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Abstract

While neural networks offer an attractive way to numerically encode functions, actual
formulas remain the language of theoretical particle physics. We use symbolic regression
trained on matrix-element information to extract, for instance, optimal LHC observables.
This way we invert the usual simulation paradigm and extract easily interpretable for-
mulas from complex simulated data. We introduce the method using the effect of a
dimension-6 coefficient on associated ZH production. We then validate it for the known
case of CP-violation in weak-boson-fusion Higgs production, including detector effects.
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1 Introduction

The defining feature of modern LHC physics is the combination of fundamental physics
questions, precision simulations based on first-principle quantum field theory, and state-
of-the-art statistics and analyses. In the ideal LHC world we will use likelihood-free or
simulation-based inference [1] to compare simulated data sets with recorded data sets and
extract fundamental physics parameters using likelihood methods. Machine learning has
the potential to transform many parts of this analysis chain, from enabling faster and more
precise simulations to triggering events, providing stable and economic analysis objects,
to the actual inference. On the other hand, a fundamental physics description in terms of
perturbative quantum field theory often allows us to write down compact and instructive
mathematical expressions for scattering amplitudes or observables. This advantage is lost
when we turn to numerical methods like neural networks.

The way to combine the power of machine learning with the advantage of mathematical
intuition is symbolic regression. In analogy to training a neural network we can use this
method to learn a general, analytic function over phase space from a data set. While the
standard methodology in particle physics is to start from human-readable formulas and
build numerical simulations on them, symbolic regression allows us to invert this method
and extract human-readable formulas from simulated data sets. If the performance of this
function is comparable to the numerically trained network, such an analytic expression
represents the best of both worlds and can trigger fundamental considerations explaining
the approximate analytic formula. In this paper we approximate numerically defined
optimal observables, or scores, for simple LHC processes with closed formulas and show
how those compare to known fundamental properties and expressions.

One of the most pressing physics questions for the LHC is the properties of the Higgs
boson, the currently only fundamental scalar particle [2]. The theory framework for Higgs
analyses is the Standard Model Effective Field Theory (SMEFT) [3], which combines rate
information and kinematic distributions in global analyses [4–10]. Given a set of Wilson
coefficients describing physics beyond the Standard Model, the straightforward question
is how we can best measure a specific model parameter in a specific LHC process. In the
usual LHC analysis framework of theory-inspired observables this leads to the problem of
finding the optimal observable to measure a given parameter in a given process [11–14].
At the detector level, optimal observables or scores [15] can be encoded in form of neural
networks [16–18], automated in the MadMiner library [19]. They have proven useful in
different applications to LHC Higgs physics [20–23].

In this paper we use symbolic regression [24–27] to construct optimal observables for
LHC processes as human-interpretable formulas. We rely on MadMiner [19] to extract
matrix-element information from simulated events and on PySR [28] to approximate the
score as a closed-form symbolic expression. We then show how the so-defined observables
compare to established fundamental properties and expressions. Unlike the traditional
parton-level method, our approach allows us to incorporate backgrounds, jet radiation,
and detector effects. Unlike the neural approach, its output is a human-readable expression
such as pT,1pT,2 cos(∆φjj).

After introducing all relevant concepts and tools in Sec. 2, we will illustrate how
symbolic regression can learn the optimal observable for the Wilson coefficient fB in ZH
production in Sec. 3. For this simple on-shell scattering process, we discuss possible
functional forms and a suitable modification of the standard PySR algorithm. In Sec. 4,
we will apply symbolic regression to determine the optimal observable for the CP -violating
Wilson coefficient f

WW̃
in weak-boson-fusion (WBF) Higgs production. In this case we

know the analytic form for small Wilson coefficients at parton level [21,29,30], it has been
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shown to work in actual analyses [31–34], so we will benchmark our symbolic regression
approach and study the case of larger Wilson coefficients and detector effects. Finally, we
compare the expected performance of our approximate formulas to the complete numerical
MadMiner output.

2 Basics

2.1 Optimal observables or score

Historically, LHC analyses identify phase space regions with a large signal-to-background
ratio and focus on them by applying cuts on kinematic observables. A measurement is
then based on counting events and comparing this rate to the background-only and the
signal-plus-background predictions. Such an analysis has the fundamental disadvantage
that there will always be kinematic observables and phase space regions which do not
contribute to our task. One way to improve these analyses is to change the way we
organize events. Instead of a simple kinematic observable, we can define histograms in
terms of any variable we want, and we can systematically construct optimal test statistics
for a given task.

The central object for constructing an optimal observable or score is the likelihood
function for a single event at the LHC,

p(x|θ) =
1

σtot(θ)

ddσ(x|θ)
dxd

. (1)

The symbol x stands for all of the information we observe for an event, for instance as a
vector in terms of a basis of observables, including particle IDs of reconstructed particles.
θ is the vector of theory parameters of interest, ddσ(x|θ)/dxd is the fully differential cross
section, and σtot is the total cross section. If we are interested in parameter values θ close
to a reference point θ0, we can taylor the log likelihood around θ0,

log
p(x|θ)
p(x|θ0)

= (θ − θ0) · ∇θ log p(x|θ)

∣∣∣∣∣
θ0︸ ︷︷ ︸

t(x|θ0)

+ · · · (2)

The first-order term in this expansion is known as the score in the field of statistics [15].
If the second-order term is negligible, we can solve this equation and find

p(x|θ) ≈ et(x|θ0)·(θ−θ0)p(x|θ0) . (3)

This likelihood function has the property that t(x|θ0) are its sufficient statistics; measuring
this score contains all of the information on the parameters θ as the full event record x.
In the vicinity θ ∼ θ0 we can then define an optimal observable for each model parameter
θi as [12],

Oopt
i (x) ≡ t(x|θ0) =

∂ log p(x|θ)
∂θi

∣∣∣∣∣
θ0

(4)

From Eq.(2) we also see that it is optimal in the sense that it approximates the log-
likelihood ratio as the optimal discriminator. Using the same simplifying assumptions, it
is possible to show that the score or optimal observable is not only linked to the Neyman-
Pearson lemma [35], but also saturates the Cramér-Rao bound [36, 37], for a particle
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physics-related discussion see e.g. Refs. [2, 20, 38] and indeed includes all available infor-
mation on a continuous model parameter.

For many LHC applications, including measuring SMEFT Wilson coefficients, a nat-
ural reference point is the Standard Model with θ0 = 0. At parton level and assuming
all particle properties can be observed, the likelihood is proportional to the transition
amplitude and we find

p(x|θ) ∼ |M|20 +
∑
n

θn|M|2int,n +O(θ2) ⇒ Oopt
i (x) ≡ t(x|θ0) ∝

|M|2int,i
|M|20

, (5)

where we have omitted additive and multiplicative constants.
Computing the score t(x|θ0) beyond parton level is not straightforward, because the

likelihood function p(x|θ) is, in general, intractable. However, it is linked to the scattering
matrix elements in that the single-event likelihood of Eq.(1) can be written as [16–18]

p(x|θ) ∝
∫

dz p(x|z) |M(z|θ)|2 , (6)

where we integrate over the full parton-level information z, |M(z|θ)|2 is the squared matrix
element evaluated for parameters θ, and p(x|z) relates the full parton-level information z
to the observables x, including parton shower and detector effects.

