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Abstract

We consider two identical fermions interacting in the p-wave channel. Each fermion also interacts with another
particle in the vicinity of an s-wave resonance. We find that in addition to the Kartavtsev-Malykh universal
trimer states resulting from the s-wave particle-fermion interaction, the fermion-fermion p-wave interaction
induces one or two shallow trimers in a large domain of the control parameters, including a borromean regime
where the ground-state trimer exists in the absence of dimers at any mass ratio between the fermions and the
particle. A generic picture of the trimer spectrum emerges from this work in terms of the low-energy parameters
of the interactions.

1 Introduction

The experimental achievement of Fano-Feshbach reso-
nances in ultra-cold atomic systems [1] have enabled
researchers to modify interatomic interactions at will.
In particular, it is possible to tune the scattering length
of the atoms to values much larger than the interac-
tion range and thus to achieve quantum systems of
particles with short-range resonant interactions, whose
properties are universally described by only a few pa-
rameters. At the two-body level, two atoms undergo-
ing such a resonant interaction in the s-wave can form
halo dimers, whose binding energy is universally given
by the square inverse of the scattering length. At the
three-body level, it is possible to form Efimov trimer
states [2], which are universally described by the scat-
tering length and a three-body parameter [3–5]. The
most striking property of these states is that they ex-
hibit the Efimov effect: at resonance, where a halo
dimer becomes bound, the trimer spectrum forms an
infinite geometric series with an accumulation point at
vanishing energy. This effect results from the Efimov
attraction, an effective three-body attraction due to the
resonant nature of the interaction and which arises far
outside the range of inter-particle interactions. The
experimental confirmation of Efimov trimers

:::::::
[6–27]

with ultracold atoms has spurred an intense theoreti-
cal search for universal few-body states in systems with
resonant interactions.

The Efimov effect is most easily evidenced in bosonic

systems, and tends to be absent in fermionic systems,
which involve non-zero angular momenta due to the
Pauli exclusion. Indeed, a non-zero angular momen-
tum implies a centrifugal repulsion, which often over-
comes the Efimov attraction. For instance, three-body
systems of spin-1/2 fermions do not exhibit the Efimov
effect for this reason. The relative strength of the Efi-
mov attraction with respect to the centrifugal repulsion
can nonetheless be enhanced in the case of particles of
different masses. The simplest system consists of two
identical fermions of mass M in the same spin state
interacting with a third particle (fermion or boson) of
mass m. The third particle experiences an s-wave scat-
tering resonance with each fermion. Analogously to the
exchange of mesons between two nucleons in nuclear
physics, it mediates an effective attraction between the
two fermions. The fact that the two identical fermions
are exactly in the same internal state implies that they
have at least one unit of relative angular momentum,
resulting in a centrifugal repulsion competing with the
Efimov attraction. When the mass ratio x = M/m
exceeds a critical value xc = 13.607 . . . , the Efimov at-
traction dominates over the centrifugal repulsion and
the Efimov effect occurs at resonance, resulting in an
infinite number of trimers with the Jπ = 1− symmetry.
At finite but large and positive scattering length, when
the mass ratio is smaller than this critical value, the
effective three-body attraction persists at intermediate
distances, making it possible for the three particles to
bind into a finite number of bound states.

1

mailto:christiane.schmickler@riken.jp
mailto:pascal@riken.jp
mailto:ludovic.pricoupenko@sorbonne-universite.fr


Considering two fermions interacting with the third
particle only through a contact interaction, Kartavtsev
and Malykh have demonstrated that for mass ratios
larger than x1 = 8.17260... and smaller than xc, up
to three trimer states can exist [28–31]. These trimers
have the same Jπ = 1− symmetry as Efimov trimers at
larger mass ratios and are characterised by the scatter-
ing length a between each of the two fermions and the
third particle, and additionally, for M/m larger than
xr = 8.619 . . . , by a three-body parameter. These uni-
versal results are applicable to describe shallow trimer
states in real systems in the limit of large scatter-
ing length a and negligible interactions between the
fermions. There have been some attempts [32–34] to
understand more precisely how this universal scenario
fits into real systems. In what follows, we will call
s-wave induced trimers the states bound only by the
s-wave interaction between the fermions and particle,
and use the short-hand notationKM states

::
or

::::
KM

::::
limit

to refer to their universal limit described by Kartavtsev
and Malykh’s contact theory.

One pending question is how the universal scenario is
modified by the presence of an interaction between the
two fermions. In real systems, an interaction is indeed
always present. If sufficiently attractive, in the vicinity
of a two-body p-wave scattering resonance, this inter-
action may even bind the two fermions, despite their
centrifugal repulsion. This attractive effect is described
at low energy by only two parameters, the p-wave scat-
tering volume and the p-wave effective range. One may
thus wonder whether the universality of the KM states
is preserved in the presence of the fermions’ interac-
tion, i.e. whether the system can still be universally
described by a few low-energy parameters.

In this paper, we show that the universal KM states
always exist for the mass ratios predicted by the con-
tact theory and for a sufficiently large and positive
value of the scattering length. However, for sufficiently
attractive p-wave interaction, the spectrum is enriched
by another shallow state whatever the mass ratio, and
by a second one for a sufficiently large mass ratio

::::
mass

::::
ratio

:::::
M/m

::::::
larger

::::
than

::
a

::::::
critical

:::::
value

:::
x′c. Hereafter, we

will use the denomination p-wave induced trimers for
these states. Their properties (threshold, energy. . . )
depend on the shape of the p-wave interaction. Despite
this non-universality, these results permit us to draw a
generic picture for the spectrum of the shallow trimers
in terms of

:::::
s-wave

:::::
and

::::::
p-wave

::::::::
induced

::::::::
trimers,

::
as

::
a

:::::::
function

::
of

:
the two-body low-energy parameters.

::::
Both

:::
the

::::::
s-wave

:::::
and

:::::::
p-wave

:::::::
induced

:::::::
trimers

::::
are

::::::::
depicted

::::::::::::
schematically

::
in

:::::
Fig.

::
1
:::
as

::
a
::::::::
function

:::
of

::::
the

::::::
s-wave

:::::::::
scattering

::::::
length

::
a

::::
and

:::
the

:::::::
p-wave

:::::::::
scattering

:::::::
volume

::
v.

:::
As

:::
will

:::
be

:::::::::
discussed,

:::::
these

::::
two

:::::
types

::
of

:::::::
trimers

::::
may

:::::::
undergo

:::
an

:::::::
avoided

::::::::
crossing

::::
and

::::::::
hybridise

::::::
when

::::
their

:::::::
energies

:::::
come

:::::
close.

:

Figure 1:
:::::::
Domains

:::
of

:::::::::
existence

:::
of

::::
the

::::
two

::::::
types

::
of

:::::::
trimers

:::::::::
identified

:::
in

::::
this

::::::
work,

::::
for

::
a
:::::
mass

:::::
ratio

:::::::::::::::::::::::::::
M/m ∈ [x1 ≈ 8.1726, x′c < x2].::::::

The
:::::::
s-wave

:::::::
induced

::::::
trimer,

:::::::
shown

:::::::::::::
schematically

::
in

::::::
blue,

::
is
::::::::
induced

:::
by

:::
the

::::::
s-wave

:::::::::::
interaction

::::::::
between

:::
the

:::::::::
fermions

::::
and

:::
the

:::::::
particle.

:::
It

::::::
exists

::::
only

::::
for

:::::::
positive

:::::::
s-wave

:::::::::
scattering

::::::
lengths

::::::
a > 0

::::
and

::::::
admits

::
a

::::::::
universal

:::::
limit

:::::
(KM

:::::
limit)

::
for

::::::::::
1/a→ 0+.

:::::
The

:::::::
p-wave

::::::::
induced

::::::
trimer,

:::::::
shown

::
in

:::
red,

::
is
::::::::
induced

:::
by

:::
the

:::::::
p-wave

::::::::::
interaction

::::::::
between

:::
the

:::::::
fermions

:::
in

:::::::::
presence

:::
of

:::
the

:::::::
s-wave

:::::::::::
interaction.

::::
It

:::::
exists

:::::
only

:::
for

::::::::
positive

::::::::::
1/a > 1/ac::::::

when
:::
the

:::::::
p-wave

::::::
inverse

::::::::::
scattering

:::::::
volume

::::
1/v

::
is
::::
less

:::::
than

::
a
:::::::
critical

::::
value

:::::
1/vc ::::::

(upper
:::::::
panel),

:::
and

::::
can

::::
exist

:::
for

::::::::
negative

:::
1/a

::::::::::
(Borromean

::::::::
trimer)

:::::
when

:::::::::::
1/v > 1/vc::::::

(lower
:::::::
panel).

:::
Not

:::::::
shown

:::
in

::::
the

:::::::
figure:

:::::
for

::::::
larger

::::::
mass

::::::
ratios

::::::::::
M/m > x2,:::::

there
:::
is

::
a

::::::
second

:::::::
s-wave

:::::::
induced

:::::::
trimer,

:::::::::
converging

:::
to

::::
the

::::::::
excited

::::
KM

::::::
state

:::
for

::::::::::
1/a→ 0+.

:::
For

:::::
mass

::::::
ratios

:::::::::::::::
M/m > x′c,there::

is
:::
an

:::::::
excited

::::::
p-wave

:::::::
induced

::::::
trimer.

::::::::
Finally,

:::
for

::::::::::::::::::
M/m > xc ≈ 13.607,

:::::
there

:::
are

:::
no

:::::
more

::::
KM

::::::
states

:::
for

::::::::::
1/a→ 0+

:::
but

:::
an

:::::::
infinite

:::::::
number

::
of

::::::
s-wave

:::::::
induced

:::::::
trimers

::::::::::
converging

::
to

::::::
Efimov

::::::
states.
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2 Model

2.1 Separable model

We consider the general problem of two identical
fermions of mass M and one particle of mass m, all
three interacting with each other through finite-range
attractive interactions. The two fermions are denoted
as particles 1 and 2, and the third particle as parti-
cle 3. In these notations, the SchrÃ·dinger equation at
energy E reads in momentum representation:(

p̂21
2M

+
p̂22
2M

+
p̂23
2m

+ Û12 + V̂23 + V̂31 − E

)
|Ψ⟩ = 0

(1)
where p̂i is the momentum operator of particle i, and
V̂ij and Ûij are the interaction operators between par-
ticles i and j. No three-body interaction is consid-
ered in this work. The state |Ψ⟩ is antisymmetric
under the exchange of fermions, i.e. ⟨k2,k1,k3|Ψ⟩ =
−⟨k1,k2,k3|Ψ⟩ in momentum representation where ki

is the wave vector of particle i. Because of trans-
lational invariance, we can pursue this study in the
center-of-mass frame and thus k1 + k2 + k3 = 0. The
wave function can then be expressed in terms of one
of the three Jacobi coordinate sets, (ki,kjk), where

kjk ≡ mjkk−mkkj

mj+mk
is the relative momentum between

particles j and k, with m1 = m2 =M and m3 = m.
To simplify the calculations, the interaction opera-

tors are taken to be of the separable type:

V̂ =
2πℏ2

µ23
ξ|χ⟩⟨χ| (2)

