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Many applications of fusion categories, particularly in physics, require the associators or F -
symbols to be known explicitly. Finding these matrices typically involves solving vast systems
of coupled polynomial equations in large numbers of variables. In this work, we present an algo-
rithm that allows associator data for some category with unknown associator to be computed from
a Morita equivalent category with known data. Given a module category over the latter, we utilize
the representation theory of a module tube category, built from the known data, to compute this
unknown associator data. When the input category is unitary, we discuss how to ensure the obtained
data is also unitary.

We provide several worked examples to illustrate this algorithm. In addition, we include several
Mathematica files showing how the algorithm can be used to compute the data for the Haagerup
category H1, whose data was previously unknown.

I. INTRODUCTION

To perform calculations within fusion categories that involve working in a specific basis, it is necessary that the
associators, also called the F -symbols, are known. In particular, they are a crucial ingredient in the construction of
physical models such as one- or two-dimensional lattice models [1, 2].

The F -symbols can be obtained by solving the pentagon equations (see, for example, Ref. [3]), which amounts to
solving a system of multivariate polynomial equations up to third order. The number of variables, and equations
they must satisfy, grows rapidly with the number of simple objects in the category, meaning that solving this problem
quickly becomes impractical. In fact, the growth in complexity is so rapid that few associators are known for fusion
categories with more than six simple objects. The challenge of finding F -symbols becomes even more significant
for categories with multiplicities, as the number of equations and variables grows even faster. To the best of our
knowledge, only a handful of examples of F -symbols are known where the category has multiplicity [4–7].
The problem of solving the pentagon equations is further complicated by gauge freedom in the solution. When

we refer to a solution of the pentagon equations, we are really referring to an equivalence class of solutions related
by gauge transformations. In the multiplicity free case, a typical approach to finding a set of F -symbols begins by
determining which F -symbols are necessarily zero. In this case, gauge freedom is simply a scale, so it can be used to
fix many of the F -symbols. When there is multiplicity, the gauge freedom corresponds to basis transformations on
nontrivial vector spaces, so gauge fixing is far more intricate.

Due to the challenge in obtaining a set of F -symbols, it is valuable to make full use of any solutions that can be
obtained. In this work, we exploit the Morita equivalence class of some fusion category C whose data are known, in
order to obtain the F -symbols of other categories in the class. In particular, one can use the fact that the category
C∗
M of endomorphisms of some module category M (over C) yields another category in the Morita equivalence class.

We show how tube category techniques can be used to extract the data of this category, expanding on the example
in Ref. [8].

The advantage of this method is that we never have to solve the pentagon equations of the complicated category.
As input, we can choose the simplest category in the Morita equivalence class (or any category in the equivalence
class whose F -symbols are already known) and only need to solve the pentagon equations for the module category. As
these equations are only of degree two, in contrast to degree three of the pentagon equations in the original category,
they are generally easier to solve. Furthermore, since the F -symbols from the input category are already gauge fixed,
the associators in the module category have less gauge freedom.

This method can be applied to any Morita equivalence class for which the data for a single category, and a module,
is known. As an illustration of the power, and use-case, of this technique, we apply it to the Morita equivalence class
of fusion categories coming from the Haagerup subfactor [9]. This class consists of three fusion categories, H1, H2,
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and H3. The categories H2 and H3 are multiplicity free and their F -symbols are known [10–13], while the F -symbols
for H1, which has multiplicities, have not yet been computed. This demonstrates the degree to which multiplicities
increase the difficulty of solving the pentagon equation: even though H1 has only rank 4 while H2 and H3 have rank
6, its F -symbols have not been obtained so far.
This paper is organized as follows: In Section II, we review fusion and module categories, and introduce notation

for the remainder of the manuscript. Additionally, we review the module tube category. Finally, we discuss unitary
structures on each type of category. In Section III, we introduce the algorithm that takes a fusion category and a
module category, and returns the categorical data for a Morita equivalent fusion category. We then illustrate the
algorithm for the simple example Vec(Z/2Z) ↷ Vec in Section IV. In Section V, we discuss the Haagerup fusion
categories. We illustrate the F -symbols we obtain for the category H1 using the algorithm discussed in this work. To
the best of our knowledge, this is the first time these data have been obtained. We conclude in Section VI.

In Appendix A, we briefly discuss the relationship between module functors and tube algebra representations.
We provide two additional worked examples, namely Vec(S3) ↷ Vec in Appendix B, and Rep(S3) ↷ Rep(S3) in
Appendix C. Accompanying this manuscript is a collection of Mathematica notebooks that implement the algorithm
described here, and include F -symbols for the Haagerup category H1. The code is available at Ref. [14].

II. PRELIMINARIES

Definition 1 (Skeletal fusion category). We sketch a definition of a skeletal fusion category suitable for our purposes.
For a more complete (rigorous) definition, we refer the mathematically inclined to Refs. [3 and 15], and the physically
inclined to Refs. [16 and 17].

A skeletal fusion category C consists of the following data:

• A finite set of simple objects Irr(C) = {1, a, b, . . .}, where |Irr(C)| is known as the rank of C.A finite set of simple
objects Irr(C) = {1, a1, a2, . . . , ar−1}, where r is known as the rank of C.

• For each triple of simple objects, non-negative integers N c
ab called fusion coefficients, obeying

Ny
1x = Ny

x1 = δx,y (unit)
∑
e∈Irr(C)N

e
abN

d
ec =

∑
f∈Irr(C)N

d
afN

f
bc (associativity)

For each x ∈ Irr(C), there is a unique x̄ ∈ Irr(C) such that N1
xy = N1

yx = δy,x̄. (duals)

• For each triple of simple objects, a C-vector space C(a⊗ b, c), called the fusion space, of dimension N c
ab.

• Associator isomorphisms ⊕e C(a⊗ b, e)⊗ C(e⊗ c, d) ∼= ⊕f C(a⊗ f, d)⊗ C(b⊗ c, f) obeying the pentagon axiom
(Eq. 2.2 of Ref. [3]).

If any of the fusion coefficients is larger than one, we say C has multiplicity.
It is convenient to specify a basis for all C(a⊗ b, c), and use a graphical notation commonly referred to as string

diagrams when discussing fusion categories. A basis vector in C(a⊗ b, c) is indicated by a trivalent vertex

α ∈ C(a⊗ b, c) ↔

c

a b

α , (1)

while more general vectors correspond to weighted sums of such vertices. Tensor products of vectors are indicated
using more complex diagrams, for example

α⊗ β ∈ C(a⊗ b, e)⊗ C(e⊗ c, d) ↔

a b c

d

eα
β . (2)
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With bases fixed, the associator isomorphisms are realized by a collection of invertible matrices

a b c

d

eα
β =

∑
f,µ,ν

[
F dabc

]
(α,e,β)(µ,f,ν)

cba

d

f
µ

ν , (3)

called the F -symbols. We adopt the convention that objects in Irr(C) are labeled by Roman letters, and basis vectors
by Greek letters. Correspondingly, sums over objects run over Irr(C), while sums over Greek indices run over a
complete basis of the appropriate vector space. In this framework, the pentagon equation constraining the F -symbols
is

∑

ζ

[
F efcd

]
(β,g,γ)(ρ,x,ζ)

[
F eabx

]
(α,f,ζ)(σ,y,τ)

=
∑

z,λ,µ,ν

[
F gabc

]
(α,f,β)(λ,z,µ)

[
F eazd

]
(µ,g,γ)(ν,y,τ)

[
F ybcd

]
(λ,z,ν)(ρ,x,σ)