For a simulated event, we know the complete parton-level information z and can com-
pute the joint score

t(x, z|θ) =
∇θ|M(z|θ)|2

|M(z|θ)|2
− ∇θσtot(θ)

σtot(θ)
. (7)

This joint score is not useful, since it depends on unobserved parameters as part of z.
However, it turns out that the score t(x|θ) can be linked to the joint score t(x, z|θ) as the
minimum of the mean-squared-error functional:

t(x|θ) = arg min
g(x)

Ex,z∼p(x,z|θ) |g(x)− t(x, z|θ)|2 . (8)

In practice, we can perform this minimization by choosing an expressive variational family
for g(x) and fitting its parameters to simulated data.

The first instantiation of this idea is the Sally method [16–18], which uses a neural
network as fitting function g(x) and learns its parameters through stochastic gradient
descent. In this work we propose an alternative approach: for g(x), we use a set of
symbolic expressions, closed-form formulas that combine elementary elements and simple
functions in a human-readable way. For this purpose we minimize the loss functional in
Eq. (8) with a genetic algorithm.

2.2 MadMiner

To generate LHC events for finite Wilson coefficients we use the reweighting option in
Madgraph5, combined with the known, quadratic dependence of the production cross
section on the Wilson coefficient. This gives us event weights for different values of the
Wilson coefficient, which are then extracted by MadMiner 0.5 [19] and used for the
calculation of the joint score via a morphing technique [17].

The joint score is essentially extracted from the 4-momenta of the outgoing particles at
parton level. Taking the joint score, the neural net Sally can be used to regress the score
on the real kinematic observables after shower and detector. The goal of this paper is to
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replace the neural network by an explicit analytic formula obtained through the symbolic
regression tool PySR.

We use 500k events from the Madgraph5 [39], Pythia8 [40], and Delphes [41]
simulation chain with the default CMS card. With MadMiner we extract matrix-element
information from our Monte-Carlo simulations and calculate the expected limits on the
Wilson coefficients. Additionally we use the implemented Sally algorithm, trained on
the same events, as a baseline for comparison with symbolic regression results. For the
network training we rely on the AMSGrad optimizer [42].

2.3 Symbolic regression

For our symbolic regression we rely on PySR [28]. It uses genetic programming to find
a symbolic expression for a numerically defined function in terms of pre-defined variables.
The population consists of symbolic expressions, visualized as a tree and consisting of nodes
with an operator function or an operand. We use the operators for addition, subtraction,
multiplication, squaring, cubing and if needed division. The tree population evolves when
new individuals are created and old ones are discarded. To breed the next generation,
several mutation operators can be applied, for instance exchanging, adding or deleting
nodes of the parent tree. The hyperparameter populations = 30 defines the number of
populations and is per default set to the number of processors used (procs). The number
of individuals per populations is given by npop = 1000.

As the figure of merit for the PySR algorithm we take the mean squared error between
the data points ti(x, z|θ) and the functional description gi,

MSE =
1

n

n∑
i=1

(gi(x)− ti(x, z|θ))2 , (9)

and balance it with the function’s complexity, defined as

complexity = #nodes . (10)

For the PySR score value, not to be confused with the statistics version of the optimal
observable defined in Eq.(2), the parameter parsimony defined through

score =
MSE

baseline
+ parsimony · complexity . (11)

balances the two conditions. The normalization factor baseline is the MSE between the
data and the constant unit function. The hyperparameter maxsize restricts the complexity
to a maximum value. We adjust this value depending on the difficulty of the regression
task taking 50 as a starting point and increase (decrease) it if the required complexity
is larger (smaller). Additionally we can restrict the complexity of specific operators to
obtain a more readable result. We set the maximal complexity of square to 5 and cube to
3. Note that in some instances we choose to not extract the score, but the score scaled by
a constant, to improve the numerics with an order-one function.

Simulated annealing [43] allows us to search for a global optimum in a high-dimensional
space while preventing the algorithm from being stuck in a local optimum. A mutation is
accepted with the probability

p = exp

(
−scorenew − scoreold

alpha · T

)
. (12)

The parameter T is referred to as temperature. It linearly decreases with each cycle
or generation, starting with 1 in the first cycle and 0 in the last. The hyperparameter

5



SciPost Physics Submission

ncyclesperiterations = 200 sets the amount of cycles. We choose alpha = 1. If the
new function describes the data better than the reference tree, scorenew � scoreold,
the exponent has a positive sign and the new function is accepted. If the new sore is
larger than the old score, the acceptance of the new function is given by p and hence
exponentially suppressed. We use this default PySR form for our simple example and
discuss a better-suited form for our application in Sec. 3.

The hyperparameter niterations = 300 defines the number of iterations of a full
simulated annealing process. After each iteration the best formulas are compared to the
hall of fame (HoF). For each complexity the best equation is chosen and saved in the
output file. An equation of higher complexity is only added if its MSE is smaller than for
previous formulas. Equations from different populations or the hall of fame can migrate
to other populations. This process is affected by the parameters fractionReplaced = 0.5
and fractionReplacedHof = 0.2.

3 ZH production

To illustrate our symbolic regression task we choose the LHC production process

pp→ ZH , (13)

without decays and modified by a single dimension-6 operator,

L = LSM +
fB
Λ2
OB with OB =

ig′

2
(Dµφ)†DνφBµν . (14)

This operator is know to modify the boosted regime of ZH production [22, 44–46]. For
our numerical results we quote fB-values for Λ = 1 TeV.

We generate parton level events with Madgraph5 with the EWdim6 model file [47].
Considering ZH production at parton level and without decays, the number of degrees
of freedom is given by two on-shell 3-momenta minus transverse momentum conservation.
Of these four degrees of freedom the azimuthal angle is a symmetry, so we expect three
observables to describe the effects of fB over phase space. In Fig. 1 we show distributions
for the candidate observables

pT,Z = pT,H and η± = ηZ ± ηH , (15)

for fB = 0, 2, 10, where the largest value is experimentally ruled out and only chosen for
illustration purposes. At first sight the Wilson coefficient seems to affect pT and η+, while
η− looks insensitive. However, this is an artifact of looking at 1-dimensional histograms.
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Figure 1: Kinematic distributions for ZH production at parton level with different Wilson
coefficients fB. We define η± = ηZ ± ηH .
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Figure 2: Kinematic η− vs η+ correlations for ZH production with fB = 0, 10. We show
pT -slices in the boosted regime.

In Fig. 2 we show the correlation between η+ and η− in slices of pT . In the right column,
the ratio indicates that for given pT there is no variation in η+, except for a smaller global
range, which reflects a general suppression of events with, both, large pT and pz. On the
other hand, there is a small residual dependence on η−, in that highly boosted events are
more central.