Û =
6πℏ2

µ12

1∑
m=−1

gm|Φm⟩⟨Φm| (3)

where µ23 =
(

1
M + 1

m

)−1
and µ12 = M/2 are the re-

duced masses of the fermion-particle and two-fermion
subsystems. The separable potentials are characterised
by interaction strengths ξ ≤ 0 and gm ≤ 0, and form
factors χ and Φm, with ⟨k|χ⟩ ≡ χ(k) and ⟨k|Φm⟩ ≡
Φm(k) = ϕm(k)k · êm, where we use the unit vectors
ê0 = êz and ê±1 = (∓êx − iêy)/

√
2. The form of

these separable potentials is chosen such that V̂ only
affects the s wave, and Û only affects the p wave -
see Appendix 1. In general the interaction Û can be
anisotropic, and becomes isotropic in the case where
all the interaction strengths gm and form factors ϕm
are equal. In this paper, without loss of generality we
will choose the normalisation of the form factors such
that ϕm(0) = χ(0) = 1.
Thanks to the separability of the potentials, the

problem can be formulated in terms of the quantities,

S(k1) = −ξ
∫
d3k23
(2π)3

⟨χ|k23⟩⟨{ki}|Ψ⟩ (4)

Pm(k3) = −gm
∫
d3k12
(2π)3

⟨Φm|k12⟩⟨{ki}|Ψ⟩. (5)

Physically, S corresponds to the relative wave func-
tion between a fermion-particle pair and the other

fermion, and Pm to the relative wave function be-
tween the two-fermion pair and the third particle when
the fermion pair has an angular momentum projec-
tion mℏ. They satisfy the generalised Skorniakov–Ter-
Martirosian (STM) equations

::::
(see

::::::::
appendix

:::
2):

− |χ(iκ0)|2

4πf0,0(iκ0)
S(k) =

(6)

y

∫
d3k′

(2π)3

⟨χ|k′ + x
2yk⟩⟨k + x

2yk
′|χ⟩S(k′)

y(k2 + k′2) + xk · k′ + q2

+3

∫
d3k′

(2π)3

⟨χ|k′ + 1
2yk⟩

∑
m⟨k + 1

2k
′|Φm⟩Pm(k′)

k2 + yk′2 + k · k′ + q2

|κ1ϕm(iκ1)|2

4πf1,m(iκ1)
Pm(k) =

2y

∫
d3k′

(2π)3

⟨Φm|k′ + k
2 ⟩⟨k + k′

2y |χ⟩S(k
′)

yk2 + k′2 + k · k′ + q2
(7)

where we have introduced the binding wave number q
of the system defined by

E = −ℏ2q2

M
, (8)

the
:
as

:::::
well

::
as

::::
the

:::::::::
following

::::::::::
short-hand

:::::::::
notations

:::
for

::::::::
numerical

:::::::
factors

::::::::::
depending

::::
only

:::
on

:::
the

:::::
mass

:::::
ratio,

:

x
:
≡M/m
::::::

(9)

y
:
≡ (x+ 1)/2
::::::::::

(10)

:::::
There

:::
are

::::
two

:::::
kinds

::
of

:::::
terms

::
in

::::
the

:::::
STM

:::::::::
equations:

:::
the

:::::
terms

:::
on

:::
the

::::::::::
right-hand

:::::
side,

::::::
which

:::::::
contain

::::::::
integrals

:::::::::
describing

:::
the

::::::::::
three-body

:::::::
sector,

:::
and

::::
the

:::::
terms

:::
on

:::
the

::::::::
left-hand

::::
side,

::::::
which

:::::::
describe

:::::
only

:::
the

:::::::::
two-body

:::::
sector

:::
and

:::::::
contain

:::
the

:
s-wave and p-wave two-body scattering

amplitudes f0,0 and f1,m given by

−|χ(iκ)|2

f0,0(iκ)
=

1

ξ
+

2

π

∫ ∞

0

dk k2
|χ(k)|2

k2 + κ2
(11)

|κϕm(iκ)|2

f1,m(iκ)
=

1

gm
+

2

π

∫ ∞

0

dk k2
|kϕm(k)|2

k2 + κ2
(12)

and the short-hand notations,
:::::
These

:::::::::::
amplitudes

:::
are

::::::::
evaluated

:::
at

::::
the

::::::::
relative

:::::
wave

::::::::
number

:::
iκ

::::::::
between

:::
two

:::::::::
particles

::
in

::::
the

:::::::::
presence

::
of
:::
a

:::::
third

::::::::
particle

::
of

::::
wave

::::::::
number

::
k

::::
with

:::::::
respect

:::
to

::::
that

:::::
pair,

::::
for

:
a
:::::
fixed

:::::::::
three-body

:::::::
energy

:::
E.

::::::
This

:::::::
binding

::::::
wave

:::::::
number

::
is

:::::
given,

:::
for

::::
the

:::::::
s-wave

::::
and

:::::::
p-wave

:::::::::::
respectively,

:::
by

:::
κ0

:::
and

:::
κ1:::::::::

satisfying
:

x≡M/my≡ (x+ 1)/2κ20 ≡ 2x+ 1

4y2
k2 + q2/y, (13)

κ21 ≡ 2x+ 1

4
k2 + q2. (14)

In what follows, we will introduce the scale Λ0 (resp.
Λ1) below which the form factor χ(k) (resp. ϕ(k)) are
almost constant (i.e. equal to unity in our choice of

3



normalisation). Physically these scales are related to
the radius of the actual interactions which are supposed
to be of short range. In the context of ultracold atoms
they are of the order of the inverse of the van der Waals

lengths Λ0 ∝
(

ℏ2

2µ23C23

)1/4

and Λ1 ∝
(

ℏ2

2µ12
C12

)1/4

,

where C23 and C12 are the dispersion coefficients of the
−1/r6 van der Waals term in the respective pairwise
potential for the pairs of particles (12) and (23). In
the small momentum limit where κ is much smaller
than Λ0 and Λ1, one has the usual expansions of the
scattering amplitudes:

1

f0,0(iκ)
= −1

a
+ κ− re

2
κ2 + o(κ2) (15)

−κ2

f1,m(iκ)
= − 1

vm
+ αmκ

2 − κ3 + o(κ3) (16)

where a is the s-wave scattering length and vm is the
scattering volume, which in general depends on the
quantum number m of the fermionic pair.

:::::::
Physical

::::::::::
short-range

:::::::::
potentials

::::::
admit

::::
the

:::::
same

:::::::::::
expansions

::
as

::::
Eqs.

::::::::
(15-16).

::::
At

::::
the

:::::::::
two-body

:::::
level,

::::
the

:::::::::
separable

:::::::::
potentials

:::
are

::::::::
therefore

:::::::::::::::
indistinguishable

:::::
from

:::::::
physical

::::
ones

:::
in

::::
this

:::::::::::::::
low-momentum

:::::
limit,

:::::::
which

:::::::::
motivates

::::
their

:::::::
choice

::::
for

::::
the

::::::
study

:::
of

:::::::::::
low-energy

::::::::
physics.

::::::::
However,

::::
the

::::::::::::
separability

::::::::
induces

::::::::::::
discrepancies

:::
at

:::::
higher

::::::::::
momenta

:::::::::::
comparable

:::
or

::::::
larger

:::::
than

:::::::
Λ0,Λ1,

:::::
which

::::::
may

::::::
affect

:::::
the

:::::::::::
properties

:::
of

:::::::::::
low-energy

:::::::::
three-body

::::::::
states.

::::::
For

:::::::::
instance,

::::
the

:::::::::::
three-body

:::::::::
parameter

::
of

:::::::
Efimov

::::::
states

::::
may

::::::
differ,

::::::::
although

:::::
these

:::::::::
differences

:::
are

:::::::::
generally

:::::
small

::
as

:::::
long

::
as

:::
the

:::::
scale

::::
Λ−1
0

:
is
:::::::::
properly

:::
set

:::
to

:::
the

::::::::
physical

::::::
range

:::
of

:::::::::::
interactions.

::::::::
Separable

:::::::
s-wave

:::::::::
potentials

:::::
have

:::::
been

::::::
shown

:::
to

:::
be

:
a

::::
good

::::::::::::::
approximation

:::
for

:::::::
shallow

:::::::::
potentials

::::::::::
supporting

::
at

:::::
most

::::
one

::::::
dimer

::::::::
[35,36]

:
.
::::
We

::::::::
assume

:::::
that

::
in

::
a

::::::
similar

::::::::
fashion,

:::
the

:::::::
p-wave

:::::::::
separable

:::::::::
potential

::
is
:::
an

::::::::
adequate

:::::::::::::
approximation

::::
for

::
a

::::::::::
qualitative

::::::::::
description

::
of

::::::::::
low-energy

::::::::::
three-body

:::::::
states,

::
as

:::::
long

:::
as

:::
the

:::::
scale

::::
Λ−1
1 :::::::::::

corresponds
::
to

:::
the

::::::::
physical

:::::
range

:::
of

::::::::::
interaction.

:

By taking the limit κ→ 0 of Eqs. (11-12), one finds
the relations between the interaction strengths ξ and
gm and the scattering length and volume a and vm:

1

a
=

1

ξ
+

2

π

∫ ∞

0

dk|χ(k)|2 (17)

1

vm
=

1

gm
+

2

π

∫ ∞

0

dkk2|ϕm(k)|2. (18)

The coefficients re and 1/αm in Eqs. (15,16) are the
s-wave and p-wave effective ranges, which in general de-
pend on a and vm, respectively. Although the effective
ranges are useful to describe the low-energy two-body
physics, as their name implies, they do not represent
the true range of interactions. For near-resonant three-
body systems, it is more useful to consider the value
r̄e of the effective range re at the s-wave resonance
(1/a → 0), and the value 1/ ᾱm of the effective range
1/αm at the p-wave resonance (1/vm → 0). For the
single-channel interactions considered in the present
study, r̄e and 1/ ᾱm are of the order of the poten-
tial radii 1/Λ0 and 1/Λ1, and have, unlike Λ0 and Λ1,

a precise definition from Eqs. (15,16). For this reason,
we will compare different interaction models having the
same scattering lengths/volumes, and the same effec-
tive ranges in the limits 1/a→ 0 or 1/vm → 0. This en-
sures that these models have the same two-body spec-
tra near these limits and also have the same interaction
ranges. In this spirit, the s-wave effective range at res-
onance r̄e will be used as the unit of length throughout
this paper.