. (4)

Changing basis on the C(a⊗ b, c) spaces leads to a gauge redundancy in the F -symbols, meaning that F and G
describe the same category, where

c

a b

α =
∑

β

[M c
ab]αβ

c

a b

β (5a)

[
Gdabc

]
(α,e,β)(µ,f,ν)

=
∑

γ,δ,σ,τ

[
F dabc

]
(γ,e,δ)(σ,f,τ)

[
(Me

ab)
−1
]
αγ

[
Md
af

]
τν

[
Mf
bc

]
σµ

[(
Md
ec

)−1
]
βδ

(5b)

where M is an invertible change-of-basis and • indicates the new trivalent basis.
Partial gauge fixing can be used to ensure that
[
F d1bc

]
(1,b,β)(µ,d,1)

= δβ,µ,
[
F da1c

]
(1,a,β)(1,c,ν)

= δβ,ν ,
[
F dab1

]
(α,d,1)(1,b,ν)

= δα,ν .
((((((((((([
F aaāa

]
(1,1,1)(1,1,1)

=
κa
da
, (6)

where κa = ±1, and da is the Frobenius-Perron dimension of a completely defined by

����da > 0
��������
dadb =

∑

c

N c
abdc.

For simplicity, we assume such a gauge is chosen for all following computations.

Unitary case

A particularly important class of fusion categories are called unitary. By choosing the bases appropriately, the
F -symbols of such a category can be transformed into unitary matrices. If there is a basis in which the F -symbol is
unitary as a matrix, the fusion category is called unitary. In the unitary case, we can additionally fix the gauge to
ensure that [

F aaāa

]
(1,1,1)(1,1,1)

=
κa
da
, (7)

where κa = ±1, and da is the Frobenius-Perron dimension of a completely defined by

da> 0 (8a)

dadb=
∑

c

N c
abdc. (8b)

A covector in the dual space to C(a⊗ b, c) is indicated via a ‘splitting’ vertex, with basis defined by

α ∈ C(c, a⊗ b) ↔
c

a b

α ,

c

e

a b
α

β
=
√

dadb
dc

δα,βδc,e

c

. (9)
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Re-association of covectors is also given by the F -symbols

a b c

d

eα

β
=
∑
f,µ,ν

[
F dabc

]
(α,e,β)(µ,f,ν)

cba

d

f
µ

ν , (10)

where ·�∗ is the complex conjugate.

Definition 2 (C-module category). We sketch a definition of a skeletal left C-module category suitable for our
purposes. For a more complete (rigorous) definition, we refer to Ref. [3].

Given a skeletal fusion category C, with specified bases for all fusion spaces, a skeletal C-module category M consists
of the following data:

• A finite set of simple objects Irr(M) = {m,n, . . .}
(((((((((((
Irr(M) = {m1, . . . ,mk}.

• For each pair of simple objects m,n ∈ Irr(M), and simple object a ∈ Irr(C), non-negative integers Nn
am called

fusion coefficients, obeying

Nn
1m = δm,n (unit)∑
e∈Irr(C)N

e
abN

n
em =

∑
p∈Irr(M)N

n
apN

p
bm (associativity)

• For each pair of simple objects m,n ∈ Irr(M), and simple object a ∈ Irr(C), a C-vector space M(a ▷ m, n) of
dimension Nn

am.

• Associator isomorphisms ⊕e C(a⊗ b, e)⊗M(e ▷ m, n) ∼= ⊕pM(a ▷ p, n)⊗M(b ▷ m, p) obeying the module pen-
tagon axiom (Eq. 7.2 of Ref. [3]).

If any of the fusion coefficients is larger than one, we say M has multiplicity.
Again, it is convenient to specify bases for all M(a ▷ m, n), and extend the string diagram notation. A basis vector

in M(a ▷ m, n) is indicated by a trivalent vertex

α ∈ M(a ▷ m, n) ↔
am

n

α , (11)

while more general vectors correspond to weighted sums of such vertices. Tensor products of vectors are indicated
using more complex diagrams, for example

α⊗ β ∈ C(a⊗ b, e)⊗M(e ▷ m, n) ↔

m

n

ba

e

α

β
. (12)

With bases fixed, the associator isomorphisms are realized by a collection of invertible matrices

m

n

ba

e

α

β
=
∑
p,µ,ν

[
Lnabm

]
(α,e,β)(µ,p,ν)

m

n

ba

µ

ν
p , (13)

called the L-symbols.
In this framework, the mixed pentagon equation constraining the L-symbols is

∑

ζ

[
Lnfcm

]
(β,g,γ)(ρ,p,ζ)

[
Lnabp

]
(α,f,ζ)(σ,q,τ)

=
∑

z,λ,µ,ν

[
F gabc

]
(α,f,β)(λ,z,µ)

[
Lnazm

]
(µ,g,γ)(ν,q,τ)

[
Lqbcm

]
(λ,z,ν)(ρ,p,σ)

, (14)
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where the F -symbol is that of the underlying fusion category C.
Changing basis on the M(a ▷ m, n) spaces (holding the bases in C fixed) leads to a gauge redundancy in the

L-symbols, meaning that L and L̃ describe the same category, where

am

n

α =
∑

β

[Mn
am]αβ

am

n

β (15a)

[
L̃nabm

]
(α,e,β)(µ,p,ν)

=
∑

δ,σ,τ

[
Lnabm

]
(α,e,δ)(σ,p,τ)

[
Mn
ap

]
τν
[Mp

bm]
σµ

[
(Mn

em)
−1
]
βδ
. (15b)

Partial gauge fixing can be used to ensure that

[
Ln1bm

]
(1,b,β)(µ,n,1)

= δβ,µ,
[
Lna1m

]
(1,a,β)(1,m,ν)

= δβ,ν . (16)

For simplicity, we assume such a gauge is chosen for all following computations.

Unitary case

If there is a basis in which the L-symbol is unitary as a matrix1, the module category is called unitary.
A covector in the dual space to C(a ▷ m, n) is indicated via a ‘splitting’ vertex, with basis defined by

α ∈ M(n, a ▷ m) ↔
am

n

α ,

m

n

a p

α

β

=
√

dadp
dn

δα,βδm,n

m

n

, (17)

where dm is the Frobenius-Perron dimension of m completely defined by

dm > 0 (18a)

dadm =
∑

n∈Irr(M)

Nn
amdn (18b)

∑

m∈Irr(M)

d2m =
∑

a∈Irr(C)
d2a. (18c)

Re-association of covectors is also given by the L-symbols

m

n

ba

e

α

β
=
∑
p,µ,ν

[
Lnabm

]
(α,e,β)(µ,p,ν)

m

n

ba

µ

ν
p , (19)

where ·�∗ is the complex conjugate.

For all following discussions, we assume that M is indecomposable as a C-module category , meaning M cannot
be decomposed as a direct sum of module categories. If we do not restrict M in this way, the result of the algorithm
we present will be multifusion. We refer to Ref. [3] for more details.