3.1 Score for fB

The advantage of our simple ZH example process is that we can analytically compute
the score to leading order. We start with the joint score in the presence of unphysical
parameters z as given in Eq.(7). The differential cross section for ZH production is

dσ(z|θ) =
(2π)4f1(x1)f2(x2)

8x1x2s
|M|2 (z|θ) dΦ(x) (16)

with the momentum fractions xi of the partons, the squared center-of-mass energy s, and
the parton densities fi(xi). If the matrix element is quadratic in the Wilson coefficient we
can write it as

|M(θ)|2 ∼ p0 + aθ + bθ2 . (17)

and find for the first term in Eq.(7)

∇θ|M(θ)|2

|M(θ)|2
=

a+ 2bθ

p0 + aθ + bθ2
(18)
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θ � 1 θ & 1

approximation
leading term quadratic term

a

p0
+

1

p0

(
2b− a2

p0

)
θ

2

θ

scaling mostly constant decreasing with θ

Table 1: Limits for the first term of the joint score in Eq.(7).

We consider two limits for this expression in Tab. 1. For small Wilson coefficients we only
keep the leading term in θ and find that the score decreases as long as 2b < a2/p0. Eval-
uated around the Standard Model, the contribution to the score is constant, specifically
a/p0. For large new physics contributions we neglect the constant and linear terms. In
that case the score decreases like 2/θ for increasing θ.

The situation is more complicated for the second term, because the total cross section
requires a phase space integration and the prefactors in Eq.(16) do not cancel

∇θσtot(θ)
σtot(θ)

=

∫
dΦ(x) f1(x1, Q

2)/x1 f2(x2, Q
2)/x2 (a+ 2bθ)∫

dΦ(x) f1(x1, Q2)/x1 f2(x2, Q2)/x2 (p0 + aθ + bθ2)
(19)

This contribution is essentially a constant in θ, but it is different for different quark flavors.
To simplify our problem we will start by only looking at one quark type in the initial state,
allowing us to neglect this score contribution.

For a single quark flavor and only considering the Z-contribution,

uū→ Z∗ → ZH , (20)

the partonic squared matrix element has the compact form.

|M|2 =
2g2(V 2 +A2)

c2w(s−m2
Z)2

x1x2s
(
2m2

Z + p2T
) [mZ

v
+
fB
Λ2

g′2v

8mZ

(
m2
H + 2pHpZ

)]2
, (21)

Around the Standard Model the linear score contribution of Eq.(18) reads

t(x|fB = 0) ≈ a

p0
=
g′2v2

4m2
Z

(
m2
H + 2pHpZ

)
. (22)

In Fig. 3 we show the kinematic dependence of the score from our numerical evaluation.
In the left panel we see that the pT -dependence of the score is mild for small Wilson
coefficients and small pT . For larger pT we also see the quadratic scaling from the formula.
Towards larger Wilson coefficients, the score indeed decreases approximately like 1/θ ∼
1/fB. For η− and in the boosted regime we see the same pattern, namely that the score
decreases when we evaluate it away from the Standard Model. For all values of fB the
score increases towards larger η−, where events are generally more rare.

3.2 Learning a score formula

Now that we have a numerical definition of the score over phase space, we can use symbolic
regression to construct a formula for its phase space distribution. From our earlier consid-
eration we expect the score to be described by the two observables pT and η−. Moreover,
from Fig. 3 we expect that for small fB values the score should be covered by a polynomial
in the leading observables pT /mH and η−.
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Figure 3: Kinematic distributions, pT and η−, for different values of fB. We only include
the Z-contribution and one initial parton flavor.

Polynomial functions for fB = 0

As a starting point, we extract a functional form of the score for ZH production only
including the Z-contribution and one quark flavor using a polynomial form in

xp =
pT
mH

and xη = |η−|. (23)

The scaling ensures that all involved quantities are in the same order of magnitude which
is easier for PySR to deal with. These phase space variables do not directly correspond
to the variables in Eq.(22), but will allow us to generalize our results to the full hadron
collider kinematics.

In the upper left panel of Fig. 4 we first show the full data set for t(x|fB = 0) as a
function of pT . Before applying PySR, we first establish a baseline by fitting polynomials

polynomial d = 2 polynomial d = 3 polynomial d = 4 PySR PySR optimized

MSE 3.49 · 10−3 8.16 · 10−4 1.28 · 10−4 1.23 · 10−4 7.65 · 10−5

dof 6 10 15 9 9

1 -0.03145 -0.1810 -0.1231 -0.1495 -0.134807(46)
xp -0.2022 0.4871 -0.06404 -0.01553 -0.036030(78)
xη -0.1783 0.1837 -0.04830 0.0045 0.002083(55)
x2p 0.1805 0.1303 0.1612 0.1453 0.148277(26)
xpxη 0.2303 -0.3434 0.1124 -0.01553 -0.00787(10)
x2η 0.02861 -0.1036 0.06492 - -
x3p - -0.001788 −4.504 · 10−4 - -
x2pxη - 0.1022 -0.03152 0.01854 0.022835(68)
xpx

2
η - 0.1449 -0.1551 - -

x3η - 0.01001 -0.01976 6.333 · 10−4 0.0013648(50)
x4p - - 6.936 · 10−5 - -
x3pxη - - -0.002264 - -
x2px

2
η - - 0.07835 0.005143 -0.002813(67)

xpx
3
η - - 0.03080 -0.007064 -0.011333(26)

x4η - - 0.001368 - -
x2px

3
η - - - 0.01970 0.023525(22)

Table 2: Polynomial score functions for the simplified ZH setup with fB = 0. The right
column shows the results from an optimization fit to the PySR function. For numerical
reasons all results describe t(xp, xη)× 10.
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Figure 4: Score as a function of pT for the polynomial fits and the PySR output, including
the optimization fit, for the simplified ZH setup with fB = 0, corresponding to Tab. 2.

of degrees two to four in xη and xp. The fits minimized the MSE for all 500k phase space
points. For the fits as well as for the optimizations of PySR results described below we use
the python package lmfit [48] for non-linear optimization and curve fitting which is based
on scipy.optimize [49]. In Tab. 2 we see that the increased expressivity of the higher
polynomial leads to a slight improvement in the MSE value. From the prefactors we get
a rough idea what the leading dependences are. According to the upper row of Fig. 4 the
second-order polynomial describes most of the data well. The quadratic form, with four
prefactors of similar size and a much smaller constant and x2η term, is necessary to add the
scattered points with large score at intermediate pT -values and large |η−|. This pattern
reflects the fact that the score function for our toy model at fB = 0, shown approximately
in Eq.(22), is easy to model.