2.2 Isotropic p-wave interaction

The isotropic p-wave interaction where gm = g and
ϕm = ϕ plays a central role in the subsequent analysis.
In this section, we thus simplify the STM equations
by using symmetry considerations in this particular
case. Moreover, we will show that the results in the
isotropic limit can be directly used for a more realistic
anisotropic p-wave interaction by using a perturbative
treatment. In what follows, we will use the notation
f1,m ≡ f1, vm ≡ v and ᾱm = ᾱ. Before going to
the three-body equations, it is worth recalling some
important and general properties of isotropic p-wave
interactions in the resonant regime [37–39]:

i) the scattering resonance due to a quasi-bound
state occurs for large and negative values of the
scattering volume (1/v → 0−) at a specific value
of the relative momentum kres = 1/

√
− ᾱv;

ii) the width of the scattering resonance is of the or-
der of kres/ ᾱ, which is why the inverse p-wave
effective range at resonance ᾱ [see Eq. (16)] may
also be called shortly the width parameter ;

iii) for a short range potential of radius R (in this pa-
per, R is of the order of 1/Λ1), the width param-
eter verifies the ‘width-radius inequality’ ᾱR ≳ 1
(the inequality is not strict, depending on the pre-
cise definition chosen for the radius R), which cor-
responds to the Wigner bound [40,41] imposed by
the positivity of the probability density. For the
model potentials used in this study, ᾱ is of the or-
der of Λ1. In more general situations, for instance
for a multichannel interaction, this parameter can
be much larger than Λ1, corresponding to a narrow
resonance limit;

iv) In the limit (1/v → 0+), there is no p-wave scatter-
ing resonance and there is a shallow p-wave dimer
of binding wave number 1/

√
ᾱv.

Hence, the resonant regime in the p-wave scattering
differs from the one in the s wave where the unitary
limit can be reached in a large range of the momen-
tum and not only for a specific value. In what follows,
due to the continuity found in the trimer spectrum at
1/v = 0 (thus including arbitrarily large and negative
or positive scattering volumes), we will formally qualify
this limit as the p-wave resonance limit.

We now turn to the simplification of the STM equa-
tion for an isotropic p-wave interaction. For conve-
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nience, we introduce the spinor

P (k) =

1∑
m=−1

Pm(k)êm. (19)

The equations (6-7) are thus
::::
thus

:::::::
become equations on

S(k) and P (k). :
:

− |χ(iκ0)|2

4πf0,0(iκ0)
S(k) =

:::::::::::::::::::::::::::::::::::::::::

(20)

y

∫
d3k′

(2π)3

⟨χ|k′ + x
2yk⟩⟨k + x

2yk
′|χ⟩S(k′)

y(k2 + k′2) + xk · k′ + q2
::::::::::::::::::::::::::::::::::::

+3

∫
d3k′

(2π)3

⟨χ|k′ + 1
2yk⟩⟨k + 1

2k
′|ϕ⟩k · P (k′)

k2 + yk′2 + k · k′ + q2
:::::::::::::::::::::::::::::::::::::::

|κ1ϕ(iκ1)|2

4πf1(iκ1)
P (k) =

::::::::::::::::

(21)

2y

∫
d3k′

(2π)3

k⟨ϕ(k)|k′ + k
2 ⟩⟨k + k′

2y |χ⟩S(k
′)

yk2 + k′2 + k · k′ + q2
:::::::::::::::::::::::::::::::::::::

:::::
where

:::
we

:::::
used

::::::::::::::::::
Φm(k) = ϕ(k)k · êm.

:

In this work, we consider the states of total angu-
lar momentum J = 1 and negative parity, consistent
with the known symmetry of the KM trimers. There-
fore, when the relative angular momentum between one
fermion and the third particle is zero, the remaining
angular momentum between the fermion-particle pair
and the other fermion must be unity. Assuming that
the total momentum projection is zero along a fixed
unit vector êz, S(k) must be of the form:

S(k) = s(k) cos θ (22)

where θ is the angle between k and the fixed vector êz.
Likewise, when the relative angular momentum be-

tween the two fermions is unity, the remaining angular
momentum between the two-fermion pair and the third
particle can be either zero or two. It follows that P (k)
is of the form:

P (k) = p0(k)êz + p2(k) [êk × (êk × êz)] (23)

where êk = k/k - see Appendix 2
:
3 for details. Insert-

ing Eqs. (22) and (23) into Eqs. (6
::
20-7

::
21) yields a set

of three integral equations for s, p0 and p2:

|χ(iκ0)|2

f0(iκ0)
s(k) +

∫ ∞

0

dk′

π
k′ 2

[
L(k, k′)s(k′)

+ (3L0(k, k
′)− L2(k, k

′)) p0(k
′)

+ (L2(k, k
′)− 2L0(k, k

′)) p2(k
′)
]
= 0 (24)

3
|κ1ϕ(iκ1)|2

2yf1(κ1)
p0(k)−

∫ ∞

0

dk′

π
k′ 2L0(k

′, k)∗s(k′) = 0

(25)

3
|κ1ϕ(iκ1)|2

yf1(κ1)
p2(k)−

∫ ∞

0

dk′

π
k′ 2L2(k

′, k)∗s(k′) = 0

(26)
The kernels L, L0, and L2 are given by:

L(k, k′) =

∫ 1

−1

du yu
χ∗(|k′ + x

2yk|)χ(|k + x
2yk

′|)
y(k2 + k′2) + xkk′u+ q2

(27)

L0(k, k
′) = 3

∫ 1

−1

du

(
ku2 +

1

2
k′u

)
(28)

×
χ∗(|k′ + 1

2yk|)ϕ(|k + 1
2k

′|)
k2 + yk′2 + kk′u+ q2

L2(k, k
′) = 3

∫ 1

−1

du
(
k
(
3u2 − 1

)
+ k′u

)
(29)

×
χ∗(|k′ + 1

2yk|)ϕ(|k + 1
2k

′|)
k2 + yk′2 + kk′u+ q2

where u = k · k′/(kk′) is the cosine of the angle
between k and k′.

2.3 Form factors

Although the values of the interaction strengths ξ and
g can be set to reproduce a given scattering length and
scattering volume through Eqs. (17-18), the form fac-
tors χ and ϕ remain to be chosen. We consider four
different types of form factors, referred to as the“Gaus-
sian”, “Yamaguchi”, “Yamaguchi-squared”, and “Cut-
off” models. Their expressions are given in Tables 1
and 2 of Appendix 1. The tables also provide the ex-
plicit forms of the two-body scattering amplitudes f0
and f1, as well as the corresponding parameters r̄e and
ᾱ. In addition to these simple model potentials, a more
realistic separable potential is also considered, which
is constructed to reproduce exactly the wave function
scattered at zero energy by a Lennard-Jones potential.
The details of this separable potential have been given
in [42].

3 Absence of interaction between
the fermions

In this section, we consider the regime where the inter-
action between the fermions can be neglected. Thus we
will use Eq. (6) with Pm = 0, that is to say, Eq. (24)
with p0 = p2 = 0.
In this regime, for large enough scattering lengths a,

the results are expected to conform to the Kartavtsev-
Malykh universal theory for large enough scattering
lengths a. Indeed, in the small momentum and en-
ergy limits where k, k′, q, 1/a≪ Λ0, Eq. (24) is equiva-
lent to the zero-range limit of the STM equation with
Λ0 → ∞ for a fixed value of a. This can be understood
as follows: first, consider the small-energy q ≪ Λ0 and
small-momentum limit k ≪ Λ0 of Eq. (24). For such
small wave numbers, |χ|2/f0 may be approximated by
−1/a + κ0 according to Eq. (15). Although the in-
tegral over k′ extends to infinity, i.e. values of k′
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Figure 2: Trimer spectrum without fermion-fermion
interaction for a mass ratio x = 9. Top panel: trimer’s
binding wave number q as a function of the inverse of
the scattering length a

::
for

::::::::
different

:::::::
models

:::::
(note

::::
that

:::
the

::::::
curves

:::::::::::::
corresponding

:::
to

:::::
some

:::::::
models

:::::::
cannot

:::
be

:::::::::::
distinguished

:::
in

::::
this

:::::
panel

::
-
:::
see

:::::
lower

::::::
panel). Dashed

curve: threshold of the dimer+fermion scattering con-
tinuum (shaded area) obtained from the binding wave
number of the fermion-particle s-wave dimer in the
effective-range approximation (see main text); Solid
curves: trimer binding wave number for different mod-
els of the fermion-particle interaction (see Table 1 and
main text). Bottom panel: ratio between the trimer
and dimer energies E3/|E2| as a function of the inverse
scattering length; Dashed curve: first-order correction
in r̄e/a with respect to the zero-range potential limit
(see Eqs. (31-32) and main text).
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Figure 3: S-wave radial two-body wave function at zero
energy obtained for different models at the s-wave res-
onance (|a| → ∞) - see Table 1 and main text. The
wave function is normalised to tend to unity asymp-
totically, and the distance is expressed in units of the
effective range at resonance r̄e.

where s(k′) is not described by the small-energy and
small-momentum approximation, it turns out that for
1/a ≪ Λ0, s(k) is peaked around k ∼ 1/a and then
decays to zero. The contributions from k′ ≫ 1/a are
thus suppressed by s(k′) and since 1/a≪ Λ0, the form
factors χ inside L(k, k′) may be approximated to unity.
It follows that the small-momentum approximation of
the STM equation is self-consistent and properly de-
scribes the limit of the STM equation for small energy
and large scattering length.

This approximated equation formally corresponds
to the zero-range STM equation obtained for two-
body contact interactions and no three-body contact
interaction. It is thus equivalent to the Kartavtsev–
Malykh contact theory with a zero three-body param-
eter. From this, we conclude that the finite range of
the s-wave interactions does not lead to a non-zero
three-body parameter, in contrast to what happens for
particles undergoing the Efimov effect, for which the
three-body parameter is largely set by the finite range
of interactions [35, 43, 44]. A similar situation was nu-
merically observed before for a zero-range model with
a momentum cutoff equivalent to a repulsive three-
body force [32], while a boundary condition equivalent
to an attractive three-body force seems to set a non-
zero three-body parameter [33]. We therefore surmise
that an attractive three-body force is necessary for the
three-body parameter defined by Kartavtsev and Ma-
lykh to be non-zero.

The first correction with respect to the zero-range
limit (relevant for increasing values of 1/a) is given
by considering the next order in the small-momentum
expansion of |χ|2/f0. This leads to the STM equation

6



in the effective-range approximation,(
−1

a
+ κ0 −

r̄e
2
κ20

)
s(k) +

∫ ∞

0

dk′

π

yk′

xk
s(k′)[

2− y(k2 + k′2) + q2

xkk′

× log

(
y(k2 + k′2) + q2 + xkk′

y(k2 + k′2) + q2 − xkk′

)]
= 0. (30)

One can treat the range correction r̄e
2 κ

2
0 in this last

equation as a perturbation with respect to the STM
equation in the zero-range limit (see Appendix 3

:
4).

This yields the corrected energies for the fermion-
particle s-wave dimer and the trimer at the first order
in the small parameter r̄e

a :

E2 = E
(0)
2

(
1 +

r̄e
a

)
(31)

E3 = E
(0)
3

(
1 +

r̄e
a
⟨(κ0a)2⟩

)
(32)

where E
(0)
2 = yℏ2/Ma2 and E

(0)
3 ∝ yℏ2/Ma2 are the

energies obtained in the zero-range limit, and ⟨· · · ⟩
denotes the average in the state |S⟩, where ⟨k|S⟩ =
S(k) = s(k) cos(θ) corresponds to the eigenvector s(k)
of the uncorrected STM equation, i.e. Eq. (30) in the
zero-range limit r̄e → 0.