1 We also require this to be compatible with the pivotal/unitary structure on C.
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Definition 3 (Module tube category). Given a fusion category C, and a C-module category M, the module tube
category TubC(M) has as objects pairs

Ob(TubC(M)) = {(m,n) |m,n ∈ Ob(M)}. (20)

Given a pair of simple objects (m,n), (p, q), a basis for the morphism space TubC(M)((m,n), (p, q)) is given by the
set of diagrams

Λ :=





T[mn|pq]α,x,β :=

p

m
n

q

α

β

x

∣∣∣∣∣∣∣∣∣∣∣∣∣

x ∈ Irr(C), 1 ≤ α ≤ Np
xm, 1 ≤ β ≤ Nq

xn





. (21)

Composition of morphisms is evaluated using the re-association matrices F and L from the underlying categories

T[m′n′|p′q′]α′,x′,β′ ◦T[mn|pq]α,x,β =

p = m′

m
n

q = n′

xx′

p′

q′

α

β

α′

β′

(22a)

= δp,m′δq,n′

∑

y,ζ,σ,τ

√
dxdx′

dy

[(
Lq

′

x′xn

)−1]
(β,q,β′)(ζ,y,τ)

[(
L̃p

′

x′xm

)−1]
(α,p,α′)(ζ,y,σ)

T[mn|p′q′]σ,y,τ , (22b)

Where L̃ is the L-symbol for splitting vertices.
With this composition, the set of all morphisms forms an algebra closely related to Ocneanu’s tube algebra [18].

Since it will not cause confusion in the current context, we will refer to the algebra Eq. (21) as the tube algebra.
commonly called the tube algebra This algebra is associative due to the pentagon equation Eq. (14), and unital.
When the module M is irreducible, the tube algebra is semisimple [3, 19], and therefore isomorphic to a direct sum of
C-matrix algebras. This becomes important when computing representations of this algebra in the following sections.

Finally, we define a tensor product via diagrams

T[mn|pq]α,x,β ⊗T[m′n′|p′q′]α′,x′,β′ := δq,p′

x

x′

p

m
n
q = p′
m′
n′

q′

, (23)

which is acted on by tube diagramsT[p′q′|rs]σ,y,τ by acting on the ‘outside’ and reducing using the string manipulation
rules.

Given a fusion category C, and a finite, irreducible module category C ↷ M, we denote the category of C-module
endofunctors from M to itself by C∗

M [20–22]. This category has a natural tensor structure, given by functor com-
position. In Appendix A, we briefly recall this structure, and how tube algebra representations relate to these
endofunctors.

Definition 4 (Morita equivalence). Let C, D be fusion categories. We say that C and D are Morita equivalent if
there exists an irreducible C-module M such that C∗

M is equivalent to D. Notice that in this case, M is an irreducible
C–D module.
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Unitary case

When C and M are unitary, the tube algebra comes equipped with an induced ∗-structure, which exchanges the
inner and outer (source and target) circles in the diagram

T[mn|pq]∗α,x,β :=

m

p
q

n

α

β

x̄ =
∑

σ,τ

dx

√
dmdn
dpdq

[
Lmx̄xm

]
(1,1,1)(α,p,σ)

[
Lnx̄xn

]
(1,1,1)(β,q,τ)

T[pq|mn]σ,x̄,τ . (24)

Additionally, the algebra is equipped with a linear functional and associated inner product

ω(T[mn|pq]α,x,β) =δx,1dmdn (25a)
〈
T[m′n′|p′q′]α′,x′,β′ ,T[mn|pq]α,x,β

〉
:=ω(T[m′n′|p′q′]∗α′,x′,β′ ◦T[mn|pq]α,x,β). (25b)

The form ⟨·, ·⟩ is linear in the second argument by definition. It can readily (although tediously) be verified that

⟨A,B⟩ = ⟨B,A⟩. Showing that ⟨A,A⟩ > 0∀A ̸= 0 reduces to showing that
[
Lax̄xa

]
(1,1,1)(α,b,σ)

= 0∀σ =⇒ b /∈ x ▷ a. (26)

This follows from bending

κx

a

b

α

x

=

a

b

α

x

x̄ = dx
∑
σ,τ

[
Lax̄xa

]
(1,1,1)(α,b,σ)

[
Lbxx̄b

]
(1,1,1)(σ,a,τ)

a

b

τ

x

(27)

It is necessary to define a balanced inner product on the tensor product space [23]
〈
T[rs|tu]σ,y,τ⊗T[r′s′|t′u′]σ′,y′,τ ′ ,T[mn|pq]α,x,β ⊗T[m′n′|p′q′]α′,x′,β′

〉
:=

〈
T[rs|tu]σ,y,τ ,T[mn|pq]α,x,β

〉〈
T[r′s′|t′u′]σ′,y′,τ ′ ,T[m′n′|p′q′]α′,x′,β′

〉

√
dqdu

. (28)

If C is a unitary fusion category and trivalent vertices are chosen to be compatible with the unitary structure on C,
then the F -symbol is a unitary matrix. If M is a unitary C-module, then C∗

M is a unitary fusion category [24]. In this
paper, we demonstrate how to compute a basis set of trivalent vertices for C∗

M compatible with its unitary structure.
In particular, this implies that the computed associator for C∗

M is unitary. The procedure goes as follows:

1. TubC(M) inherits a ∗-structure and trace from the unitary structures on C and M. Compute matrix units eij
in TubC(M) which satisfy e∗ij = eji. Then TubC(M)eii is an irreducible unitary representation of TubC(M),
its unitary structure inherited from the inclusion TubC(M)eii ↪→ TubC(M).

2. Given unitary representations Vi, Vj , Vk of TubC(M), choose a basis of intertwiners Vi ⊗ Vj → Vk which are
isometric projections. With respect to this basis, the F -symbol of TubC(M) is unitary.

III. COMPUTING DATA FOR C∗
M

Given a fusion category C, and an indecomposable C-module category M, the first piece of data defining C∗
M is the

set of simple objects. We compute this by constructing a complete set of irreducible representations of the tube algebra
TubC(M). Specifically, since TubC(M) is semisimple, we can compute an explicit Artin-Wedderburn isomorphism

TubC(M) ∼= ⊕nα=1 Mat(Dα), (29)
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where Mat(D) is the D×D matrix algebra over C, and
∑n
α=1D

2
α = dimTubC(M). In particular, it is convenient to

fix a matrix unit basis for Mat(Dα),
{
[eα]ij

∣∣∣ 0 ≤ i, j < Dα, [eα]ij [eα]kl = δj,k[eα]il

}
, (30)

and seek a solution to the set of equations

[eα]ij =
∑

P∈Λ

C
(α)
P P, (31)

where Λ is the basis defined in Eq. (21) and C
(α)
P are coefficients to be determined . Although it is in principle

computationally hard to find such an isomorphism, in practice it can be solved (or accurately approximated) in many
cases. This is discussed in Ref. [8], and example code is provided there.

Given such an isomorphism, we can construct a vector space with basis

[vα]i := [eα]i0, (32)

forming an irreducible representation (irrep) of TubC(M). In Refs. [8, 25, and 26], these vector spaces were called
binary interface defects, since physically they correspond to excitations at the interface of two boundaries. It is
convenient to extend our graphical notation to include these vectors

[vα]i = α i , (33)

where the left label denotes the irrep label, and the right index specifies a basis vector in that representation. Omission
of the vector label indicates the full representation. Each irreducible representation is a simple object in the category
C∗
M. Fusion of objects corresponds to tensoring representations. Using this notation, the tensor product of two

representations is indicated by vertical stacking

α⊗ β :=
α

β
. (34)

The tensor product space comes equipped with an action of TubC(M), and so forms a (potentially reducible) repre-
sentation. Decomposing into irreps gives the fusion rules of the fusion category C∗

M

α

β ∼=
⊕

γ

γ , (35)

where γ runs over the irreps occurring (possibly multiple times) in the decomposition of α⊗ β. The fusion rules Nγ
αβ

can be deduced by projecting generic vectors in the tensor product

v =
∑

i,j

Cij α i

β j
(36)

onto the irrep γ using the identity matrix

1γ =
∑

i

[eγ ]ii. (37)

The fusion Nγ
αβ is the dimension of the space spanned by such projected vectors.