PySR with the settings described in Sec. 2.3 with 10 populations and the maximal
complexity of 50 gives us a hall of fame with the most prominent formulas listed in Tab. 3.
The complexity refers to the original PySR tree and can often be smaller when we simplify
the equation by hand. The great advantage of PySR is that given such a hall of fame we
can choose a result that fits our needs best in terms of balancing complexity versus MSE.
The last expression with complexity 49 corresponds to the PySR result given in Tab. 2.
It includes powers up to p2T |η−|3, but leaves out some of the terms, notably p3T and p4T ,
which are also missing from Eq.(22). Instead, PySR introduces correlations between pT
and η− to model their dependence. Overall, we see that while having less free parameters
it gives better results than the polynomial of degree four.

An algorithmic weakness of PySR is that it never properly fits its functional form
to the data set. Because larger data sets pose an increasing challenge to PySR we only
use 800 of our originally 500k data points, distributed appropriately. For both reasons,
we add an optimization fit for all parameters in the HoF functions using the whole data
set. The shift in the parameters is indicated in the right column of Tab. 2, where the
individual parameters change by up to a factor 2, and the error bar of the fit indicates
that the original PySR choice it outside the fit uncertainty. The modest improvement in
the description of the score as a function of pT is illustrated in Fig. 4. The results given
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cmpl dof function MSE

7 1 axp(xp + xη) 3.81 · 10−2

10 3 ax2p(b+ xη)− c 2.49 · 10−3

14 3 ax2p + bx2px
2
η − c 6.64 · 10−4

22 4 ax2p + bx2px
2
η − cxpxη − d 3.09 · 10−4

32 6 a(x2p + xη) + bx2pxη − (cxp − d)2 + ex2px
3
η − f 2.06 · 10−4

34 7 a(x2p + xη) + bx2pxη − (cxp − d)2 + ex3η(xp − f)2 − g 7.77 · 10−5

49 9 ax2p + bx2pxη − cxη(xp − d) + ex3η(xp − f)2 + gx2px
2
η − hxp − i 7.65 · 10−5

Table 3: Score hall of fame for simplified ZH setup with fB = 0. The last formula
corresponds to the PySR result shown in Tab. 2. For numerical reasons all results describe
t(xp, xη)× 10.

in Tab. 3 are also optimized.

Rational function for fB = 10

Moving on to a more challenging PySR task, we know from Tab. 1 and Fig. 3 that a
simple polynomial form is unlikely to describe the score away from the Standard Model,
for instance at fB = 10. To enable PySR to describe this score, we also allow for the
division operator, so the score can be described by a rational function. The maximum
complexity is now 75.

The initial PySR output we chose from the hall of fame is the function

t(xp, xη|fB = 10) = axp − b+
c(xη + d)

e+
f

xp

(
(xp − g)4 + h

)(
i (xη − j)2 + k

) , (24)

again with xp = pT /mH and xη = |η−|. In Tab. 4 we see that with this formula PySR
initially finds stable results, but a proper fit converges on some very large parameters with

PySR default PySR optimized
Eq.(24) Eq.(25) Eq.(27)

MSE 8.85 · 10−4 7.52 · 10−5 7.38 · 10−5 5.42 · 10−5

a 0.2201 0.02318(20) 0.01534(20) 0.00805(17)
b 0.2427 0.169067(79) 0.166262(71) 0.166229(67)
c(′) 0.0249 6.2(10) 0.09973(32) 0.06691(36)
d(′) 0.7070 13.667(54) 1.5949(23) 1.712(22)
e 0.1405 56.6(96) - -
f (′) 0.7046 374(42) 2.680(21) 1.928(18)
g 0.2855 -13.834(86) 18.56(14) 23.54(20)
h(′) 0.1270 -3.945(96)·104 7.97(23)·10−6 1.206(33)·10−5

i(′) 0.5750 2.05(30)·10−5 0.42702(54) 0.05091(78)
j 0.3189 0.336749(58) 0.32375(55) -0.5942(55)
k 0.1192 4.61(67)·10−5 - -
y fixed 2 fixed 2 fixed 2 3.3771(78)
z fixed 4 fixed 4 fixed 4 3.5724(43)

Table 4: Rational score parametrizations for the simplified ZH setup with fB = 10. We
show parameters from PySR, from an additional fit to the PySR function, and from a fit
including exponents. For numerical reasons all results describe t(xp, xη)× 10.
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Figure 5: Score as a function of pT and η− for the rational PySR output for the simplified
ZH setup with fB = 10, corresponding to Tab. 4.

large error bars, specifically c, e and f . This reflects flat directions in Eq.(24), which we
can remove by re-defining

t(xp, xη|fB = 10) = axp − b+
c′xη + d′

1 +
f ′

xp

(
h′ (xp + g)4 − 1

)(
i′ (xη − j)2 + 1

) , (25)

with

c′ =
c

e
d′ =

cd

e
f ′ =

f

ehk
h′ =

1

h
i′ =

i

k
. (26)

This way we remove two parameters, e and k. We see in the third column of Tab. 4 that
now all parameters come with controlled uncertainties.

Finally, we can check if the two exponents in the function are what they should be.
The final function we can fit to our data set is then

t(xp, xη|fB = 10) = axp − b+
c′xη + d′

1 +
f ′

xp (h′|xp + g|z − 1) (i′|xη − j|y + 1)

. (27)

According to the right column of Tab. 4, this leads to a sizeable shift in one of the
exponents, z = 2 → 3.37. On the other hand, from the very slight improvement in the
MSE we see that already the original function was expressive enough to describe the
majority of data points.

In Fig. 5 we show the dependence of the rational score functions on the two kinematic
observables. Here we see that the post-processing is necessary to describe the high-pT
range, as well as the |η−|-dependent upper limit. Given that in an actual analysis we
rely on parameter points with large score to measure fB, such a difference might become
numerically relevant. We will come back to the relation between MSE and analysis reach
in Sec. 4.4.
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Including photon for fB = 10

In our next step we add the s-channel photon to the process and study how an increased
complexity helps describing the score for fB = 10. It turns out that the default setup
of PySR does not find a good high-complexity function for this case, because the algo-
rithm gets stuck at complexities around 30. The reason for this problem is the mutation
probability Eq.(12), which for small parsimony reads

p = exp

(
− MSEnew − MSEold

alpha · T · baseline

)
. (28)

The baseline is an order-one constant. This form causes a problem if the old function is
a poor fit, and the new function has an improved shape, but an even worse MSE for its
initial parameters. In that case the absolute scale of the MSE values always leads to a
vanishing mutation probability, and Eq.(12) or Eq.(28) do not accept enough more complex
functions to leave the local minimum. Shifting alpha to very large values helps, but leads
to problems when the typical MSE become small. For data that is easy to describe, as
our previously considered cases, this problem was compensated by a very large number of
mutation attempts, but after including the photon this compensation fails.