Figure 2 shows the spectrum obtained for the vari-
ous model potentials of Table 1, in the case of a mass
ratio x = 9, for which only one shallow s-wave induced
trimer state exists for positive scattering length a and
vanishes in the three-body threshold at 1/a = 0. In
the range of scattering lengths of the plots, the fermion-
particle s-wave dimer binding wave number q2 is nearly
identical for all models and is given from Eq. (31) with
q2 =

√
−2µ23E2/ℏ. The dashed curve in the top panel

represents −q2/
√
y, which corresponds to the threshold

of the dimer+fermion scattering continuum (shaded
area).

One can distinguish essentially three regions in these
plots. The first region where r̄e/a ≪ 0.01 corresponds
to the vicinity of the unitary limit where the zero-range
approach used by Kartavtsev and Malykh applies. In
this region, the energy ratio E3/E2 between the trimer
and dimer is the same for all models and is given by

::::::
within

:
a
::::
few

::::::
tenths

::
of

::::::::
percent

::
by

::::
the

::::::::::
zero-range

::::
limit

1.0457... for the considered mass ratio x = 9. We note
that this universal region is very narrow and would
require a fine tuning of the scattering length to be ob-
servable in ultracold-atom experiments. As expected,
the obtained energy ratio is consistent with the one pre-
dicted by the Kartavtsev-Malykh theory with a three-
body parameter equal to zero.

The second region, where r̄e/a ≲ 0.01 is univer-
sally described by the scattering length a and the effec-
tive range at resonance r̄e in agreement with Eqs. (31,
32). For the considered mass ratio, we find ⟨(κ0a)2⟩ =
2.26 . . . . This perturbative result, shown as a dashed
line in the bottom panel of Fig. (2), agrees with all
models in this region

:::::
within

:::::
0.6%.

In the third region, corresponding to larger values of
r̄e/a, the trimer energy becomes non-universal. How-
ever, we note that for r̄e/a ≲ 0.1 it remains nearly the
same for all models except the cut-off model. This may
be understood by the fact that these models correspond
to a force that suppresses

:::
all

:::::
these

::::::
models

::::::::
suppress

:
the

wave function within the range r̄e while hardly affect-
ing it beyond r̄e. This can be seen in Fig. 3. The zero-
energy two-body radial wave function ψ(r) for these
models roughly approaches what we call the sharp-
wave-function limit (dashed curve in Fig. 3) given by:

ψ(r) =

{
0 (fully suppressed) r ≤ rc

1− r
a (free) r > rc

(33)

This wave function has an effective range that reaches

the Wigner bound [40,45,46], 2rc

(
1− rc

a +
r2c
3a2

)
. It is

generically approached by the zero-energy wave func-
tion of deep short-range potentials supporting many
bound states [35]. It can be exactly obtained from
an infinitely deep and narrow potential well located at
some distance rc, or from a separable potential with
the following form factor:

χ(k) =
(
1− rc

a

)
cos(krc) +

sin(krc)

ka
(34)

The results from this separable potential are shown by
the solid black curves in Fig. 2 and are in fair agreement
with other models. The cut-off model stands out as an
exception, and this can be understood from the fact
that its radial wave function is markedly different from
the sharp-wave-function limit (33): it features oscilla-
tions at large distances (see Fig. 3), which makes its
effective range small compared to its true range 1/Λ0.
Interactions with negative effective range, not consid-
ered in this study, would even more markedly differ
from the sharp-wave-function picture.

4 Trimers induced by the p-wave in-
teraction between the fermions

In the following part, we consider the model case where
the p-wave interaction is isotropic. We can thus use
the symmetry considerations of section 2.2. Since
most of the relevant s-wave models are equivalent for
r̄e/a ≲ 0.1, in this section, the s-wave interaction be-
tween the fermions and the third particle is described
by the Gaussian model.

4.1 Doubly resonant limit

We first consider simultaneously the s- and p-wave
resonant regimes (1/a = 0, 1/v = 0) and in order to
avoid the Efimov effect, the spectrum is computed
for mass ratios below the critical value x < xc. The
limit 1/a = 0 ensures that there is no shallow fermion-
particle s-wave dimer nor s-wave induced trimer, and
the limit 1/v = 0 ensures that there is no shallow
fermion-fermion p-wave dimer. One can expect that
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Figure 4: Trimer spectrum in the presence of a p-
wave interaction between the fermions, at the doubly
resonant limit 1/a→ 0 and 1/v → 0, and as a func-
tion of the mass ratio x between the fermions and the
third particle. Here, the p-wave interaction is set to
the Gaussian model of Table 2 of Appendix 1, with
1/ ᾱ = r̄e.

this regime corresponding to s-wave resonant scatter-
ing and in the vicinity of the p-wave resonance is
favourable for the occurence of shallow trimers of an-
other type than the KM or Efimov states.

The resulting trimer spectrum is shown in Fig. 4 for
the p-wave Gaussian model of Table 2 of Appendix 1.
Here, the value of the p-wave interaction range 1/Λ1

has been set such that 1/ ᾱ = r̄e. This arbitrary
choice is reasonable for a qualitative understanding of
the spectrum, since both lengths are of the order of
the range of atomic interactions. We find one shallow
trimer for all values of the mass ratio and another one
for a mass ratio larger than x′c = 10.96 . . . . Clearly,
these trimer states are the consequence of the resonant
p-wave interaction that adds to the already present
effective attraction between the two fermions due to
the fermion-particle s-wave interaction. This is why
we adopt the denomination p-wave induced trimers for
these states. Although the doubly resonant regime is
very specific and not directly relevant to experimen-
tal systems, it demonstrates the existence of shallow
trimers that differ from KM and Efimov states. In
what follows, we will change the parameters of the in-
teractions to consider more relevant regimes in view of
possible experimental studies of the trimer spectrum.

4.2 Weak interaction between the fermions

In this section, we aim at understanding how the p-
wave induced trimers emerge from the s-wave induced
trimer spectrum of section 3. We thus consider a grad-
ual increase of the p-wave interaction starting from the
situation where only the fermion-particle s-wave inter-
action is present. The mass ratio is fixed at x = 9
so that without p-wave interaction there is only one
s-wave induced trimer for positive values of the scat-
tering length.

The p-wave attraction is described by the Gaussian,

Yamaguchi, and Yamaguchi-squared models detailed
in Table (2). Similarly to the study of section 3, we
have adjusted the range parameter Λ1 to reproduce in
all models the same width parameter ᾱ = 1/r̄e. With
this choice the diagonal terms of the STM equation are
equal for all models in the small momentum limit. The
spectrum is plotted in Fig. 5 as a function of 1/a, for
the scattering volumes v = −0.1r̄3e , and −0.2r̄3e . For
such small scattering volumes, there is no two-body
bound state between the two fermions.

As it can be seen, the trimer’s binding is significantly
strengthened even for these weak fermion-fermion at-
tractions. However, as it could be expected, the KM
trimer is not affected by the fermion-fermion attrac-
tion in a region of sufficiently large scattering length a.
This region where the universal theory of Kartavtsev
and Malykh applies shrinks with an increasing magni-
tude of the scattering volume v (compare the left and
right panels of Fig. 5). One could understand this sit-
uation as follows: for a large scattering length a, the
KM trimer has a large size (of the order of a) and is
mostly not affected by the fermion-fermion interaction,
since it affects the wave function only within a finite
range, much smaller than a.

4.3 Critical scattering volume at s-wave res-
onance

For increasing strengths of the fermion-fermion inter-
action, a radical change occurs in the shallow trimer
spectrum as can be seen in Fig. 6. First, as the s-wave
induced trimer gets more bound and deviates increas-
ingly from the universal KM state, a new trimer branch
appears from the s-wave dimer threshold at finite val-
ues of the scattering length. Then, at some critical
strength of the fermion-fermion interaction

::::::::
scattering

::::::
volume

:::
vc, the largest scattering length at which this

excited trimer state appears becomes infinite. Con-
currently, the ground trimer energy is pushed down
so much that it conforms to the KM state limit only
at 1/a = 0. Past this critical strength, the ground
trimer becomes borromean - it appears from a negative
scattering length - while the excited trimer’s thresh-
old remains fixed at 1/a = 0. As the fermion-fermion
attraction is further increased, it is now the excited
trimer which follows the KM state limit, in an in-
creasingly wide range of scattering lengths, until this
range shrinks again to zero as the scattering volume ap-
proaches infinity. For stronger attraction between the
fermions, the scattering volume becomes positive and
there exists a p-wave two-body bound state, which sets
a negative-energy threshold for the occurence of the
three-body bound states. Thus, the KM limit does not
exist any more in this regime.

We interpret the interplay between the ground and
excited trimers as a level repulsion and avoided cross-
ing between the s-wave induced trimer and the p-wave
induced trimer states. The analysis of the wave func-
tion at r̄3e/v = −3 shown in Fig. 7 confirms that the
s-wave induced trimer hybridises with the p-wave in-
duced trimer. Before the crossing (r̄e/a = 10−2), p0 is
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Figure 5: Similar plots to those
:::
the

:::::
upper

::::::
panel of Fig. 2 in presence of a weak attraction between the fermions

using the models of Table 2 of Appendix 1. Left: the scattering volume is set to v = −0.1r̄3e ; Right: plot for
v = −0.2r̄3e . Dashed curve: limit of the fermion-particle dimer continuum; Dotted curve: s-wave induced trimer
without fermion-fermion interaction (v = 0) for the Gaussian model, corresponding to the blue curve of Fig. 2.

negligible and the wave function s(k) coincides with the
solution without p-wave interaction (cross symbols).
After the crossing (r̄e/a = 3× 10−2), the ground state
has a large component p0(k) and can be considered as
the p-wave induced trimer, whereas the excited state
has a negligible component p0(k) and can thus be con-
sidered as the s-wave induced trimer. At the crossing
(r̄e/a = 1.7×10−2) where there is still one trimer state,
the component p0(k) is not negligible as a consequence
of the hybridization

::::::::::::
hybridisation. Thus for increasing

values of 1/a the ground branch of the s-wave induced
trimer continuously transforms into the p-wave induced
trimer.

As can be seen in Fig. 8, the regime where the
ground-state trimer is borromean is not universal: dif-
ferent models with the same parameters v and ᾱ give
different results. Nevertheless, these results remain
qualitatively consistent. Figure 8 shows the depen-
dence on the scattering volume for a fixed effective
range. There is also a dependence on the effective
range. This is shown in Fig. 9, at the fixed scatter-
ing volume v = ∞ corresponding to the p-wave reso-
nance, i.e. the occurence of a p-wave two-body bound
state between the two fermions. One can see more
marked differences between the models for a p-wave
width parameter ᾱ that is small compared to 1/r̄e,
meaning that we consider a p-wave potential of large
range with respect to the s-wave potential (Λ1 ≪ Λ0).
At the particular value 1/ ᾱ = 1

2 r̄e, all models appear
to coincide, although this is specific to this value and
we have no particular explanation for this coincidence.

Let us now consider the critical scattering volume
at which the fermion-fermion interaction is sufficiently
attractive for supporting a borromean p-wave induced
trimer. This occurs at the s-wave resonance (1/a = 0)
of the fermion-particle interaction, where the s-wave
dimer appears. As shown in Fig. (6), for the mass
ratio x = 9, using the p-wave Gaussian model, we find
1/v = −2.48/r̄3e with the choice ᾱ = 1/r̄e.