Explicit trivalent vertices for the category C∗
M can be computed by forming matrices for the isomorphisms Eq. (35).

Since there was a great deal of freedom in the choice of basis [vα]i, these matrices are far from unique. We can
change basis on all three of the involved tube algebra representations. Choosing distinct bases will lead to distinct,
but equivalent, F -symbols.

We denote a map embedding the irrep γ into the representation α⊗ β by

V γ;xαβ := γ
α

β x
, (38)
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a matrix with dimα ⊗ β rows and dim γ columns. It is convenient to reshape this matrix into a 3-tensor, however
dimα⊗ β may not be a composite number due to the tensor product rule Eq. (23) requiring matching of the middle
strand label. For this reason, it is useful to fill out with zero rows, corresponding to cases where [vα]i ⊗ [vβ ]j = 0.

Following this process, the matrix can be recast as a 3-tensor of size (dimα,dimβ; dim γ). If there are multiple copies
of γ ∈ α ⊗ β, there will be multiple such matrices, forming a vector space. We choose a basis of matrices, and label
the vertex to identify which basis vector is being referred to. The choice here corresponds to the gauge freedom in
choosing a basis for the fusion space.

Assuming Nγ
αβ ̸= 0, matrix elements for V γαβ can be computed as follows:

• Pick a generic vector v ∈ α⊗ β (Eq. (36)).

• Project onto the target irrep γ using [eγ ]00.

If Nγ
αβ = 1, call the result [vγ ]0 ([vγ ]0 unique up to scale).

If Nγ
αβ > 1, repeat until Nγ

αβ independent vectors [vγ,x]0 are obtained. If an inner product is defined, these
could be made orthonormal.

• Build the rest of the basis [vγ,x]i = [eγ ]i0[vγ,x]0.

• The entries in the ith column of V γ;xαβ are the coefficients of [vγ,x]i in the tensor product basis.

Given these 3-tensors, there are two ways they can be combined into intertwining maps δ → α ⊗ β ⊗ δ. These
provide two bases for the intertwiner space, and are related by a change of basis matrix, which we call F ,

α

β

γ

δ
µ

i

j
=
∑
k,ν,l

[
F δαβγ

]
(i,µ,j)(k,ν,l)

α

β

γ

δ
ν

k

l
. (39)

Solving this (linear) equation gives F -matrices for C∗
M , which, in general, are distinct from those of the input category

C.
To summarize the algorithm:

1. Compute irreducible representations of tube algebra.

2. Compute decomposition of tensor product of all irrep pairs.

3. Form explicit matrices for isomorphism, express as 3-tensors.

4. Solve linear equations Eq. (39) to obtain (new) F -symbols.

Unitary case

When C and M are unitary, it is useful to respect the ∗-structure when solving Eq. (31). In particular, we should
solve Eq. (31) with the additional condition that

(
[eα]ij

)∗
= [eα]ji. (40)

This ensures that our resulting tube representations are unitary (although, our computed bases are not necessarily
orthonormal). Since the tube representations are unitary, we can insist that the embedding maps Eq. (38) are isometric
with respect to the equipped norms, and distinct maps V γ;xαβ , V

γ;y
αβ obey

〈
V γ;xαβ ([vγ ]i), V

γ;y
αβ ([vγ ]j)

〉
= δx,y

〈
[vγ ]i, [vγ ]j

〉
. (41)

As outlined in the preliminaries, it makes sense that choosing vertices in this way leads to a unitary gauge for the
resulting F -symbols, and we have numerically verified this for both of the Haagerup categories considered in this
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paper. It can be verified generally as follows

δ(w,µ,x),(y,ν,z)

〈
[vδ]i, [vδ]j

〉
=

〈

α

β

γ

δ
µ

w

x i ,

α

β

γ

δ
ν

y

z j
,

〉
(42a)

=
∑

a,ϵ,b,c,σ,d

[
F δαβγ

]
(w,µ,x)(a,ϵ,b)

[
F δαβγ

]
(y,ν,z)(c,σ,d)

〈

α

β

γ

δ
ϵ

a

b

i ,

α

β

γ

δ
σ

c

d

j
〉

(42b)

=
∑

a,ϵ,b

[
F δαβγ

]
(w,µ,x)(a,ϵ,b)

[
F δαβγ

]
(y,ν,z)(a,ϵ,b)

〈
[vδ]i, [vδ]j

〉
(42c)

=⇒
∑

a,ϵ,b

[
F δαβγ

]
(w,µ,x)(a,ϵ,b)

[
F δαβγ

]
(y,ν,z)(a,ϵ,b)

= δ(w,µ,x),(y,ν,z). (42d)

Alternatively, one could attempt to change the gauge after finding the F -symbols, however this is challenging if C∗
M

has multiplicity.

IV. A WORKED EXAMPLE: Vec(Z/2Z)∗Vec

We work through a particularly simple example to recover the F -symbols of Rep(Z/2Z) from a module, namely
Vec, over Vec(Z/2Z).

The skeletal fusion category Vec(Z/2Z) has two simple objects, {0, 1}, and fusion rules a⊗ b := a+ b mod 2. Both
objects have dx = 1. All F -symbols are 1 when permitted by fusion. In all cases, we neglect to draw the strings
corresponding to the unit object 0. We consider a module category Vec with a single simple object, denoted ∗ or a
blue string, with dimension d∗ =

√
2. All module L−symbols are 1 when permitted by fusion.

A basis for the tube algebra is given by

Λ :=





T0 = , T1 =



. (43)

Since all the F - and L-symbols are 1, the product Eq. (22) reduces to Tx ◦Ty = Tx+y mod 2, recovering the group
algebra C[Z/2Z]. Finally, these categories are equipped with a ∗-structure, which acts trivially on the basis Λ.

Step 1.

The tube algebra CΛ decomposes as two copies of the 1-dimensional algebra CΛ ∼= C ⊕ C. We will label the two
irreducible representations by 1, ψ. A complete set of matrix units is given by

[e1]00 =
T0 +T1

2
=

1

2

(
+

)
(44a)

[eψ]00 =
T0 −T1

2
=

1

2

(
−

)
. (44b)

Since both representations are 1-dimensional, we neglect the matrix indices for the remainder of this section. A basis
for the representations is given by

[v1] = [e1] [vψ] = [eψ], (45)

with action

[eα][vβ ] = δα,β [vα]. (46)

Both basis vectors [vx] have norm 1.



12

Step 2.

The tensor product basis is 4-dimensional,

[v1] ⊗ [v1] =
1

4


 + + +


 [v1] ⊗ [vψ] =

1

4


 − + −


 (47a)

[vψ] ⊗ [v1] =
1

4


 + − −


 [vψ] ⊗ [vψ] =

1

4


 − − +


. (47b)

To obtain the fusion rules for Vec(Z/2Z)∗Vec, we project the tensor product basis above onto the irreps. This is
done by left multiplication with the basis for the representations given in Eq. (45). Graphically, left multiplication
corresponds to putting the tubes given in Eq. (44a) and Eq. (44b) on the outside of the tubes in the tensor product
and reducing the diagrams using the F - and L-symbols. For example,

eψ([v1]⊗ [vψ]) =
1

2 �
��1

4

(
−

)
◦ 1

4


 − + −


 (48a)

=
1

8


 − + − − + − +


 (48b)

=
1

8


 − + − − + − +


 = [v1]⊗ [vψ], (48c)

which tells us that ψ is in the decomposition of the tensor product 1⊗ ψ.

