is to be noted that the matrix elements of descendant states (within a single
Verma module) do not obey the standard ETH ansatz, as these are fixed by symmetries and
they are not random – see [4].

If at all the C123’s are genuine OPE coefficients of a CFT, it is reasonable to view Z(τ1, τ2, τ3) in
equation (1.5) being defined as sum over primaries. However, such a definition is unusual from
a CFT perspective and does not correspond to any standard object in 2d CFT. The reason
is that a genuine genus-2 partition function should involve a sum over all states (including
descendants). The genus-2 partition function can also be written as a sum over primaries but
the contribution from the descendants is then encapsulated through the genus-2 conformal
blocks – this significantly affects the dependence on the moduli of the Riemann surface. It is
understandable that the form of the genus-2 block is intricate because of the infinite-dimensional
Virasoro symmetry. However, there is no physical reason to remove the contribution from the
descendants from CFT correlator or a higher genus partition function. The authors do not
specify under what choice of CFT parameters can their object Z(τ1, τ2, τ3) make sense. Since
this is one of the starting points of the analysis presented in the paper, we think whatever
conclusions the authors obtain apply to matrix elements of a toy model which bears similarity
to a chaotic quantum mechanical system, not to OPE coefficients of a 2d CFT.

3. On a related point, it was shown in [5] by considering the trace-square distance that the
reduced density matrices of a primary state do not agree with that of thermal state beyond the
large central charge limit. Therefore, if the authors choose to focus on primaries alone they are
restricting themselves strictly to the large central charge limit. Moreover, at finite central charge
the number of descendants outnumber the number of primary states [6]. Therefore, regardless
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of the fact that the OPE coefficients contain non-universal/chaotic information, taking into
account the contribution from the descendant states is a necessity and not an option. Once
the descendants enter the story, we also need to restrict to small windows of energies as well as
KdV charges. Hence, the resulting description for thermalization/ETH will be given in terms
of the generalized Gibbs ensemble of these KdV charges. The preprint [1] is oblivious to these
subtleties.

4. It is unclear what the authors mean by claiming that their EFT description of OPE coefficients
applies only to the ‘ergodic regime/limit’ – Sec. 2.4 of [1]. In this section, the authors declare
that the task to justify EFT, which becomes a theory of random Hamiltonians, has not been
carried out in CFTs and is beyond the scope of their work. Therefore, making statements
about 2d CFTs which are based on random Hamiltonians is not sensible. Furthermore, it is a
well known fact that in a CFT the spectrum of operator dimensions and OPE coefficients are
a set of pure numbers without any time-dependence whatsoever. Therefore, any meaningful
set of OPE coefficients should describe the physics across all time-scales regardless of whether
it’s the ‘ergodic limit’ or not.

5. A key object in this paper is the operator O – eqs. (2.10) and (3.2). It acts on the tripled
tensor product of the state space and its matrix elements in the energy eigenbasis are in (2.10)
defined to be the product of two OPE coefficients. The analysis of this operator begins with
(3.2), where the operator is written in some basis of the tripled state space. However, we would
like to point out that the choice is already quite restricted by writing the basis vectors as tensor
products |j1j2j3⟩, which basically means that they choose a basis in the single state space and
not in the triple. This becomes also clear from the unitary basis change which is then nothing
but the tensor product of unitaries acting on the individual state spaces.

In Section 3.1, the main goal is to compute the average of the matrix elements of O in the energy
eigenbasis within a microcanonical window. Note that the tensors Ωj1j2j3 in equation (3.2) are
clearly dependent on the specific choice of the basis |j1j2j3⟩. Since the basis ⟨i1i2i3|j1j2j3⟩
remains rather abstract and is not concretely spelled out, it is even more confusing what
the overlaps with energy eigenstates, ⟨i1i2i3|j1j2j3⟩, actually are. Further to exacerbate the
situation, the authors readily take these overlaps to be Haar random unitaries, Ui1j1 , in equation
(3.4). We do not see any justification for that other than the assumption that the theory behaves
like a random matrix theory. The latter is what needs to be shown, but it rather is claimed to
be confirmed by their results. This can only be true if RMT behaviour is assumed from the
very start. Therefore, the claims about the confirmation of OPE randomness are based on a
circular argument.

The steps in equation (3.4) merely replicate what one does in RMT while deriving a version of
the ETH ansatz (cf. Sec 2.2.2 of [7]) and these aspects have nothing to do with 2d CFTs.

6. While arriving at equation (3.10) from (3.8), the authors say that (3.10) is the right distribution
of the OPE coefficients which has the variance in equation (3.8). It can be seen very easily that
there can be numerous other distributions designed to produce the variance in (3.8). Therefore,
while deducing equation (3.10) a highly non-unique choice is being made. This choice is valid
if one is working within the RMT framework. However, as mentioned earlier there is no reason
for this framework to apply to 2d CFT in the first place. Therefore, by no means does the
analysis of the paper constitute a confirmation of the OPE randomness hypothesis.

Furthermore, just mentioning that the REE′ ’s are ‘random matrices’ (e.g. in eq. (3.10)) does
not convey much information. Do the authors mean that these are Gaussian ensembles? What
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about higher moments?

7. Finally, OPE coefficients in CFTs need to be consistent with the bootstrap conditions of cross-
ing symmetry and modular covariance of correlators on Riemann surfaces of arbitrary genus.
Although it is challenging to implement the bootstrap for 2d CFTs (owing to the intricate
structure of the conformal blocks), it offers an infinite number of constraints which the OPE
coefficients need to obey. As this verification has not been carried out for the hypothesis of
[2], the validity of OPE randomness remains questionable. The same issue also exists with the
previous work [8], by the same authors.
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