Figure 10 shows the ground-state trimer energy at
the s-wave unitarity as a function of the inverse scat-

tering volume for three different models satisfying ᾱ =
1/r̄e. The critical scattering volume

::
vc:is indicated by

an arrow for each model. As it can be seen, the critical
scattering volume is not universal, although it is close
to 1/v ≈ −2.5/r̄3e :::::::::::::

1/vc ≈ −2.5/r̄3e:
for the three models.

The critical scattering volume itself depends on the
interaction range between the fermions, which is of the
order of 1/ ᾱ. This dependence is shown in the top
panel of Fig. 11 for the mass ratio x = 9. Again, the
results are not model-independent but they are suf-
ficiently close to draw general conclusions. One can
see that the critical inverse scattering volume vanishes
for 1/ ᾱ ≈ r̄e/34 and has a maximum magnitude
around 1/ ᾱ ≈ r̄e/10. This means that the p-wave
induced trimer usually exists, unless the range 1/ ᾱ
of the fermion-fermion interaction happens to be more
than 30 times smaller than the range of the particle-
fermion interaction. For a fermion-fermion interaction
range 1/ ᾱ of the same order as the fermion-particle
interaction range r̄e, the critical scattering volume re-
quired to observe the p-wave induced trimer is about
−r̄3e/10, which means that the fermion-fermion interac-
tion remains modest and far from the p-wave resonance
v ᾱ−3 ≫ 1.

So far, we have looked at the specific mass ratio
x = 9, since in the absence of fermion-fermion in-
teraction, KM trimers only exist for M/m > x1 =
8.17260 . . . . However, as we pointed out in Section 4.1,
in the presence of fermion-fermion interaction, the p-
wave induced trimers may exist for any mass ratio.
The bottom panel of Fig. 11 shows the critical scat-
tering volume for a mass ratio 1 (all three particles
having the same mass, such as identical atoms in dif-
ferent spin states). The figure shows that the p-wave
induced trimer still exists, however the required criti-
cal scattering volume is larger than for a mass ratio of
9. For a width parameter ᾱ of the order of 1/r̄e, the
scattering volume must be larger than 2.5r̄3e , which is
closer to the p-wave resonance.

Finally, we should mention that for small positive
scattering lengths or volumes, the models used in this

9



Ground

KM limit

-0.2 -0.1 0.0 0.1 0.2
-0.20

-0.15

-0.10

-0.05

0.00

Inverse scattering length 1/a [1/re]

-
M

(E
3
-
E
2
)
/ℏ

[1
/r
e
] 1/v = -10re

-3

Ground

1st excited

KM limit

-0.2 -0.1 0.0 0.1 0.2
-0.20

-0.15

-0.10

-0.05

0.00

Inverse scattering length 1/a [1/re]
-

M
(E
3
-
E
2
)
/ℏ

[1
/r
e
] 1/v = -3re

-3 KM

limit

Hybrid

trimer

s-wave

induced

trimer

p-wave

induced

trimer

Ground

1st excited

KM limit

-0.2 -0.1 0.0 0.1 0.2
-0.20

-0.15

-0.10

-0.05

0.00

Inverse scattering length 1/a [1/re]

-
M

(E
3
-
E
2
)
/ℏ

[1
/r
e
] 1/v = -2.48re

-3

Ground

1st excited

KM limit

-0.2 -0.1 0.0 0.1 0.2
-0.20

-0.15

-0.10

-0.05

0.00

Inverse scattering length 1/a [1/re]

-
M

(E
3
-
E
2
)
/ℏ

[1
/r
e
] 1/v = -2re

-3

Ground

1st excited

KM limit

-0.2 -0.1 0.0 0.1 0.2
-0.20

-0.15

-0.10

-0.05

0.00

Inverse scattering length 1/a [1/re]

-
M

(E
3
-
E
2
)
/ℏ

[1
/r
e
] 1/v = -1re

-3

Ground

1st excited

KM limit

-0.2 -0.1 0.0 0.1 0.2
-0.20

-0.15

-0.10

-0.05

0.00

Inverse scattering length 1/a [1/re]

-
M

(E
3
-
E
2
)
/ℏ

[1
/r
e
] 1/v = 0

Figure 6: Dependence of the spectrum on the scattering volume v between fermions, for increasing values
(in magnitude) of v, until a p-wave resonance is reached (v = −∞). The results are obtained with the p-wave
Gaussian model, and both the ground (solid curve) and excited (dashed curve) trimer states are shown. In order
to distinguish the excited state, the three-body energy is measured from the two-body energy E2 (which is either
zero for negative scattering lengths, or the dimer energy for positive scattering lengths) and then converted to
a wave number. In this fashion, the Kartavtsev–Malykh zero-range limit corresponds to a straight line shown
in black dots. The

::::::
arrows

:::::::
indicate

::::
the

:::::
states

:::
for

::::::
which

::::
the

:::::
wave

::::::::
functions

::
of
:::::
Fig.

:
7
:::::
have

:::::
been

:::::::::
computed.

:::::
The

ground state is shown for a wider range of scattering lengths in Fig. 8.
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Figure 7: Components s (left panel) and p0 (right panel) of the wave function in Eq. (23) in vicinity of the
crossing between the s-wave and the p-wave induced trimers for a mass ratio x = 9 at r̄3e/v = −3 (see the
top right panel of Fig. 6). The component p2 is negligible and not plotted (see section 5.1).

:::
For

::::::::::::
r̄e/a = 10−3

::::
(well

::::::
before

::::
the

:::::::::
crossing),

::::
the

:::::::
s-wave

::::::::
induced

::::::
trimer

:::::::
(black)

::
is
::::::::::::::::
indistinguishable

:::::
from

::::
the

::::
KM

::::::
state.

:::::
For

::::::::::::::::
r̄e/a = 1.7× 10−2,

::::
the

::::::
s-wave

::::::::
induced

::::::
trimer

::::::::::
(magenta)

:::::::::
hybridises

:::::
with

:::
the

:::::::::
(virtual)

::::::
p-wave

::::::::
induced

:::::::
trimer.

At r̄e/a = 3 × 10−2 (after the crossing) there are two trimers: the first state (ground state)
:::::
shown

::
in

::::
red

:
and

the second state (excited state)
:::::
shown

:::
in

::::
blue. See text for the discussion.

study lead to the presence of a series of deep trimer
states that emerge successively from the dimer thresh-
old. These deep trimers are due to the usual fact
that strong attractive interactions bind more strongly
three particles than two particles. Unlike the shallow
trimers discussed above, these trimers are very model-
dependent. Furthermore, for such deep states the mod-
els do not correpond to any accurate description of a
real system. For these reasons, we do not consider these
deep trimers. It is nonetheless interesting to note that
as the system approaches the p-wave resonance, the
excited state shown in Fig. (6) at some point merges
with the highest of these deep states. ,

:::
in

::
a
::::::
region

::
of

:::::
small

:::::::
positive

:::::::::
scattering

::::::
length

:::::::
outside

::::
the

:::::
range

::
of

:::
Fig.

::::
(6))

::
.
:
Namely, the scattering length at which the

excited state disappears in the dimer threshold meets
the scattering length at which the deep state appears
from the threshold, and the two states become a single
state lying below the dimer threshold.

5 Non isotropic p-wave interaction

In the presence of a magnetic field along the z direction,
the p-wave interaction is not isotropic: a phenomenon
observed in experiments [47, 48].

::::
This

:::::::
results

::
in

::
a

::::::::
difference

::::::::
between

::::
the

:::::::::
scattering

::::::::::
amplitude

::::
f1,0::::

and

:::
the

:::::::::
scattering

::::::::::
amplitudes

:::::::::::
f1,1 = f1,−1 ::::

thus
:::::::
leading

::
to

:
a

:::::::
splitting

::
of

::::
the

:::::::
isotropic

::::::
trimer

::::::::
branches

:::::::::::
(degeneracy

::
of

:::::
order

:::::
three)

::::
into

::::
two

::::::::
branches.

:
In principle, this makes

the formalism more involved as the total orbital mo-
mentum of the three particles is no more a good quan-
tum number. However the magnetic quantum number
of the total orbital momentum and the parity are still
good quantum numbers of the system. The S function
is then the superposition of odd momentum states with
the desired projection on the z-axis (M = 0,±1). The

direct diagonalisation of the STM equation is then a
bit tedious.

As we show in what follows, we will use an accu-
rate approximation of the wave function that permits
us to greatly simplify the problem in a perturbative
approach.

5.1 S-wave coupling approximation

For an isotropic p-wave interaction, we have observed
that the wave functions P (k) obtained numerically
predominantly consist of the s-wave state for the rel-
ative motion between the impurity and the pair of
identical fermions in a p-wave state, meaning that
|p2(k)| ≪ |p0(k)| and thus

P(k) ∼ p0(k)êz. (35)

Physically, this can be understood by the fact that the
coupling with the d-wave state is suppressed due to the
d-wave centrifugal barrier. In what follows, Eq. (35)
will be called the s-wave coupling approximation.

Inspection of the STM equations (24-26) shows that
this corresponds to neglecting the terms involving the
kernel L2. One can verify indeed that in the region
kr̄e < 1, ∣∣∣∣∣

∫∞
0
dk′k′ 2L2(k, k

′)s(k′)∫∞
0
dk′k′ 2L0(k, k′)s(k′)

∣∣∣∣∣ ≪ 1. (36)

This last property, which depends in principle on the
particular form of the function s(k′), is very well satis-
fied for the solutions of the STM equations, which de-
crease quickly for kr̄e ≳ 1. This can be explained qual-
itatively by the fact that in the domain kr̄e, k

′r̄e ≪ 1,
the kernel L2 may be approximated by its zero-range
limit where the functions χ and ϕ are replaced by the
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Figure 8: Dependence of the spectrum on the scatter-
ing volume v between fermions, for increasing values
(in magnitude) of v, until a p-wave resonance is reached
(v = −∞). The plots are similar to the top panel of
Fig. 2, although the different curves now correspond to
different models of the p-wave interaction between the
fermions. The value of the width parameter ᾱ is fixed
to 1/r̄e in all models. On the scale of these plots, only
the ground trimer is visible, the excited trimer being
indistinguishable from the dimer (dashed curve).

unit number:

L2(k, k
′) ∼ 3

∫ 1

−1

du
k
(
3u2 − 1

)
+ k′u

k2 + yk′2 + kk′u+ q2
(37)

which is exactly zero in the limit k2 + yk′2 + q2 ≫ kk′.
This limit is indeed always verified in the domain
k ≪ q, where the function p0(k) is almost constant.
In particular, it is satisfied for sufficiently deep states
(qr̄e of the order of the unity), which is typically the
case for the p-wave induced trimers. For s-wave in-
duced trimers, after a plateau the function p0 decreases
quickly for k > q (see for example typical shapes of this
function in Fig. 7), and the s-wave coupling approxi-
mation is thus relevant to compute these states. For p-
wave induced trimers, we observe that p0(k) is almost
constant for k ≲ Λ0 ∼ Λ1, even near the threshold.
Outside this plateau, the s-wave coupling approxima-
tion is not satisfied in general but p0(k) becomes neg-
ligible. Hence, we conclude that the s-wave coupling
approximation has a very wide regime of validity.