More generally, to compute the multiplicity of an irreducible inside some representation, you compute the dimension
of the image of multiplication by the corresponding indecomposable idempotent. Summing up, the fusion rules for
Vec(Z/2Z)∗Vec are

1⊗ x = x = x⊗ 1 ψ ⊗ ψ = 1, (49)

where x ∈ {1, ψ}.

Step 3.

Next, we provide explicit trivalent intertwiners. As discussed in Section III, we ensure that these are isometric. All
basis vectors in the tensor product basis [vx]⊗ [vy] have norm 2−1/4, arising from the dimension of the module object

d∗ =
√
2, and Eq. (28). Recall that these are obtained (for a given choice of irreps to tensor) by: first choosing a

generic vector in the tensor product, followed by projecting onto the target irrep. Since all irreps are 1-dimensional
in this case, expressing the result as in the tensor product representation completes the computation.

We obtain the isometric intertwiners with matrix representations

1
1

1
=

( [v1]
[v1] ⊗ [v1] ω1

11

)
× 21/4 1

ψ

ψ
=

( [v1]

[vψ] ⊗ [vψ] ω1
ψψ

)
× 21/4 (50a)

ψ
1

ψ
=

( [vψ]
[v1] ⊗ [vψ] ωψ1ψ

)
× 21/4 ψ

ψ

1
=

( [vψ]
[vψ] ⊗ [v1] ωψψ1

)
× 21/4, (50b)

where the ωxab’s are complex numbers with |ωcab| = 1.
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⊗ 1 α α2 ρ αρ α2ρ

1 1 α α2 ρ αρ α2ρ

α α α2 1 αρ α2ρ ρ

α2 α2 1 α α2ρ ρ αρ

ρ ρ α2ρ αρ 1 +X α2 +X α+X

αρ αρ ρ α2ρ α+X 1 +X α2 +X

α2ρ α2ρ αρ ρ α2 +X α+X 1 +X

H3 ▷M3,1 Γ αΓ α2Γ Λ

1 Γ αΓ α2Γ Λ

α αΓ α2Γ Γ Λ

α2 α2Γ Γ αΓ Λ

ρ αΓ + α2Γ + Λ Γ + αΓ + Λ Γ + α2Γ + Λ Y

αρ Γ + α2Γ + Λ αΓ + α2Γ + Λ Γ + αΓ + Λ Y

α2ρ Γ + αΓ + Λ Γ + α2Γ + Λ αΓ + α2Γ + Λ Y

H3 ▷M3,2 G ρG

1 G ρG

α G ρG

α2 G ρG

ρ ρG Z

αρ ρG Z

α2ρ ρG Z

TABLE I. Fusion rules for H2 and H3 (left) and module fusion rules (middle and right). The category H3 is rank 6, with a
full subcategory, generated by {1, α, α2}, equivalent to Vec(Z/3Z). We define X = ρ+ αρ+ α2ρ, Y = Γ+ αΓ + α2Γ + Λ, and
Z = G+ 3 · ρG. Fusion rules for the modules were obtained from Ref. [9].

Step 4.

Finally, to compute the F -symbols, we solve the linear equations

a

b

c

d
e

=
∑
f

[
F dabc

]
ef

a

b

c

d
f

, (51)

where the vertices Eq. (50) are used. This gives

[
F 1
111

]
11

= 1
[
Fψ11ψ

]
1ψ

=
ω1

11

ωψ1ψ

[
Fψ1ψ1

]
ψψ

= 1
[
F 1
1ψψ

]
ψ1

=
ωψ1ψ
ω1

11[
Fψψ11

]
ψ1

=
ω1
ψ1

ω1
11

[
F 1
ψ1ψ

]
ψψ

=
ω1
ψ1

ωψ1ψ

[
F 1
ψψ1

]
1ψ

=
ω1

11

ω1
ψ1

[
Fψψψψ

]
11

=
ωψ1ψ
ω1
ψ1

, (52)

which is any true for any choice of ωxab, and corresponds to the fusion category Rep(Z/2Z).
In the appendices, we provide similar worked examples for (Vec(S3))

∗
Vec (Appendix B) and (Rep(S3))

∗
Rep(S3)

(Appendix C), which explore some of the complications that arise in the more general case. Additionally, we supply
F -symbols for H1, a category with multiplicity, in attached Mathematica files [14]. These were computed using the
technique described here, using (H3)

∗
M3,1

, where the fusion category H3, and its module M3,1 are defined in Section V.

These examples, including those in the attached code, illustrate the possible complications that can arise.

V. EXAMPLE: HAAGERUP FUSION CATEGORIES

A far more complicated application of our algorithm is finding the F -symbols of one of the Haagerup fusion
categories. These categories originate from the Haagerup subfactor [27, 28], and they are of particular interest due
to their outstanding role in the conjectured correspondence between subfactors and conformal field theories initially
formulated by Vaughan Jones [29, 30]. Jones’ conjecture states that for every unitary fusion category C (equivalently
every finite depth subfactor), there is a conformal field theory (realized as a completely rational conformal net A),
such that Z(C) ∼= Rep(A). We refer to Ref. [31] for a more complete exposition of the conjecture.

For subfactors with index less than four the conjecture is proven in Prop. 1.7 of Ref. [31], but the general case
remains unproven. The first example above index four is the Haagerup subfactor, for which an associated CFT is yet
to be proven, although it seems very likely that such a CFT exists [32].

The Morita equivalence class of fusion categories coming from the Haagerup subfactor contains three categories,
commonly called H1, H2, H3, and their module categories were studied extensively in Ref. [9]. We take as the input
category H3, with fusion rules given in Table I. The F -symbols for H3 were found in Refs. [11–13], and in an encoded
form in Ref. [10]. We visualize the F -symbols in the left part of Fig. 1 in a gauge in which they are all real. For the
category H2, F -symbols are also known [12, 13], leaving those for H1 the only unknown data.

Finding the F -symbols ofH1 directly by solving the pentagon equation is considerably harder than the corresponding
calculation for H3 due to the fact that H1 has multiplicities. It therefore makes sense to use the algorithm presented
above to obtain the F -symbols for H1 via a module category over H3. We consider a rank 4 indecomposable module
category over H3, which we refer to as M3,1. We obtained the fusion rules for this module from Ref. [9], although
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FIG. 1. A visualization of the F -symbol matrix elements in a unitary gaugeA visualization of the F -symbols , on the left is
H3 [11–13], and on the right is H1. In the upper plot, white = −1, black = +1. All values are real.

they could be obtained more directly, for example by a brute-force search. We provide code for a tree-based search,
inspired by a talk given by J. Slingerland [33], in the attached Mathematica file ‘FindingModules.nb’ [14]. The fusion
rules are provided in the Table I.

Since these fusion rules are multiplicity free, it is reasonably easy to solve the module pentagon equation Eq. (14).
The solution is provided in the attached file ‘M31Data.m’ [14], and can be verified and visualized in ‘M31Data.nb’ [14].