Once we understand the problem, it is easy to fix with a new mutation probability,

p = exp

(
− MSEnew − MSEold

alpha · T · MSEold

)
. (29)

In the following we use this relative difference with alpha = 100.
For two s-channel diagrams and fB = 10 we show a selection of the HoF functions in

Tab. 5. As expected, PySR produces results with larger complexities, driven by an MSE
improvement by two orders of magnitude. We illustrate the improved MSE with increased
complexity in the left panel of Fig. 6. After removing flat directions, the best-suited
rational function in the HoF retains 11 parameters and reads

t(xp, xη|fB = 10) =
xp − a

bx3p +

cxp −
d

xp

(
xη + e−

f

(xp − g)2(xp + x2η) + h

)
xp + ix2η(xp + j)

+ 1

− k . (30)

cmpl dof function MSE

16 5 ax+ by − c(d− ex)2 1.57 · 10−2

22 6 ax+ by − c(d− ex)2 + f/x 9.46 · 10−3

30 8 (ax− b)/(cx3 + d+ e(x− y + f + g/x)/x)− h 3.82 · 10−3

42 9 (ax− b)/(cx3 + d+ e(x+ f − (gy − h/x2)/x)/(x+ y/x))− i 1.22 · 10−3

45 8 (x− a)/(bx3 + c+ d(x+ e− f(y − g/x2(x+ y))/x)/(x+ y2/x))− h 7.96 · 10−4

47 10 (x− a)/(bx3 + c+ d(x+ e− f(y − g/(hx2(x+ y) + i))/x)/(x+ y2/x))− j 6.71 · 10−4

50 10
(x− a)/(bx3 + c+ d(x+ e− f(y − g/(hx2(x+ y2 − y) + i))/x)

6.03 · 10−4
/(x+ y2/x))− j

63 13
(ax− b)/(cx3 + d+ e(x+ f − g(hx2 + y + i− j

5.64 · 10−4
/(kx2(x+ (y − l)2 − y) +m))/x)/(x+ y2/x))− n

73 14
(ax− b)/(cx3 + d(x− e(fx2 + y + g − h/(i(j − x)2(x+ y2) + k))/x)

1.45 · 10−4
/(x+ ly(mxy + y)) + n)− o

Table 5: Score hall of fame for the simplified ZH setup with fB = 10 and s-channel photon
and Z. For numerical reasons all results describe t(xp, xη)× 10.
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Figure 6: MSE and score for the simplified ZH setup with fB = 10 and s-channel photon
and Z. The functional forms correspond to Tab. 5. MSE given for t(xp, xη)× 10.

In spite of the large complexity, this function does still not describe the score perfectly.
In the center and right panels of Fig. 6 we see that points close to the upper score limit
and points at large pT still show deviations from the training data.

3.3 Two quark flavors

Finally, we need to include different incoming quark flavors for

pp→ ZH , (31)

as an example for an unobserved or unphysical parameter in the joint score in Eq.(6),
which we remove to arrive at the physical score or optimal observable.

Results for fB = 0

In Tab. 6 we show a set of function from the HoF with their corresponding MSE for the
Standard Model parameter choice fB = 0. We remind ourselves that in this case the
functional form will most likely be described by a simple polynomial in xp = pT /mH and
xη = |η−|. Increasing the complexity from 7 to 29, or the number of degrees of freedom
from one to eight has a surprisingly mild effect on the MSE. We can understand the reason
when looking at the kinematic distribution of the score in Fig. 7. In the left panel we see
that integrating out the discrete quark flavor leads to two distinct branches in the score, an
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Figure 7: Sliced kinematic distributions for the joint score in the complete ZH setup with
fB = 0, showing the HoF given in Tab. 6.
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cmpl dof function MSE

7 1 axp(xp + xη) a = 0.0375 6.51 · 10−3

9 2 ax2p(xη + b) a = 0.0203 ab = 0.0406 4.35 · 10−3

11 2 ax2p(x
2
η + b) a = 0.0111 ab = 0.0462 4.32 · 10−3

13 3 ax2p + bxpx
2
η − c a = 0.0648 b = 0.0088 c = 0.0625 1.96 · 10−3

17 4 ax2p + bxpx
2
η − cxη − d 1.84 · 10−3

19 4 ax2p + bxpx
2
η − cxp − dxη 1.74 · 10−3

21 5 ax2p + bxpx
2
η − cxp − dxη + e 1.72 · 10−3

27 6 ax2p + bxpx
2
η − cxpxη − dxp + exη + f 1.63 · 10−3

28 7 ax2p(bxη − c)2 + dxpx
2
η + ex2p − fxp − gxη 1.43 · 10−3

29 8 ax2p + b(x2η + c)(xη(dxp − e)(xp − f) + xp + g)− h 1.29 · 10−3

Table 6: Score hall of fame for the complete ZH setup with fB = 0. For numerical reasons
all results describe t(xp, xη)× 10.

upper branch for incoming d-quarks and a lower branch for incoming u-quarks. Because
the information is unphysical, an implicit or explicit form for the score will interpolate
between them and define a single curve in the middle with an MSE well above the case
without unphysical parameters shown in Tab. 2.

The simplest expression of complexity seven consists of a squared term in pT and a
linear correlation of pT and |η−|. It describes the data for small pT but undershoots for
larger values. More importantly, its |η−|-dependence is simply too flat. Nevertheless,
already this simple form describes most of the data points at low pT and central |η−|.
Switching to a squared correlation term with complexity 11 leads to a slight improvement
in the η− distribution for low pT , but still does not give the correct shape at large pT .
Interestingly, another slight complexity increase to 13 improves the description at large
pT , but worsens it at large η−, indicating a tension for a limited number of parameters.

Eventually, moving towards an appropriate complexity we see that PySR starts adding
linear terms in pT and |η−|, which slightly improves the MSE in the bulk of central events
with small pT , but still does not fit the data points with large scores. This situation changes
for complexity with terms proportional to p3T and |η−|3, including a more complex set of
correlations between them. This is consistent with the results for our toy model in Tab. 2,
and we find that adding more complexity does not improve the MSE further.

Results for fB = 10

Finally, we can see what kind of rational function PySR constructs for the full ZH
process with fB = 10. In Tab. 7 we see that the simplest solution at complexity 10
already uses three parameters, and Fig. 8 confirms that it is does not provide a good
interpolation between the two branches. With increasing complexity, all formulas up to
complexity 45 only include a linear pT -term in the numerator and therefore fail to describe
the intermediate pT -range and the saturation above. Note that for high complexity the
denominator includes powers up to p6T to describe the rapid saturation. At the same time,
a p3T -term in the numerator allows the function to describe the low- and intermediate-pT
range well. As for fB = 0, adding more complexity does not improve the MSE, which
is now limited by the interpolation between the two branches. The slight over-shoot for
large |η−| affects a too small fraction of parameter points to make a difference.