In the s-wave coupling approximation, the matrix
STM equations can be written as

|χ(iκ0)|2

f0(iκ0)
s(k) +

∫ ∞

0

dk′

π
k′ 2

[
L(k, k′)s(k′)

+ 3L0(k, k
′)p0(k

′)
]
= 0, (38)

3
|κ1ϕ(iκ1)|2

2yf1(κ1)
p0(k)−

∫ ∞

0

dk′

π
k′ 2L0(k

′, k)∗s(k′) = 0.

(39)
In the next section, we will use the s-wave coupling ap-
proximation to treat the anisotropic p-wave interaction
perturbatively.

5.2 Perturbative approach

For a given value of the quantum numberM , we rewrite
Eq. (7) in the form

[κ1ϕ(iκ1)]
2
P (k)

4πf1,M (iκ1)
− 2y

∫
d3k′

(2π)3

[
⟨ϕ|k′ +

k

2
⟩

×
(k′ + k

2 )S(k
′)⟨ k

′

2y + k|χ⟩
k′ 2 + yk2 + q2 + k · k′

]
+ δXM = 0. (40)

In Eq. (40), we have introduced the perturbation
δXM with respect to the formally isotropic STM
equations where we have set g ≡ gM , ϕ ≡ ϕM and
f1(k) ≡ f1,M (k):

δXM =

1∑
m=−1

{
[κ1ϕm(iκ1)]

2

f1,m(iκ1)
− [κ1ϕM (iκ1)]

2

f1,M (iκ1)

}
Pmêm.

(41)
At the lowest order, i.e. if one neglects the perturba-
tion, the s-wave coupling approximation gives the form
of the S and P functions:

S(k) = êk · êMs(k); Pm(k) = p0(k)δM,m. (42)

We can then use the perturbation formalism of Ap-
pendix3.

:::
4. The unperturbed eigenvector is

⟨k|λ0⟩ = [s(k)(êk · êM ), p0(k)δM,m] (43)
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Figure 9: At the p-wave resonance v = ∞. Plots similar to Fig. 8 where, instead of the scattering volume v,
the width parameter ᾱ is varied as indicated in the box of each panel. Note that the fifth panel is the same as
the last panel of Fig. 8.
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and the shift in energy at the first order of the pertur-
bation is obtained from the matrix element

⟨λ0|M(1)|λ0⟩ =
1∑

m=−1

∫
d3k

(2π)3
(ê∗m · δXM )Pm(k).

(44)
Using Eq. (42), one finds a shift in energy which exactly
equals zero

::::
that

::::
this

:::::
term

::
is
::::::::
exactly

::::
zero

:::::
and

::::
thus

::::
that

::
at

::::
the

:::::
first

:::::
order

:::
of

::::::::::::
perturbation,

::::
the

::::::::
formally

:::::::
isotropic

:::::::
model

:::::
gives

::::
the

:::::::::
branches

::
of

::::
the

:::::::::
spectrum

::::::::::::
corresponding

:::
to

:::
the

:::::::::
magnetic

:::::::
number

::
m.

To conclude this section, using the s-wave coupling
approximation, the spectrum indexed by the quantum
number M is obtained by considering for each value
of M the system of equations (38,39) where f1(iκ1)
is replaced by f1,M (iκ1). The results derived in the
isotropic case can thus be directly used to determine
the spectrum for an anisotropic p-wave interaction.

6
:::::::::::::::::
Experimental

::::::::::::::::
observation

:::
The

:::::::::::
three-body

:::::::::
spectrum

:::::::::
presented

::
in

::::
this

::::::
study

:::
can

::
be

:::::::
probed

::::::::::::::
experimentally

:::
in

::::::::::
ultra-cold

:::::::::::
experiments

::::
with

::::::::
standard

::::::::::
techniques

::::
used

:::
for

::::
the

:::::
study

:::
of

::::::
Efimov

:::::::
trimers.

::::::
The

::::::::::
traditional

::::
and

::::::
most

::::::::::::::
straightforward

::::::::
technique

::::::::
consists

::
in

::::::::::
preparing

::
an

::::::::::
ultra-cold

:::::::
mixture

::
of

::::::
atoms

::::
in

::
a
::::::::
certain

::::::
state

:::
of

:::::::::::
interaction,

:::::
and

:::::::
measure

::::
the

::::::::::
three-body

::::::
losses

:::
by

::::::::
imaging

::::
the

:::::
cloud

::
of

::::::
atoms

:::::::::::
[6, 7, 9–11]

:
.
::::::

The
::::::::::
variation

:::
of

::::
the

::::
loss

:::
rate

::::
as

::
a
::::::::
function

:::
of

:::
a

::::::::::
parameter

::::::::::
controlling

::::
the

::::::::::
interactions

:::::::
should

:::::::
reveal

::::::::
features

::::::::
related

:::
to

::::
the

:::::::::
spectrum.

:::
For

:::::::::
instance,

::::
near

:::
the

:::::::::::
appearance

::::::::
threshold

::
of

:::
the

::::::::::
Borromean

::::::
trimer

:::::::::
presented

::::::
above,

:
a
:::::
peak

::
in

:::
the

:::::
losses

:::
by

::::::::::
three-body

:::::::::::::
recombination

::
is
::::::::::
expected.

::::
The

:::::::
detailed

:::::
shape

::
of

::::
this

:::::
peak

:::
has

:::
not

:::::
been

:::::::::
addressed

::::
here.

::::::::::::
Alternatively,

::::::::::
depending

:::
on

::::
the

::::::::::
considered

::::::
atomic

:::::::
species,

:::
it

::
is
:::::::::
possible

:::
to

::::
use

::::
the

:::::::::::::::
radio-frequency

:::::::::::
spectroscopy

::::::::::
technique,

::::::
which

::::::::
consists

:::
in

:::::::::
preparing

:::
the

::::::
atoms

:::
in

:::::::::
different

:::::
spin

::::::
states

::::::
than

::::::
those

:::
for

:::::
which

::::
the

:::::::::::
interactions

:::::::
support

::::
the

:::::::
trimers

::
of

:::::::
interest

::::::::
described

:::
in

::::
this

::::::
study,

::::
and

:::::::
induce

::
a

::::
spin

:::::::::
transition

:::::
which

::::::
target

::::::
those

::::::::
trimers,

::::
and

:::::
thus

::::::::
measure

:::::
their

::::::
energy

::::::::::
[15,20,21].

::::::
Such

:::::::::::::
measurements

:::::
could

:::::::
directly

:::
test

::::
our

::::::::::
theoretical

::::::::::
predictions.

:

::::::::
However,

::::
the

:::::
first

:::::::::
challenge

:::
in

:::::
such

:::::::::::
experiments

:
is
:::
to

::::
find

:::::
and

:::::::
prepare

::::
two

:::::::
atomic

:::::::
species

::::
that

:::::
have

:
a
::::::::
suitable

::::::
mass

:::::
ratio

::::
and

:::::::
whose

:::::::::
two-body

:::::::
s-wave

:::
and

:::::::
p-wave

::::::::::::
interactions

::::::::
happen

:::
to

::::
be,

:::
or

::::
can

:::
be

:::::::::
controlled

::
to

::::
be,

::
in

::
a
::::::
region

:::
of

:::::::::
scattering

::::::
length

::::
and

:::::::::
scattering

:::::::
volume

:::::
where

::::::::::
interesting

:::::::
trimers

::::::
states

:::
are

:::::::
present.

:::::
This

:::::
work

::::::
shows

::::
that

::::
the

:::::::
original

:::::::::
constraint

::
on

::::
the

:::::
mass

::::
ratio

::::
for

:::
the

::::
KM

::::::
states,

::::::
which

::::::
limits

:::
the

:::::
choice

:::::::
mostly

:::
to

:::::::::
mixtures

::
of

::::::::::
chromium

::::
and

:::::::
lithium

::::::
atoms,

::::
can

:::
be

:::::::
relaxed

::::::::
provided

:::::
there

::
is
::
a
::::::::::
sufficiently

:::::
strong

:::::::
p-wave

:::::::::::
interaction

::::::::
between

:::
the

::::
two

:::::::::
fermionic

::::::
atoms.

::::::::::
Finding

:::::
the

:::::
most

:::::::::::
promising

::::::::::
candidates

:::::::
requires

:
a
:::::::
precise

::::::::::
knowledge

::
of

:::
the

:::::::::::
interspecies

::::::
s-wave

:::::::::
resonances

:::
of

:::::
mass

:::::::::::
imbalanced

:::::::::
mixtures,

:::
as

:::::
well

::
as

::::
their

:::::::::::
intraspecies

:::::::
p-wave

::::::::::
resonances.

:

7 Conclusion

In this work, we have clarified how the universal trimer
bound states of two identical fermions and one particle
discovered by Kartavtsev and Malykh occur in a real-
istic setting where finite-range interactions are present
between all particles. We found that in the absence of a
fermion-fermion dimer, the Kartavtsev–Malykh univer-
sal trimers are almost always present for a sufficiently
large scattering length between the fermions and the
particle. However, this range of scattering length is
very narrow, making the experimental observation of
these universal states challenging. The trimers extend
away from this universal region to smaller scattering
lengths, where they become significantly more bound.
Moreover, we found that the spectrum is enriched by
up to two additional trimers for sufficiently strong at-
traction between the fermions. These trimers are bor-
romean, i.e. they can exist even though the interactions
are not sufficiently attractive to bind the two fermions
or bind the particle with one of the two fermions. Al-
though this extended spectrum is not strictly universal,
it follows a generic scenario as a function of the low-
energy parameters of the interactions. This scenario re-
sults from an avoided crossing between trimers induced
only by the s-wave interaction between the fermions
and the particle, and trimers induced by the p-wave
interaction between the two fermions. A striking fea-
ture of the borromean trimers is that their ground state
exists for any mass ratio, unlike the universal trimer
states whose existence are limited to mass ratios larger
than x1 = 8.17260 . . . . This dramatic enhancement of
the range of existence, in terms of both interaction and
mass ratio, makes these trimers much more accessible
to experimental observation.

It is interesting to mention that two shallow
borromean trimers (Jπ = 1+ and Jπ = 2−) have

:
a

::::::
shallow

::::::::::
borromean

::::::
trimer

::
in

::::
the

:::::
same

:::::::::
symmetry

:::::
sector

:::::::
Jπ = 1−

::::
has

:
also been predicted in the case of three

fully polarised fermions experiencing a p-wave reso-
nant pairwise interaction [49]. Finally, we should

::
We

::::::
should

::::
also note that our conclusions are limited to the

case of single-channel interactions between the parti-
cles. These would describe the so-called open-channel-
dominated resonances in real systems. A more general
description of resonances would require at least two
channels.
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Appendix 1: separable potential for
different partial waves

A separable potential acting on the ℓth partial wave
has the general form:

V̂ =

ℓ∑
m=−ℓ

λℓ,m|Φℓ,m⟩⟨Φℓ,m|, (45)

with

⟨k|Φℓ,m⟩ = Φℓ,m(k) = kℓϕℓ,m(k)
√
4πYℓ,m(k̂) (46)

where Yℓ,m are the spherical harmonics and k̂ is the
unit vector k/k.
The action of this separable potential on a wave

function Ψ is given in momentum representation by
⟨k|V̂Ψ⟩

:::::::
⟨k|V̂ |Ψ⟩, i.e.

