
We thank Referee 4 for their comments and critique. Below, we provide a reply to those, including

the changes we applied to the manuscript.

Unfortunately, the authors suggest no general conclusions based on their numerical re-

sults, which could emphasize the relevance of the work to the field. The statements

like ”... the fixed point is compatible with the one of short-range Cli↵ord circuits” and

”... consistent with the one reported in Ref. [51], suggesting that ... the measurement

induced transition is governed by the same underlying ... theory despite the protocols

being di↵erent” are too specific to the models addressed in the paper. Apparently, these

models were chosen to demonstrate some more general properties of the correspond-

ing classes of systems. For this purpose, a more extended discussion of the numerical

observations in analytical terms is necessary.

We agree with the Referee that analytical considerations are fundamental to the theory of measurement-

induced criticality in variable range systems. However, we also stress that the analytical arguments

presented so far in hybrid random circuits with long-range interactions are phenomenological and

based on arguments of plausibility (see e.g. Ref.[7,51]), and some of those might be better suited

for free-fermion theories and Haar circuits (in particular, their applicability to Cli↵ord circuits is

unclear to us).

A possible path to overcome these arguments and tackle analytically the full problem is to con-

sider the exact mapping from random circuits to classical statistical mechanics models (as in, e.g.,

Ref.[59,60,90]): a recent work (2110.02988) has laid down the foundation on how to carry this out for

the case of Cli↵ord unitary circuits and short-range interactions. Starting from there, one should

work out an approximation that overcomes the di�culties arising from the convoluted geometry

of the resulting lattice (a problem that, in some form at least, also exists when considering path

integral descriptions of quantum statistical mechanics models).

In the text, we added a discussion in Sec. 5 on the above point. We believe however that, due

to its highly non-trivial nature (even the short-range case was not analytically understood until

2110.02988) and importance, this analysis goes well beyond the purpose of our work - our numerical

exploration, together with the other works on similar Cli↵ord models, would then constitute a solid

background to benchmark and check analytical findings.

The description of the models and the protocol should be modified. The main problem is

that the unitary gate defined in Eq. (3) does not seem to define the CHRC as described

in Fig. 1. Indeed, if one naturally assumes that Eq. (3) describes each of U-blocks

in Fig. 1a, i.e., the time variable t corresponds to the whole block there, the ”fine

structure” (internal architecture) of the large U-block shown in Fig. 1b (left) is not

actually defined in Eq. (3). Indeed, the pattern of the elementary small boxes in Fig.

1b (left) is very specific, suggesting the introduction of a certain ”time-ordering” inside

the large U-block, which is missing in the formal equation for U(t). (”The unitary gates

U(t) are laid out in a manner that mimics a soft-shoulder potential extending over M

sites” – is this layout crucial for the CHRC model, or one can use an arbitrary ordering?).

If, however, the time step t refers to a horizontal slice in Fig. 1b(left) rather than in Fig.

1a, Eq. (3) does not describe Fig. 1b(left) since all sites i are involved in the product in

Eq. (3), while there are empty sites in each elementary slice in Fig. 1b(left). To avoid
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confusion, the authors should define their models (and notation) in a much more careful

way!

We have clarified the descriptions of the CHRC model, including further mathematical definitions

for the quantities of interest. We updated the caption of Fig. 1 and the text in Sec. 2 to spell out

additional details of the models.

The randomness in the gates, as well as the definition of averaging over this type of

randomness, should also be described explicitly in analytical terms.

We have added the required analytical descriptions.

In addition to this major point, there are also related minor issues:

i The circuit realization Km in Eq. (1) requires an explicit analytical representation

in the form Km=... (may be given after defining the elements of the hybrid circuit)

ii It would be nice to add the label (+-) to the projectors in Eq. (2)

iii The caption of Fig. 1 says: ”M = 4 in the above illustration”. However, this is not

what is seen in the figure, where the dashed links between the largest pairs of the

smallest blocks have di↵erent lengths (in particular, the top left block obviously

has M>4)

iv The di↵erent colors used for pairs in Fig. 1b(right) should be explained in the

figure caption

We have added the required specifications for (i),(ii), and (iv).

Regarding (iii), in the previous version of the paper, we amplified the size of the gates passing

through the boundary condition to guide the reader’s eye. Since, as the Referee points out, this

graphical choice lead to lack of clarity, we have updated the figure in such a way that the length of all

the blocks in Fig 1(b-Left) is the same. In addition, we have reminded that we are utilizing periodic

boundary conditions, and also specified this in the caption, thus avoiding possible ambiguities

regarding the topology of the system depicted in the CHRC panel.

Now, turning to the results, it would be nice to have the data points for M=3 and M=5

in Fig. 4, especially in the upper right panel for nu (by the way, the panels are not

labeled in contrast to what the figure caption says). Is it clear why M=6 is the ”magic

cluster range” beyond which the area-law phase disappears?

We have added the labels. As pointed out in the text, we did not treat the case of M = 3, 5, 7 and

others to avoid commensurability problems. In fact, these odd values would require a change of

parity also in L.

About the case of larger M = 8, it is important to note that we cannot conclude that, for that case,

the area-law disappears: we can only say that, within our error bars, it is impossible to discriminate

whether a transition occurs or not. The same holds true for larger M . The only statement we can

really make is that, if such phase exist, one would require much larger system sizes (O(1000)) to

verify its existence. This information was already present in the text, in the ”Critical exponent”
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paragraph of Sec. 4.1. We have now added a reminder on this specific point in the conclusions.

Figure 7: It is not clear what the numerical evidence for the vertical dashed-dotted line

at alpha=2 is provided. Is it at all possible, with available system sizes and accuracy

shown by error bars, to distinguish in such a phase diagram between the ”algebraic

phase” and a crossover region separating the area-law and volume-law phases?

We have added a discussion on how the dashed line (crossover line) arises. This combines phe-

nomenological (semi-analytical) arguments and our finite-size scaling analysis of the entanglement

negativity. From the results of the negativity, the trend seems clear: it scaling exponent is a

monotonous function of ↵, and, most importantly, we do not observe any crossover-type signature

(such as, e.g., a non-monotonous behavior of the negativity as a function of L, or plateaus after

which the derivative of the negativity versus size changes sign). The quality of the agreement

between exact numerical and phenomenological argument over the full regime 1 < ↵ < 3 further

supports the picture we draw. The only caveat is, if such crossover region is extremely tiny in

parameter space, we could have missed that given that we only take a finite grid in ↵: while we

cannot rigorously exclude this scenario, we find it unlikely, also in view of the fact that we are not

aware of any other instance where long-range interactions induce crossover behavior in entanglement

negativity between separate regions.

Lastly, we have corrected the highlighted typos and included 2111.08018 as an additional biblio-

graphic entry for our discussion in Sec. 5.
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