With this data obtained, one can apply the algorithm described above. The tube algebra (Eq. (21)) is 555 dimen-
sional, so we refrain from extensive discussion of the computation. This algebra has 4 irreps, which we label 1, µ, η, ν
following Ref. [9]. By forming the projectors onto the irreps, we can easily obtain fusion rules for these irreps

(H3)
∗
M3,1

=

◦ 1 µ η ν

1 1 µ η ν

µ µ 1 + ν η + ν η + µ+ ν

η η η + ν 1 + η + µ+ ν η + µ+ 2ν

ν ν η + µ+ ν η + µ+ 2ν 1 + 2η + µ+ 2ν

, (53)

which are the fusion rules of H1. Forming trivalent vertices, and using them to compute F -symbols gives the associator
data for the Haagerup category H1. We provide a visualization in the right part of Fig. 1, and the numerical data in
the attached file ‘H1Data.m’ [14]. In particular, these were obtained using the unitary version of the algorithm, and
so are in a unitary gauge. Since there is multiplicity in the fusion rules, gauge freedom in these F -symbols is more
than the phase freedom in H3. In the bottom right panel of Fig. 1, this is apparent since the values do not cluster,
unlike the bottom left panel (H3). A full implementation of the algorithm used to obtain this data can be accessed
from the notebook ‘Main.nb’ [14], which also allows this to be applied to the other examples in this manuscript.

To complete the Morita class, we include the data for H2 in the file ‘DataH2.m’ [14]. These data are obtained from
a module category M3,2 (data in ‘M32Data.m’). Unlike M3,1, this module has multiplicity three in its fusion rules
as shown in the right panel of Table I. Since the module pentagon equations are quadratic, and due to the reduced
gauge freedom, the module associator can be obtained more easily than would be possible for a fusion category with
multiplicity three.
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VI. REMARKS

To summarize, we have described an algorithm to compute F -symbols for a fusion category C∗
M, given the data

for a fusion category C and a module category C ↷ M. By using a module version of the tube category, and its
representations, this algorithm automates computation of these data.

To demonstrate the utility of our algorithm, we have applied it to obtain the F -symbols of the Haagerup Morita
equivalence class, and in particular the category H1. This category has multiplicity in its fusion rules, which makes it
extremely challenging to obtain the data by directly solving the pentagon equations. As such, this solution is among
only a handful of such data that have been obtained for categories with multiplicity. Conversely, the module involved
in the computation of H2 has multiplicity, however the simplified pentagon makes it possible to find the module
associator directly. With this data in hand, the algorithm can be applied to find the data for the final category in the
class.

The algorithm discussed in this manuscript requires as input data for one category in the Morita equivalence class.
The problem of finding this initial data is the subject of a great deal of research, and the current algorithm provides
no solution. In the case of a previously obtained solution, our algorithm allows for maximal use of the known data.

The only currently known ‘exotic’ fusion categories are those related to the ‘extended Haagerup subfactor’ [34]
(EH). All other examples fall into some infinite family. For this reason, these are particularly interesting to study
as this may aid in the classification. Previously, a complete understanding of the Morita equivalences has provided
insight into the origins of purportedly exceptional fusion categories [35]. Although the categories Morita equivalent
to EH are classified in Ref. [34], their data is not known. The algorithm presented here would greatly simplify the
task of calculating the data. In the case that new fusion categories are discovered, it would also provide a way to
more easily discover the Morita equivalences.
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Appendix A: Tensor structure on C∗
M

Let C be a fusion category and M, N be C-modules. In this appendix, we briefly review the tensor structure on
C∗
M. We will concentrate on recovering tube algebra data from this functor, but, given a tube algebra representation,

the functor can be recovered similarly.
Let F : M → N be a module functor. This data specifies a vector space N (F (m), n), which we denote

N (F (m), n) ↔

m

n

. (A1)

After a basis has been chosen, vectors in N (F (m), n) are indicated by

m

n

v . (A2)

The tube algebra action

m2

n2

vi
m1

n1

α

β

x =
∑
j aij

m2

n2

wj (A3)

on this vector space is extracted from the functor F as follows:

N (F (m1), n1)
x▷−−−−→ N (x ▷ F (m1), x ▷ n1)

postcompose with β−−−−−−−−−−−−→

N (x ▷ F (m1), n2)
F coherence iso.−−−−−−−−−−→ N (F (x ▷ m1), n2)

precompose with F (α)−−−−−−−−−−−−−−→ N (F (m2), n2) (A4)

Now consider the composition of two tensor functors F : M → N and G : N → P. The coherence isomorphism for

F ⊗G := G ◦ F (A5)

is given by

x ▷ G(F (m))
G coherence iso.−−−−−−−−−−→ G(x ▷ F (m))

F coherence iso.−−−−−−−−−−→ G(F (x ▷ m)) (A6)

Now assume that x ▷ F (m) ∼= n and choose trivalent vertices γ : x ▷ F (m) → n and δ : n → a ▷ F (m) realizing this
isomorphism. We can decompose the coherence isomorphism for G ◦ F as

a ▷ G(F (m))
G coherence iso.−−−−−−−−−−→ G(x ▷ F (m))

G(γ)−−−→ G(n)
G(δ)−−−→ G(x ▷ F (m))

F coherence iso.−−−−−−−−−−→ G(F (x ▷ m)) (A7)

Substituting Eq. (A7) into Eq. (A4) tells us that the tube action for G ◦ F can be interpreted as

α

β

→

α

β

γ
δ (A8)

followed by applying the F and G actions independently. Notice that this is like a higher categorical version of the
well known group theory trick xy = xgg−1y.
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Appendix B: Worked Example: Vec(S3)

We work through another relatively simple example to recover the F -symbols of Rep(S3) from a module over
Vec(S3). This example has a two-dimensional representation, so is slightly more complicated than that in Section IV.
Additionally, since Rep(S3) is not equivalent as a fusion category to Vec(S3), it is perhaps more clear that the
output F -symbols are distinct from the input. Conversely, since there is a single simple object in the module category,
computations within this example remain straightforward. In particular, all boundary tubes can be stacked to give a
nonzero picture.

The group S3 is given by the presentation

S3 =
〈
σ, τ
∣∣σ3 = τ2 = (στ)2 = 1

〉
. (B1)

The simple objects of Vec(S3) are labeled by the group elements, with fusion given by group multiplication. All
F -symbols are 1 when permitted by fusion. In all cases, we neglect to draw the strings corresponding to the unit
object 1.

We consider a module category M with a single simple object, denoted ∗ or a blue string. All module L−symbols
are 1 when permitted by fusion.

The boundary tube algebra is 6-dimensional, with picture basis

Λ =





T1 = , Tσ = σ , Tσ2 = σ2 , Tτ = τ , Tστ = στ , Tσ2τ = σ2τ




. (B2)

The multiplication on the tubes is given by group multiplication on their label TiTj = Ti·j .

Step 1.