ℓ∑
m=−ℓ

λℓm

∫
d3k′Φ∗

ℓ,m(k′)Φℓ,m(k)⟨k′|Ψ⟩

=

ℓ∑
m=−ℓ

4πλℓ,mk
ℓϕℓ,m(k)Yℓ,m(k̂)

∫ ∞

0

dk′k′ℓϕ∗ℓ,m(k′)

×
∫
d2k̂′Y ∗

ℓ,m(k̂′)⟨k′|Ψ⟩︸ ︷︷ ︸
Ψℓ,m(k′)

(47)

where Ψℓ,m is the partial wave (ℓ,m) of the wave func-
tion Ψ. Thus we see that the potential only acts on
that partial wave.
For the s wave (ℓ = 0) we have Y0,0(k̂) = 1/

√
4π,

and thus,

V̂ = λ0,0|ϕ0,0⟩⟨ϕ0,0|, (48)

which is the form of Eq. (2) with λ0,0 ≡ 2πℏ2

µ23
ξ and

ϕ0,0 ≡ χ.

For the p wave (ℓ = 1) we have Y1,m(k̂) =
√

3
4π k̂·êm,

and thus,

V̂ =

1∑
m=−1

λ1,m|Φ1,m⟩⟨Φ1,m|, (49)

with

Φ1,m(k) = kϕ1,m(k)
√
3k̂ · êm, (50)

which is the form of Eq. (3), with λ1,m ≡ 2πℏ2

µ12
gm and

Φ1,m(k) ≡ Φm(k), i.e. ϕ1,m(k) ≡ ϕm(k)/
√
3.

The Tables (1) and (2) give the different parameters
of the potentials used in this paper.

Appendix 2: form
:::::::::::::
derivation

::
of the

functions S and P
:::::::
STM

:::::::::::::
equations

Here we derive the forms of
::::
STM

:::::::::
equations

::::::
(6-7).

:::::
First,

:::
we

:::
use

::::
the

:::::::::
separable

:::::
forms

:::
(2)

::::
and

::::
(3)

::
of

:::
the

::::::::::
interactions

::
V̂

::::
and

::
Û

::
in

::::
the

::::::::::::
SchrÃ·dinger

::::::::
equation

:::
(1).

::::
This

:::::
gives:

:(
1

2
k21 +

1

2
k22 +

x

2
k23 + q2

)
⟨{ki}|Ψ⟩

::::::::::::::::::::::::::::::

−12π

1∑
m=−1

⟨k12|Φm⟩Pm(k3)

::::::::::::::::::::::::

−4πy⟨k23|χ⟩S(k1) + 4πy⟨k31|χ⟩S′(k2)
:::::::::::::::::::::::::::::::::

= 0,
:::

(51)

:::::
where

::::::::::
x =M/m

:::
is

::::
the

:::::
mass

::::::
ratio,

:::::
and

:::
y

::
is
::::
the

:::::::::
short-hand

:::::::::
notation

:::
for

:::::::::
(1 + x)/2.

:::::
The

:::::::
relative

:::::
wave

::::::::
functions

:
S and

:::
Pm :::

are
:::::::
defined

:::
by

::::
Eqs.

::::::
(4-5),

::::
and

::
S′

:
is
::::::
given

:::
by:

:

S′(k2) = −ξ
∫
d3k31
(2π)3

⟨χ|k31⟩⟨{ki}|Ψ⟩.
::::::::::::::::::::::::::::::::

(52)

:::::
From

:::
the

:::::::::::::
antisymmetry

:::
of

::::
the

:::::
wave

::::::::
function

::::::
under

:::
the

:::::::::
exchange

::
of

::::
the

:::::::::
fermionic

::::::::
particles

::
1
::::
and

:::
2,

:::
i.e.

::::::::::::::::::::::::::::
⟨k2,k1,k3|Ψ⟩ = −⟨k1,k2,k3|Ψ⟩,

:::
it

:::
is

::::
easy

:::
to

::::::
check

::::
from

::::
Eq.

::::
(52)

:::::
that

:::::::::::::::
S′(k) = −S(k).

:::::
The

::::::::::
three-body

::::
wave

::::::::
function

:::::::::::
⟨{ki}|Ψ⟩/4π

::
is
:::::
thus

:::::
given

:::
by:

:

3
∑

m⟨k12|Φm⟩Pm(k3)+y(⟨k23|χ⟩S(k1)−⟨k31|χ⟩S(k2))
1
2k

2
1 +

1
2k

2
2 +

x
2k

2
3 + q2

.

::::::::::::::::::::::::::::::::::::::::::::::::

(53)

::::::::
Inserting

::::
this

:::::::::
expression

:::
in

:::
the

::::::::::
definitions

::
of

::
S
::::
and

:::
Pm,

:::::
Eqs.

:::::
(4-5),

::::
one

:::::::
obtains:

:

−S(k1)

4πξ
= 3

∫
d3k23
(2π)3

⟨χ|k23⟩
∑

m⟨k12|Φm⟩Pm(k3)
1
2k

2
1 +

1
2k

2
2 +

x
2k

2
3 + q2

:::::::::::::::::::::::::::::::::::::::::::

+y

∫
d3k23
(2π)3

⟨χ|k23⟩
⟨k23|χ⟩S(k1)−⟨k31|χ⟩S(k2)

1
2k

2
1 +

1
2k

2
2 +

x
2k

2
3 + q2

,

:::::::::::::::::::::::::::::::::::::::::::::

(54)

−Pm(k3)

4πgm
= 3

∫
d3k12
(2π)3

⟨Φm|k12⟩
∑

m′⟨k12|Φm′⟩Pm′(k3)
1
2k

2
1 +

1
2k

2
2 +

x
2k

2
3 + q2

::::::::::::::::::::::::::::::::::::::::::::::

+y

∫
d3k12
(2π)3

⟨Φm|k12⟩
⟨k23|χ⟩S(k1)−⟨k31|χ⟩S(k2)

1
2k

2
1 +

1
2k

2
2 +

x
2k

2
3 + q2

.

::::::::::::::::::::::::::::::::::::::::::::::

(55)

:::::
From

:::
the

::::::::::::
translational

::::::::::
invariance

::
of
::::
the

::::::::
system,

:::
the

::::
total

:::::::::::
momentum

:::
can

:::
be

:::
set

:::
to

::::
zero:

:

k1 + k2 + k3 = 0.
:::::::::::::::

(56)

:
It
:::::::
follows

::::
that

::::
the

:::::
three

:::::::
vectors

:::
k1,:::

k2,::::
and

:::
k3::::

can
::
be

::::::::
expressed

:::
in

:::::
terms

::
of
::::
two

::::::
Jacobi

:::::::
vectors

::::
kij :::

and
::::
kk::

k1 =
::::

k31 −
x

1 + x
k2 = −k12 −

1

2
k3,

::::::::::::::::::::::::::

(57)

k2 =
::::

−k23 −
x

1 + x
k1 = k12 −

1

2
k3,

::::::::::::::::::::::::::

(58)

k3 =
::::

+k23 −
1

1 + x
k1 = −k31 −

1

1 + x
k2.

:::::::::::::::::::::::::::::::

(59)
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s-wave model χ(k) |χ(iκ)|2/f0(iκ) r̄e

Gaussian exp(−k2/Λ2
0)

1
a − κe

2κ2

Λ2
0 erfc

(√
2κ

Λ0

)
4
√

2
π

Λ0

Yamaguchi 1
1+k2/Λ2

0

1
a − κΛ0(κ+2Λ0)

2(κ+Λ0)2
3
Λ0

Yamaguchi-squared
[

1
1+k2/Λ2

0

]2
1
a − κΛ0(5κ3+20κ2Λ0+29κΛ2

0+16Λ3
0)

16(κ+Λ0)4
35
8Λ0

Cut-off

{
1 k ≤ Λ0

0 k > Λ0

1
a − 2κ tan−1(Λ0

κ )
π

4
πΛ0

Table 1: Separable potential models used for the s-wave interaction V between a fermion and the particle. For
each model, the table provides the explicit expression of the form factor χ, the s-wave scattering amplitude f0,
and the parameter r̄e corresponding to the s-wave effective range at resonance.

p-wave model ϕ(k) |κϕ(iκ)|2/f1(iκ) ᾱ

Gaussian exp(−k2/Λ2
1)

1
v − κ2Λ1√

2π
+ κ3e

2κ2

Λ2
1 erfc

(√
2κ

Λ1

)
Λ1√
2π

Yamaguchi 1
1+k2/Λ2

1

1
v − κ2Λ3

1

2(κ+Λ1)2
Λ1

2

Yamaguchi squared
[

1
1+k2/Λ2

1

]2
1
v − κ2Λ3

1(κ
2+4κΛ1+5Λ2

1)
16(κ+Λ1)4

5Λ1

16

Cut-off

{
1 k ≤ Λ1

0 k > Λ1

1
v − 2

πκ
2
(
Λ1 − κ tan−1

(
Λ1

κ

))
2
πΛ1

Table 2: Separable potential models used for the p-wave interaction U between the two fermions. For each
model, the table provides the explicit expression of the form factor ϕ, the p-wave scattering amplitude f1, and
the width parameter ᾱ corresponding to the inverse of the effective range at the p-wave resonance.

::
In

::::::::::
particular,

:::
the

::::::::::::
denominator

::
in

:::::
Eqs.

:::::::
(54-55)

::::::
admits

:::
the

::::::::
following

:::::::::::
expressions:

:

1

2
k21 +

1

2
k22 +

x

2
k23 + q2

:::::::::::::::::::

= yk223 + k21
2x+ 1

4y
+ q2

::::::::::::::::::::

(60)

= k212 +
2x+ 1

4
k23 + q2

:::::::::::::::::::

(61)

::::
Now,

::::
one

:::
can

:::
see

:::::
that

:::
the

::::
term

::::::::::::
proportional

::
to

:::::
S(k1)

::
in

:::
the

::::::::::
right-hand

::::
side

::
of

::::
Eq.

::::
(54)

:::
can

:::
be

::::::::
factored

::::
with

:::
the

:::::::::
left-hand

::::
side.

:::::::::::
Similarly,

:::
the

::::::
term

:::::::::::
proportional

::
to

::::::::
Pm′(k3) ::

in
::::
the

::::::::::
right-hand

::::
side

::
of
::::
Eq.

:::::
(55)

:::
can

:::
be

:::::
shown

:::
to

:::
be

::::::::::::
proportional

:::
to

::::::::
Pm(k3), :::

by
::::::::::
performing

:::
the

::::::::::
integration

:::::
over

:::
the

:::::::::::
orientation

::
of

::::
k12::::

and
:::::
using

:::
the

:::::::
relation

:::::::::::::::::::::::::::::::::::::

∫
d2k̂12

(
k̂12 · êm

)(
k̂12 · êm′

)
= 4π

3 δm,m′ .