Our extensive discussion of the simple ZH production process shows that PySR can
extract useful analytic expressions for the score or the optimal observable. This can be
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cmpl dof function MSE

10 3 axp + bx3η − c a = 0.3487 b = 0.0043 c = 0.3492 1.61 · 10−2

16 4 axp − b/(cx4pxη + d) a = 0.3032 b = 0.0960 c = 0.0213 d = 0.3033 1.26 · 10−2

20 4 axp − b/(cx5pxη + d) a = 0.2860 b = 0.0942 c = 0.0117 d = 0.3005 1.21 · 10−2

23 5 axp + bx3η − c/(dx4pxη + e) 1.19 · 10−2

25 7 axp + bx3η + cxη − d/(ex4p(xη + f) + g) 1.14 · 10−2

45 12 axp + bxη − c(xp − d)3 + e− f/(gx3px3η − xη(hxp + i) + j(xp + k)6 + l) 4.65 · 10−3

51 13 axp + bxη − c(xp − d)3 + e− f/(gx3px3η − xη(h+ i) + j(xp + k)6 + l +m/xp) 4.65 · 10−3

Table 7: Score hall of fame for the complete ZH setup with fB = 10. For numerical
reasons all results describe t(xp, xη)× 10.

simple polynomials — which could also be extracted through a simple fit — or ratio-
nal functions, for which a general parametrization would lead to a very large number of
parameters. For the case without unphysical parameters we can improve the MSE with
increasing complexity, while for the case of two incoming quark flavors we see that the
achievable MSE is limited, and adding complexity to the score stops improving the re-
sult. For the two questions, namely if PySR finds the correct score or optimal observable
and how the PySR result performs in setting limits in an LHC analysis we turn to the
better-understood example of CP -violation in weak boson Higgs production.

4 WBF Higgs production and CP

Going beyond our simple toy scenario, we can apply the same methodology to the more
complex WBF Higgs production process and the fundamentally interesting question of
CP -violation in the V V H interaction. For this case we know the form of the optimal
observable at parton level and close to the Standard Model, so we can check if PySR
extracts the correct score, what changes when we include detector effects, and what kind
of reach we can expect from different functional forms.
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Figure 8: Sliced kinematic distributions for the complete ZH setup with fB = 10, showing
the HoF given in Tab. 7.
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4.1 Score for fWW̃

Testing the properties of the V V H vertex in WBF Higgs production

pp→ Hjj with |M|2 ∝ α2 (32)

is equivalent to corresponding analyses of V H production and H → V V decays, with
the advantage that we do not have to rely on a precise reconstruction of the Higgs decay
products [21, 50]. We also know that the signed azimuthal angle between the tagging
jets ∆φ [21, 29, 30] is the appropriate genuine CP -odd observable. To define an optimal
observable we choose the specific CP -violating operator

L = LSM +
f
WW̃

Λ2
O
WW̃

with O
WW̃

= −(φ†φ) W̃ k
µνW

µνk . (33)

For our numerical results we quote f
WW̃

-values for Λ = 1 TeV. In Fig. 9 we show the effect
of this additional operator on the WBF kinematics. First, ∆φ develops an asymmetric
form, which can most easily be exploited through an asymmetry measurement. Second, the
higher-dimensional operator O

WW̃
with its additional momentum dependence induces a

harder tagging jet spectrum, an effect which it shares with many other higher-dimensional
operator, and which is not related to CP -violation. On the other hand, there exist no
dimension-4 operators leading to CP violation in the V V H interaction, so when we search
for the leading effect from O

WW̃
this momentum dependence will enhance the LHC reach.

For the leading partonic contribution from WW -fusion,

ud→ Hdu , (34)

with the standard tagging jet cuts |ηj | < 5, |∆ηjj | > 2, and pT,j > 20 GeV we can
compute the score contribution given in Eq.(18) for the Standard Model point f

WW̃
= 0

and find [21]

t(x|f
WW̃

= 0) ≈ − 8v2

m2
W

(kdku) + (pupd)

(pdpu)(kukd)
εµνρσ k

µ
dk

ν
up
ρ
dp
σ
u , (35)

where ku,d are the incoming and pu,d the outgoing quark momenta. We can relate this
form to ∆φ when we assign the incoming momenta to a positive and negative hemisphere,
k± = (E±, 0, 0,±E±) and correspondingly for the outgoing momenta p±. We then find

t(x|f
WW̃

= 0) ≈ − 8v2

m2
W

2E+E− + (p+p−)

(p+p−)
pT+pT− sin ∆φ , (36)

with the known dependence t ∝ sin ∆φ. The momentum-dependent prefactor reflects the
dimension-6 structure with an approximate scaling t ∝ pT+pT−.
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Figure 9: Kinematic distributions for WBF Higgs production at parton level with different
Wilson coefficients f

WW̃
. Here, ∆φ denotes the signed azimuthal angle between the two

tagging jets, pT,1 refers to the leading tagging jet, and ∆η = |∆ηjj |.
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Figure 10: Score for simplified WBF Higgs production at parton level and with f
WW̃

= 0.

4.2 Symbolic regression at parton level

As before, we first use symbolic regression on the simplified partonic process

ud→ Hjj , (37)

without shower or detector effects. For this setup we will extract the score for the Standard
Model parameter point f

WW̃
= 0 and for f

WW̃
= 1. In Fig. 9 we see that for f

WW̃
= 0

the ∆φ distribution is symmetric, while for f
WW̃

= 1 it roughly follows a sine shape. The
pT,j-distribution indicates that for the two choices of reference point, the score formula
will chance its momentum dependence.

Results for f
WW̃

= 0

For small deviations from the CP -conserving Standard Model we show the score distribu-
tions in Fig. 10. Comparing the different kinematic observables, the leading dependence is
clearly on ∆φ. Switching on f

WW̃
> 0 moves events from ∆φ > 0 to ∆φ < 0, as expected

from Fig. 9. The actual shape of t(∆φ|f
WW̃

) confirms the sin ∆φ scaling of Eq.(36).
The dependence on pT,1 indicates large absolute values of the score for harder events,
which will boost the analysis when correlated with ∆φ. The dependence on ∆η = |∆ηjj |
is comparably mild, so we expect PySR to only add the tagging jet rapidities at high
complexity.

To encode the score dependence of Fig. 10 we use PySR on the observables

{ xp,1, xp,2, ∆φ, ∆η } with xp,j =
pT,j
mH

, (38)

compl dof function MSE

3 1 a∆φ 1.30 · 10−1

4 1 sin(a∆φ) 2.75 · 10−1

5 1 a∆φxp,1 9.93 · 10−2

6 1 −xp,1 sin(∆φ+ a) 1.90 · 10−1

7 1 (−xp,1 − a) sin(sin(∆φ)) 5.63 · 10−2

8 1 (a− xp,1)xp,2 sin(∆φ) 1.61 · 10−2

14 2 xp,1(a∆φ− sin(sin(∆φ)))(xp,2 + b) 1.44 · 10−2

15 3 −(xp,2(a∆η2 + xp,1) + b) sin(∆φ+ c) 1.30 · 10−2

16 4 −xp,1(a− b∆η)(xp,2 + c) sin(∆φ+ d) 8.50 · 10−3

28 7
(xp,2 + a)(bxp,1(c−∆φ)

8.18 · 10−3−xp,1(d∆η + exp,2 + f) sin(∆φ+ g))
5 10 15 20 25 30

complexity

10 2

10 1

M
SE

Table 8: Score hall of fame for simplified WBF Higgs production with f
WW̃

= 0, including
a optimization fit.
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Figure 11: Score for simplified WBF Higgs production at parton level and with f
WW̃