The tube algebra composes into two 1-dimensional algebras and one 2-dimensional algebra: C[S3] ∼= C⊕C⊕M2(C).
A complete set of matrix units is given by

[e1]00 =
T1 +Tσ +Tσ2 +Tτ +Tστ +Tσ2τ

6
=

1

6


 + σ + σ2 + τ + στ + σ2τ


, (B3a)

[eψ]00 =
T1 +Tσ +Tσ2 −Tτ −Tστ −Tσ2τ

6
=

1

6


 + σ + σ2 − τ − στ − σ2τ


, (B3b)

[eπ]00 =
2T1 −Tσ −Tσ2 −2Tτ +Tστ +Tσ2τ

6
=

1

6


 2 − σ − σ2 −2 τ + στ + σ2τ


, (B3c)

[eπ]01 =
−Tσ +Tσ2 −Tστ +Tσ2τ

2
√
3

=
1

2
√
3


 σ− + σ2 − στ + σ2τ


, (B3d)

[eπ]10 =
Tσ −Tσ2 −Tστ +Tσ2τ

2
√
3

=
1

2
√
3


 σ − σ2 − στ + σ2τ


, (B3e)

[eπ]11 =
2T1 −Tσ −Tσ2 +2Tτ −Tστ −Tσ2τ

6
=

1

6


 2 − σ − σ2 +2 τ − στ − σ2τ


. (B3f)
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A basis for the representations is given by

[v1]0 =[e1]00, [vψ]0 = [eψ]00, [vπ]0 = [eπ]00, [vπ]1 = [eπ]10, (B4)

with

[ex]i,j [vy]k =δyxδ
k
j [vx]i. (B5)

Using the central idempotents

11 :=[e1]00 (B6a)

1ψ :=[eψ]00 (B6b)

1π :=[eπ]00 + [eπ]11, (B6c)

we can project onto a given representation. This is useful for computing the fusion rules for C∗
M, but the full

representations are required to compute the F -symbols.
The fusion category C∗

M therefore has 3 simple objects, labeled 1, ψ, π.

Step 2.

The composite basis is 36-dimensional, with picture basis



 α

β

∣∣∣∣∣∣∣∣∣
α, β ∈ S3




. (B7)

The tensor products of the representations [vx] form a 16-dimensional subspace with basis [vx]i ⊗ [vy]j .

Step 3.

To find the required trivalent vertices, we need to decompose the composite space. This can be achieved as follows:

• Fix x, y representations. Pick a generic vector V =
∑
i,j α

y,j
x,i [vx]i ⊗ [vy]j ,

• For each representation z, apply [ez]00, giving a new vector V (z).

• If V (z) = 0, the representation z does not occur inside the tensor product x⊗ y.

• The vector V (z) ̸= 0 will have at least one free parameter α. If it has exactly one, it can be fixed to any value.
Ultimately, this corresponds to a choice of gauge for the trivalent vertices. If there are multiple free parameters
(n of them), z occurs multiple times within x⊗ y. In that case, form n linearly independent vectors V (z,q) with
all but one of the free parameters set to 0, and the remaining one fixed, for example, to 1.

• We can now identify [vz]0 with V (z,q) for each q ∈ {0, . . . , n − 1} since [ez]00V
(z,q) = V (z,q). Fill out the

representations by applying [ez]i0, giving vectors V
(z,q)
i .

• The matrix elements of the trivalent vertex

z
x

y

q
(B8)

are given by the coefficients of [vx]i⊗ [vy]j in the vector V
(z,q)
k , where the rows are labeled by

{
[vx]i ⊗ [vy]j

}
i,j
,

and the columns by
{
V

(z,q)
k

}
k
.
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For the present example, there are no multiplicities. For clarity, we leave the free parameters unfixed, naming them
ω. This serves to demonstrate that they correspond to the gauge freedom in the F -symbols. The trivalent vertices
are given by the matrices

1
1

1
=

( [v1]0
[v1]0 ⊗ [v1]0 ω1

11

)
× 61/4 ψ

1

ψ
=

( [vψ]0
[v1]0 ⊗ [vψ]0 ωψ1ψ

)
× 61/4

ψ
ψ

1
=

( [vψ]0
[vψ]0 ⊗ [v1]0 ωψψ1

)
× 61/4 1

ψ

ψ
=

( [v1]0
[vψ]0 ⊗ [vψ]0 ω1

ψψ

)
× 61/4

π
1

π
=

( [vπ]0 [vπ]1

[v1]0 ⊗ [vπ]0 ωπ1π 0

[v1]0 ⊗ [vπ]1 0 ωπ1π

)
× 61/4 π

π

1
=

( [vπ]0 [vπ]1

[vπ]0 ⊗ [v1]0 ωππ1 0

[vπ]1 ⊗ [v1]0 0 ωππ1

)
× 61/4

π
ψ

π
=

( [vπ]0 [vπ]1

[vψ]0 ⊗ [vπ]0 0 −ωπψπ
[vψ]0 ⊗ [vπ]1 ωπψπ 0

)
× 61/4 π

π

ψ
=

( [vπ]0 [vπ]1

[vπ]0 ⊗ [vψ]0 0 −ωππψ
[vπ]1 ⊗ [vψ]0 ωππψ 0

)
× 61/4

1
π

π
=




[v1]0

[vπ]0 ⊗ [vπ]0 ω1
ππ

[vπ]0 ⊗ [vπ]1 0

[vπ]1 ⊗ [vπ]0 0

[vπ]1 ⊗ [vπ]1 ω1
ππ


×

(
3

32

)1/4

ψ
π

π
=




[vψ]0

[vπ]0 ⊗ [vπ]0 0

[vπ]0 ⊗ [vπ]1 ωψππ
[vπ]1 ⊗ [vπ]0 −ωψππ
[vπ]1 ⊗ [vπ]1 0


×

(
3

32

)1/4

π
π

π
=




[vπ]0 [vπ]1

[vπ]0 ⊗ [vπ]0 0 ωπππ
[vπ]0 ⊗ [vπ]1 ωπππ 0

[vπ]1 ⊗ [vπ]0 ωπππ 0

[vπ]1 ⊗ [vπ]1 0 −ωπππ


×

(
3

8

)1/4

.

Step 4.

The remainder of the calculation is straightforward linear algebra, solving the linear equations

a

b

c

d
e

=
∑
f

[
F dabc

]
ef

a

b

c

d
f

, (B9)

where joined indices corresponds to (conventional) tensor contraction of the reshaped matrices. For example

π

π

π

π
π

=




1 0
0 −1
0 1
1 0
0 1
1 0
−1 0
0 1




×
√

3

8
(ωπππ)

2, (B10)
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and

π

π

π

π
1

=




1 0
0 0
0 0
1 0
0 1
0 0
0 0
0 1




×
√

3

4
ωππ1ω

1
ππ (B11a)

π

π

π

π
ψ

=




0 0
0 −1
0 1
0 0
0 0
1 0
−1 0
0 0




×
√

3

4
ωππψω

ψ
ππ (B11b)

π

π

π

π
π

=




1 0
0 1
0 1
−1 0
0 −1
1 0
1 0
0 1




×
√

3

8
(ωπππ)

2. (B11c)

From this, we read off that

[
Fππππ

]
π1

=

(
ωππ,π

)
2

√
2ωππ,1ω

1
π,π

[
Fππππ

]
πψ

=

(
ωππ,π

)
2

√
2ωππ,ψω

ψ
π,π

[
Fππππ

]
ππ

= 0. (B12)

The full set of F -symbols is computed similarly. Those that are not required to be zero by fusion are