:
It
::::
can

:::::::::
therefore

:::
be

::::::::
factored

:::::
with

::::
the

:::::::::
left-hand

::::
side.

:::::
Using

::::
Eq.

::::
(60)

:::
in

:::
Eq.

:::::
(54)

::::
and

::::
Eq.

::::
(61)

:::
in

:::
Eq.

:::::
(55),

:::
one

::::::::
obtains:

S(k1)

4πΞ0,0
= −3

∫
d3k23
(2π)3

⟨χ|k23⟩
∑

m⟨k12|Φm⟩Pm(k3)
1
2k

2
1 +

1
2k

2
2 +

x
2k

2
3 + q2

::::::::::::::::::::::::::::::::::::::::::::

+y

∫
d3k23
(2π)3

⟨χ|k23⟩
⟨k31|χ⟩S(k2)

1
2k

2
1 +

1
2k

2
2 +

x
2k

2
3 + q2

,

:::::::::::::::::::::::::::::::::::::::::::

(62)

Pm(k3)

4πΞ1,m
= y

∫
d3k12
(2π)3

⟨Φm|k12⟩
:::::::::::::::::::::::::

×⟨k31|χ⟩S(k2)−⟨k23|χ⟩S(k1)
1
2k

2
1 +

1
2k

2
2 +

x
2k

2
3 + q2

.

::::::::::::::::::::::::::::::::::::::

(63)

::::
with

:

1

Ξ0,0
:::

=
1

ξ
+ 4πy

∫
d3k23
(2π)3

|χ(k23)|2

yk223 + k21
2x+1
4y + q2

,

::::::::::::::::::::::::::::::::::

(64)

1

Ξ1,m
::::

=
1

gm
+ 4π

∫
d3k12
(2π)3

|ϕm(k12)|2k212
k212 +

2x+1
4 k23 + q2

,

::::::::::::::::::::::::::::::::::

(65)

:::::
which

::::
can

:::
be

::::
cast

::
in

::::
the

:::::
form

::
of

::::
the

:::::::::
right-hand

:::::
sides

::
of

::::
Eqs.

:::::::
(11-12)

:::
by

:::::::::
relabelling

::::
the

::::::::
variables

:::
k23::::

and
:::
k12

::
to

::
k

:::
and

:::::::::::
introducing

::::
the

:::::::
relative

::::::::
momenta

::
κ
::::::
given

::
by

::::
Eqs.

:::::::
(13-14).

:

:::::::
Finally,

:::::
using

:::
Eqs

:
.
:::::::
(57-59),

::::
one

:::
can

:::::
make

::
a

::::::
change

::
of

:::
the

::::::::::
integration

::::::::
variables

:::
in

:::
Eq.

:::::::
(62-63)

:::::
such

::::
that

::::
they

::::::::::
correspond

::
to

::::
the

::::::::
variables

:::
of

::::
the

:::::::::
functions

:::
Pm::::

and

::
S.

:::::
This

:::::::
change

::::::
shows

::::
that

::::
the

:::::
terms

::::::::::::
proportional

::
to

:::::
S(k2)::::

and
:::::
S(k1)::

in
::::
Eq.

::::
(63)

::::
give

:::
the

:::::
same

:::::::::::
contribution,

:::::
which

:::::
leads

::
to

::::
the

:::::::::
equations,

:

S(k1)

4πΞ0,0
= y

∫
d3k2
(2π)3

⟨χ|k2 +
x
2yk1⟩⟨k1 +

x
2yk2|χ⟩S(k2)

y (k21 + k22) + xk1 · k2 + q2
::::::::::::::::::::::::::::::::::::::::::::::

(66)

+3

∫
d3k3
(2π)3

⟨χ|k3 +
k1

2y ⟩
∑

m⟨k1 +
k3

2 |Φm⟩Pm(k3)

k21 + yk23 + k3 · k1 + q2
,

::::::::::::::::::::::::::::::::::::::::::::::

Pm(k3)

4πΞ1,m
= 2y

∫
d3k1
(2π)3

⟨Φm|k1 +
k3

2 ⟩⟨k3 +
k1

2y |χ⟩S(k1)

k21 + yk23 + k1 · k3 + q2
.

::::::::::::::::::::::::::::::::::::::::::::::

(67)

::::::::::
Relabelling

::::
the

:::::::::::::
non-integrated

:::::::
vector

:::
as

::
k
::::
and

::::
the

:::::::::
integrated

::::::
vector

:::
as

::
k′

:::
in

::::
both

::::::::::
equations,

::::
one

::::::
arrives
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::
at

:::
the

:::::
STM

::::::::::
equations

:::::
(6-7).

:::::
The

:::::::::
quantities

::::
Ξ0,0::::

and

::::
Ξ1,m::::

are
:::::::
directly

:::::::
related

:::
to

::::
the

:::::::::
two-body

:::::::::
scattering

::::::::::
amplitudes

::
of

:::
the

:::::::::
potentials

::
V̂

::::
and

::
Û

:::::
given

::::::::::
respectively

:::
by:

:

1

Ξ0,0
:::

= −|χ(iκ0)|2

f0,0(iκ0)
:::::::::::

(68)

1

Ξ1,m
::::

=
|κϕm(iκ1)|2

f1,m(iκ1)
::::::::::::

(69)

:::::
where

:::
κ0::::

and
::
κ1::::

are
:::::::
defined

::
in

::::
Eqs.

::::::::
(13-14).

:

::::::::::::
Appendix

::::
3:

:::::::
form

::::
of

:::::
the

::::::::::::
functions

:::
S

:::::
and

:::
P

::::
Here

:::
we

::::::
derive

::::
the

:::::
forms

:::
of

::
S

::::
and

:
P functions for a

three-body state of total angular momentum and par-
ity symmetry Jπ = 1−.

:::
The

::::::
same

:::::::::::::
considerations

::
of

:::::::::
symmetry

::::
were

:::::
done

:::
in

::::
Ref.

:::::
[49]

::
in

:::
the

:::::
case

::
of

:::::
three

:::::::
identical

:::::::::
fermions.

:

Form of S

S depends on the momentum k between the fermion-
particle subsystem (13) and fermion 2. Since the
fermion-particle susbsystem is assumed to have an an-
gular momentum l = 0 and the total angular momen-
tum is J = 1, the only possible angular momentum L
between (13) and 2 is 1. The function S is thus pro-
portional to an angular momentum state L = 1, with
a proportionality factor that depends on the norm k of
k.

S(K) ∝ |
J
1,

MJ

0 ⟩0⊕1

∝ |
l
0,

m
0⟩|

L
1,

M
0 ⟩

= s(k)(ek · ez), (70)

which is Eq. (22). Here, we use the fact that the angu-

lar momentum |
L
1,

M
0 ⟩ is proportional to ek · ez, where

ek = k/k is the unit vector along k and ez is a fixed
unit vector along which the projection of angular mo-
mentum is assumed to be zero.

Form of P

P depends on the momentum k between the fermion-
fermion subsystem (12) and third particle 3. Since the
fermion-fermion subsystem is assumed to have an an-
gular momentum l = 1 and the total angular momen-
tum is J = 1, the only possible angular momentum L
between (12) and 3 is either 0 or 2. From the negative
parity, we further restrict to the two angular momen-
tum compositions:

|
l
1,

m
0⟩|

L
0,

M
0 ⟩ (71)

and√
3

10
|
l
1,

m
−1⟩|

L
2,

M
1 ⟩

−
√

2

5
|
l
1,

m
0⟩|

L
2,

M
0 ⟩+

√
3

10
|
l
1,

m
1⟩|

L
2,

M
−1⟩. (72)

The quantity P (k) · k12 is therefore a linear combina-
tion of the above two angular momentum states, where
the linear coefficients depend on the norm K. Express-
ing these angular momentum states in terms of scalar
and vector products, one finds:

P (k) = p0(k)ez + p2(k) [ek × (ek × ez)] , (73)

which is Eq. (23).

Appendix 3
::
4: perturbation of STM

equations

We write the STM equation at negative energy in the
generic form∫

d3k′

(2π)3
⟨k|M(q)|k′⟩⟨k′|λ⟩ = 0 (74)

where M(q) may be a matrix as in Eqs. (6, 7) or a
scalar operator, as it is the case for example when there
is no p-wave interaction. We divide the STM oper-
ator into two terms: M(q) = M(0)(q) +M(1)(q) and
consider the situation where M(1)(q) can be treated
as a perturbation with respect to the dominant term
M(0)(q). At the first order of perturbation, we de-
compose the eigenvector and the binding wavenumber
as |λ⟩ = |λ(0)⟩+ |λ(1)⟩ and q = q(0) + q(1), such that at
the lowest order, the STM equation is

M(0)(q(0))|λ(0)⟩ = 0. (75)

At the first order in perturbation, the STM equation
is expanded as

M(0)(q(0))|λ(1)⟩+ q(1)
δM(0)

δq

∣∣∣∣
q(0)

|λ(0)⟩

+M(1)(q(0))|λ(0)⟩ = 0. (76)

Without loss of generality, we assume that ⟨k|M(0)|k′⟩
and ⟨k|M(1)|k′⟩ are written in a symmetric form, so
that the perturbed eigenvector verifies ⟨λ(0)|λ(1)⟩ = 0.
Applying ⟨λ(0)| on the left of Eq. (76), one obtains

⟨λ(0)|δM
(0)

δq
|λ(0)⟩q(1) + ⟨λ(0)|M(1)|λ(0)⟩ = 0 (77)

and thus

q(1) = − ⟨λ(0)|M(1)|λ(0)⟩
⟨λ(0)| δM(0)

δq |λ(0)⟩
. (78)

In the particular case where M(0) is the scalar STM
operator in absence of p-wave interaction, we will show

that ⟨λ(0)| δM
(0)

δq |λ(0)⟩ can be expressed in terms of the
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sweep parameter ∂E
∂(1/a) . For this purpose, we consider

a small variation of the scattering length in the unper-
turbed STM equation a→ a+ δa, that induces a small
change of the binding wavenumber q(0) → q(0)+δq. At
the first order in δ(1/a), one has

⟨λ(0)|δM
(0)

δq
|λ(0)⟩δq + ⟨λ(0)| δM

(0)

δ(1/a)
|λ(0)⟩δ(1/a) = 0.

(79)

The value of the term ⟨λ(0)| δM
(0)

δ(1/a) |λ
(0)⟩ depends on a

common factor in M, M(0), and M(1). We fix this fac-

tor such that δM(0)

δ(1/a) = −1 and thus ⟨λ(0)| δM
(0)

δ(1/a) |λ
(0)⟩ =

−⟨λ(0)|λ(0)⟩. Then, using this normalisation of the
STM operator and injecting Eq. (79) in Eq. (78), one
finds

E(1) = − ∂E(0)

∂(1/a)

⟨λ(0)|M(1)|λ(0)⟩
⟨λ(0)|λ(0)⟩

(80)

where E(0) is the energy of the unperturbed
system E(0) = −ℏ2q(0) 2/(2M) and E(1) is the
shift in energy resulting from the perturbation:
E(1) = −ℏ2q(0)q(1)/M .
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