= 1.
The functional form for the right panel with complexity 31 is given in Tab. 9.

using the usual summing, subtraction, and multiplication operators and now adding the
sine operator. We use the same PySR settings as in Sec. 2.3, except for maxsize=30
and alpha=1.5. In Tab. 8 we show the results, alongside the improvement in the MSE.
Starting with the leading dependence on ∆φ, PySR needs complexity 8 with one free
parameter to derive t ≈ pT,1pT,2 sin ∆φ. At this point it turns out that adding ∆η to the
functional form still leads to a significant improvement with a 4-parameter description of
complexity 16, namely

t(xp,1, xp,2,∆φ,∆η|fWW̃
= 0) = −xp,1 (xp,2 + c) (a− b∆η) sin(∆φ+ d)

with a = 1.086(11) b = 0.10241(19) c = 0.24165(20) d = 0.00662(32) . (39)

The numbers in parentheses give the uncertainty from the optimization fit. Even though d
is significantly different from zero, it is sufficiently small that we can to first approximation
neglect it and confirm the scaling t ∝ sin ∆φ. Similarly, the dependence on the rapidity
difference ∆η is suppressed by b/a ∼ 0.1. Beyond this point we do not find a significant
improvement in the MSE relative to the true score.

Results for f
WW̃

= 1

From previous cases we expect that moving away from the Standard Model will lead to a
more complex score formula than Eq.(36). In Fig. 11 we show the score as a function of
kinematic observables for f

WW̃
= 1. Comparing this ∆φ-dependence to Fig. 10 confirms

that the simple scaling with sin ∆φ has indeed vanished. Instead, we observe an upper
limit t < 2 for negative ∆φ, which according to Tab. 1 reflects the dominance of the
positive, quadratic term with a scaling t ∼ 2/f

WW̃
. The also positive contribution from

the interference term remains numerically subleading.
For positive ∆φ we observe a more complex pattern from the interplay of linear and

quadratic contributions. The interference term still follows an anti-symmetric sin ∆φ
shape and contributes negative scores for positive ∆φ. We can split the events into three
phase space regions: interference-dominated with t < 0, quadratic-dominated with t =
0 ... 2/f

WW̃
, and again interference-dominated with t > 2/f

WW̃
. These regions can

be separated through their pT -dependence, shown in the center panels of Fig. 11. For
small transverse momenta the interference with the dimension-6 contribution gives mostly
negative scores, followed by an intermediate regime with a broad range of score values,
until for large transverse momenta that score is concentrated at the limit t = 2/f

WW̃
= 2

from the quadratic contribution.
After confirming that turning the more complex phase space dependence for f

WW̃
= 1
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into a formula will be challenging, we change the parameter basis to{
xp,× =

√
pT,1pT,2

mH
, sφ = sin ∆φ, ∆η

}
. (40)

and allow for summing, subtraction, multiplication, and division operators. Adding a
second pT -parameter like pT,1 + pT,2 does not lead to a significant improvement. The
corresponding HoF is shown in Tab. 9. First, we see that the MSE we can achieve is
almost one order of magnitude worse than for f

WW̃
= 0. The 7-parameter form generated

with complexity 31 can be written as the rational function

t(xp,×, sφ,∆η|fWW̃
= 1) =

a′xp,×(e′s2φxp,× − sφ∆η − f ′)
(b′xp,× + sφ − g′)(e′s2φxp,× − sφ∆η − f ′)− c′s2φ − d′

with a′ = 0.75 b′ = 0.38 c′ = 4.2 d′ = 4.6 e′ = 1.1 f ′ = 0.26 g′ = 0.21 . (41)

As for the ZH case with fB = 10 the functional form is not particularly enlightening,
aside from the fact that the rational form can generate the observed cutoff t < 2/θ for
large Wilson coefficients and that it has nothing to do with the simple scaling t ∝ sφ for
f
WW̃

= 0.

4.3 Detector effects

Given that all our results have been derived at parton level, the obvious question is what
impact a detector simulation will have on our analytic expressions for the optimal ob-
servables. In this section we will use the same process, WBF Higgs production, but add
parton shower and fast detector simulation with Delphes [41] using the default CMS
card including the anti-kt jet algorithm [51] implemented in FastJet [52]. To avoid the
additional complication of having to select the two forward jets, we do not allow for initial
state radiation and postpone all question concerning final states with a flexible number
of particles to a more detailed study. After including detector effects, MadMiner still
extracts the joint score from parton level observables while for the fitting process we are
limited to the final-state observables.

In general, detector effects will mostly add noise to the data, which we find to affect
the PySR convergence. For f

WW̃
= 0 we still find the same kind of expressions as without

detector effects, for instance the 4-parameter expression given in Eq.(39). To estimate the
detector effects on the actual output, it is most useful to compare expressions after the
optimization fit of the PySR output. In the left part of Tab. 10 we compare the two sets
of coefficients. The main aspects from the previous discussions still hold, d � 1 ensures
t ∝ sin ∆φ also after detector effects, and b/a � 1 limits the impact of the rapidity
observable. The shift in the best values for the four parameters is statistically significant,
but in practice most likely negligible.

cmpl dof function MSE

3 1 axp,× 0.124
12 2 axp,×/(xp,×/∆η + ∆η + b) 0.116
15 2 (sφ + a)(−sφ + xp,× − b)/(−sφ + xp,× + ∆η/xp,×) 0.054
26 4 a/(b− (sφ − c− d/(s2φ − sφ∆η − sφ/xp,× + ex2p,×))/xp,×) 0.048

31 7 a/(b− (sφ + (cs2φ − d)/(es2φx
2
p,× − sφ∆η + f)− g)/xp,×) 0.039

Table 9: Score hall of fame for WBF Higgs production with f
WW̃

= 1.
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For the more complex case of f
WW̃

= 1, where we do not have a closed form for
the theory description, the detector effects on the PySR convergence are more severe.
However, as long as the detector effects do not change the final state particles we can again
fit the parton-level formula of Eq.(41) to the detector-level score given by MadMiner. In
the right part of Tab. 10 we confirm the picture for f

WW̃
. While the individual coefficients

change in a statistically significant manner, the general picture is unchanged. In practice,
these results imply that once we have an established and understood PySR result for
scores at the parton level, we can relatively easily re-optimize them for the detector level.

4.4 Exclusion limits

Throughout our derivation and discussion of symbolic regression approximating the score
as a function of phase space we always use the MSE defined in Eq.(9) as our figure of merit.
This value indeed measures how well the analytic formulas approximate the numerically
defined score distribution, but it is not clear how it is related to the performance of this
score formula in an actual analysis. The reason is that the relevant phase space regions
for an analysis are not necessarily the phase space regions contributing to the MSE. Quite
the opposite, we generally expect tails of kinematic distributions to dominate SMEFT
analyses, while not giving large contributions to the global MSE value.

To benchmark the performance of different (optimal) observables we compute the
log-likelihood distribution and extract the p-value for an assumed f

WW̃
= 0 including

detector effects and for an integrated LHC luminosity of 139 fb−1. We start with the
analytic functions

a1pT,1pT,2 a2 sin ∆φ a3pT,1pT,2 sin ∆φ , (42)

with a1 = −8.32(89) · 10−7, a2 = −0.37370(94), and a3 = −5.5386(49) · 10−5 and compare

f
WW̃

= 0 parton level detector pull
Eq.(39)

a 1.086(11) 0.9264(20) 14.5
b 0.10241(19) 0.08387(35) 97.6
c 0.24165(84) 0.3542(20) 134.0
d 0.00662(32) 0.00911(67) 7.75

MSE 8.50 · 10−3 1.51 · 10−2

f
WW̃

= 1 parton level detector pull
Eq.(41)

a′ 0.7490(14) 0.8792(31) 93.0
b′ 0.37800(94) 0.4160(19) 40.4
c′ 4.218(18) 3.526(31) 38.4
d′ 4.598(18) 4.759(32) 8.9
e′ 1.1271(26) 1.0950(48) 1.2
f ′ -0.2638(49) -0.2325(68) 6.4
g′ 0.2063(19) 0.2057(34) 0.3

MSE 3.89 · 10−2 4.15 · 10−2

Table 10: Detector effect on the scores for WBF Higgs production, for fixed functional
forms derived at parton level.

(optimal) MSE reach
observable all |t(f

WW̃
)| = 0.1 ... 0.5 |t(f

WW̃
)| > 0.5 weighted 1 σ 2 σ

apT1pT2 0.1576 0.0645 1.144 0.298 [-0.86,0.86] —
a∆ sinφ 0.0885 0.0163 0.680 0.223 [-0.38,0.36] [-0.76,0.74]
a∆ sinφpT1pT2 0.0217 0.0076 0.163 0.056 [-0.28,0.28] [-0.56,0.56]
SR Eq.(39) 0.0145 0.0059 0.103 0.031 [-0.26,0.26] [-0.54,0.54]
Sally 0.0129 0.0051 0.092 0.030 [-0.26,0.26] [-0.56,0.54]
Sally full 0.0048 0.0031 0.026 0.014 [-0.26,0.26] [-0.54,0.54]

Table 11: MSE and exclusion limits for different approximations of the score or candidate
optimal observable. The different scenarios correspond to Fig. 12.

21



SciPost Physics Submission

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
fWW

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

ct
ed

 p
-v

al
ue apT1pT2

asin

asin pT1pT2

SR
Sally
Sally full

CPV in WBF

1

2

Figure 12: Projected exclusion limits assuming f
WW̃

= 0 for different (optimal) observ-
ables. The Sally network uses pT1 , pT2 , ∆φ and ∆η, Sally full uses 18 kinematic variables.

the results to the reach of the complete SR expression of Eq.(39). Finally, we compare
these results to the Sally method using the four PySR observables in Eq.(38), and using
the full set of 18 observables. The exclusion limits are shown in Fig. 12 and in Tab. 11.
First, we confirm that for all score approximations the likelihood follows a Gaussian shape.
Second, we find that beyond the minimal reasonable form apT1pT2 sin ∆φ there is only very
little improvement in the expected LHC reach.

The plateau we observe in the expected exclusion limits indicates that an improved
description of the score over all of phase space does not automatically result in an improved
reach. Events with high scores in kinematic tails are rare and therefore contribute little
to the global MSE value, but they are crucial for the actual measurement. In contrast,
events with low scores in the kinematic bulk dominate the MSE, but hardly affect our
specific SMEFT measurement of f

WW̃
. This means that the MSE is an orthogonal and

typically more sensitive figure of merit for our symbolic regression task. To understand
the different behaviors of the expected limit and the MSE we divide phase space into
different score regions and compute the score for all events, events with intermediate score
values |t(f

WW̃
)| = 0.1 ... 0.5, and event with large score |t(f

WW̃
)| > 1 in Tab. 11. We also

compute a score-weighted MSE as

MSEweighted =
1

n

n∑
i=1

gi(x) (gi(x)− ti(x, z|θ))2 (43)

The correlation between the MSE and the different scores are illustrated in Fig. 13.
All MSE definitions share the common feature that a strong MSE–score correlation for
the simple approximate formulas becomes flat when we reach the simplified formula
t ∝ pT1pT2 sin ∆φ and the closed formula from PySR. While we observe a slight im-
provement in all MSE definitions by going to the full, numerically defined Sally network,
this improvement appears to have no impact on a possible analysis.
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Figure 13: Scaling of the expected exclusion limits with the MSE for the four MSE eval-
uations defined in Tab. 11.

5 Outlook

Modern machine learning opens extremely promising new avenues in experimental and the-
oretical particle physics, but has the disadvantage of only providing numerical functions.
Traditionally, theoretical and experimental particle physics work with approximate formu-
las provided by perturbation series in quantum field theory. Symbolic regression combines
the benefits of machine learning and analytic formulas by learning complex functions from
low-level or high-dimensional data and expressing them analytically.

In this first application of symbolic regression to LHC simulations (see also Ref. [53])
we use a genetic algorithm implemented in PySR [28] to extract optimal observables or the
score as an analytic function of phase space observables. The input to the PySR training is
the matrix element used for standard LHC simulations. Our theory parameters of interest
are individual SMEFT Wilson coefficients. First, we study the coefficient fB in a toy setup
of ZH production and extract a simple polynomial for the score around the SM value
fB = 0. For larger values of fB = 10/TeV2 the task becomes more challenging because of
saturation effects, so PySR resorts to rational functions. For the ZH production example
we illustrate how the score is computed from the joint score, including multiple topologies
and unobservable parameters like the flavor of the incoming quarks.

For the theoretically more interesting case of CP -violation through the Wilson coeffi-
cient f

WW̃
we compute the optimal observable or score for WBF Higgs production. For

small Wilson coefficients our PySR-based DeepDieter tool finds a compact formula for
the optimal observable, including the sine-dependence on the azimuthal angle between the
tagging jets and a momentum-dependent pre-factor, pT,1pT,2 sin(∆φ). To the best of our
knowledge, this is the first LHC-physics formula derived using modern machine learning∗.

∗We acknowledge that this formula was known before in expert circles.
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Again, the regression task becomes significantly more complicated for large Wilson coef-
ficients. For the WBF case we show how it is possible to include detector effects. Finally,
we estimate the LHC reach for a a range of different PySR formulas and for the neural
networks provided by MadMiner and find that simple PySR formulas can be used in
experiment without any loss in performance.

While not all neural networks used at the LHC can and should be replaced by learned
formulas, in many instances such formulas will help us understand numerical results and
relate them to perturbative theory predictions. Here, symbolic regression as part of our
machine learning strategy will strengthen the defining link between fundamental theory
and complex experimental analyses in particle physics.
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