[
F 1
111

]
11

= 1
[
Fψ11ψ

]
1ψ

=
ω1

11

ωψ1ψ

[
Fπ11π

]
1π

=
ω1

11

ωπ1π

[
Fψ1ψ1

]
ψψ

= 1
[
F 1
1ψψ

]
ψ1

=
ωψ1ψ
ω1

11[
Fπ1ψπ

]
ψπ

=
ωψ1ψ
ωπ1π

[
Fπ1π1

]
ππ

= 1
[
Fπ1πψ

]
ππ

= 1
[
F 1
1ππ

]
π1

=
ωπ1π
ω1

11

[
Fψ1ππ

]
πψ

=
ωπ1π
ωψ1ψ[

Fπ1ππ

]
ππ

= 1
[
Fψψ11

]
ψ1

=
ωψψ1

ω1
11

[
F 1
ψ1ψ

]
ψψ

=
ωψψ1

ωψ1ψ

[
Fπψ1π

]
ψπ

=
ωψψ1

ωπ1π

[
F 1
ψψ1

]
1ψ

=
ω1

11

ωψψ1[
Fψψψψ

]
11

=
ωψ1ψ

ωψψ1

[
Fπψψπ

]
1π

= −ωπ1πω
1
ψψ

ωπψπ
2

[
Fπψπ1

]
ππ

= 1
[
Fπψπψ

]
ππ

= 1
[
Fψψππ

]
π1

=
ωψππω

π
ψπ

ω1
ππω

ψ
ψ1[

F 1
ψππ

]
πψ

= −ω1
ππω

π
ψπ

ωψππω
1
ψψ

[
Fπψππ

]
ππ

= −1
[
Fππ11

]
π1

=
ωππ1

ω1
11

[
Fππ1ψ

]
πψ

=
ωππ1

ωψ1ψ

[
F 1
π1π

]
ππ

=
ωππ1

ωπ1π[
Fψπ1π

]
ππ

=
ωππ1

ωπ1π

[
Fππ1π

]
ππ

=
ωππ1

ωπ1π

[
Fππψ1

]
πψ

=
ωππ1

ωψψ1

[
Fππψψ

]
π1

= − ωππψ
2

ωππ1ω
1
ψψ

[
F 1
πψπ

]
ππ

= −ωππψ
ωπψπ[

Fψπψπ

]
ππ

= −ωππψ
ωπψπ

[
Fππψπ

]
ππ

=
ωππψ
ωπψπ

[
F 1
ππ1

]
1π

=
ω1

11

ωππ1

[
Fψππ1

]
ψπ

=
ωψψ1

ωππ1

[
Fπππ1

]
ππ

= 1
[
Fψππψ

]
1π

= − ωψ1ψω
1
ππ

ωψππω
π
πψ

[
F 1
ππψ

]
ψπ

=
ωψππω

1
ψψ

ω1
ππω

π
πψ

[
Fπππψ

]
ππ

= −1
[
Fππππ

]
11

=
ωπ1π
2ωππ1

[
Fππππ

]
1ψ

= − ωπ1πω
1
ππ

2ωψππω
π
πψ[

Fππππ

]
1π

=
ωπ1πω

1
ππ√

2ωπππ
2

[
Fππππ

]
ψ1

=
ωψππω

π
ψπ

2ωππ1ω
1
ππ

[
Fππππ

]
ψψ

= − ωπψπ
2ωππψ

[
Fππππ

]
ψπ

= −ωψππω
π
ψπ√

2ωπππ
2

[
Fππππ

]
π1

=
ωπππ

2

√
2ωππ1ω

1
ππ[

Fππππ

]
πψ

=
ωπππ

2

√
2ωψππω

π
πψ

[
F 1
πππ

]
ππ

= 1
[
Fψπππ

]
ππ

= −1
[
Fππππ

]
ππ

= 0

It can readily be verified that these obey the pentagon equations, and are the F -symbols, up to a choice of gauge, for
Rep(S3) as expected.
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[
F 1
111

]
11

= 1
[
Fψ11ψ

]
1ψ

= 1
[
Fπ11π

]
1π

= 1
[
Fψ1ψ1

]
ψψ

= 1
[
F 1
1ψψ

]
ψ1

= 1
[
Fπ1ψπ

]
ψπ

= 1
[
Fπ1π1

]
ππ

= 1
[
Fπ1πψ

]
ππ

= 1
[
F 1
1ππ

]
π1

= 1
[
Fψ1ππ

]
πψ

= 1
[
Fπ1ππ

]
ππ

= 1
[
Fψψ11

]
ψ1

= 1
[
F 1
ψ1ψ

]
ψψ

= 1
[
Fπψ1π

]
ψπ

= 1
[
F 1
ψψ1

]
1ψ

= 1
[
Fψψψψ

]
11

= 1
[
Fπψψπ

]
1π

= 1
[
Fπψπ1

]
ππ

= 1
[
Fπψπψ

]
ππ

= 1
[
Fψψππ

]
π1

= 1
[
F 1
ψππ

]
πψ

= 1
[
Fπψππ

]
ππ

= −1
[
Fππ11

]
π1

= 1
[
Fππ1ψ

]
πψ

= 1
[
F 1
π1π

]
ππ

= 1
[
Fψπ1π

]
ππ

= 1
[
Fππ1π

]
ππ

= 1
[
Fππψ1

]
πψ

= 1
[
Fππψψ

]
π1

= 1
[
F 1
πψπ

]
ππ

= 1
[
Fψπψπ

]
ππ

= 1
[
Fππψπ

]
ππ

= −1
[
F 1
ππ1

]
1π

= 1
[
Fψππ1

]
ψπ

= 1
[
Fπππ1

]
ππ

= 1
[
Fψππψ

]
1π

= 1
[
F 1
ππψ

]
ψπ

= 1
[
Fπππψ

]
ππ

= −1
[
Fππππ

]
11

= 1
2

[
Fππππ

]
1ψ

= 1
2

[
Fππππ

]
1π

= 1√
2

[
Fππππ

]
ψ1

= 1
2[

Fππππ

]
ψψ

= 1
2

[
Fππππ

]
ψπ

= − 1√
2

[
Fππππ

]
π1

= 1√
2

[
Fππππ

]
πψ

= − 1√
2

[
F 1
πππ

]
ππ

= 1
[
Fψπππ

]
ππ

= −1
[
Fππππ

]
ππ

= 0
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Appendix C: Worked Example: Rep(S3)

We work through another relatively simple example to recover the F -symbols of Rep(S3) from a module over
Rep(S3). This example is slightly more complicated than that in Appendix B since the module category we choose
has 3 simple objects. Because of this, and unlike the previous two examples, not all boundary diagrams are valid.

As input, we use the F -symbols computed in Appendix B. We consider Rep(S3) as a module over itself, so the
module category M also has 3 simple objects.
The boundary tube algebra is 32+32+52 = 43 dimensional, where the decomposition foreshadows the decomposition

into irreducible representations. Defining

T[ab|cd]x :=

a

b
c

d

x , (C1)

the picture basis is

Λ =





T[11|11]1, T[11|ψψ]ψ, T[11|ππ]π, T[1ψ|1ψ]1, T[1ψ|ψ1]ψ, T[1ψ|ππ]π, T[1π|1π]1, T[1π|ψπ]ψ,
T[1π|π1]π, T[1π|πψ]π, T[1π|ππ]π, T[ψ1|1ψ]ψ, T[ψ1|ψ1]1, T[ψ1|ππ]π, T[ψψ|11]ψ, T[ψψ|ψψ]1,
T[ψψ|ππ]π, T[ψπ|1π]ψ, T[ψπ|ψπ]1, T[ψπ|π1]π, T[ψπ|πψ]π, T[ψπ|ππ]π, T[π1|1π]π, T[π1|ψπ]π,
T[π1|π1]1, T[π1|πψ]ψ, T[π1|ππ]π, T[πψ|1π]π, T[πψ|ψπ]π, T[πψ|π1]ψ, T[πψ|πψ]1, T[πψ|ππ]π,
T[ππ|11]π, T[ππ|1ψ]π, T[ππ|1π]π, T[ππ|ψ1]π, T[ππ|ψψ]π, T[ππ|ψπ]π, T[ππ|π1]π, T[ππ|πψ]π,
T[ππ|ππ]1, T[ππ|ππ]ψ, T[ππ|ππ]π





.

Step 1.

As already hinted at above, the tube algebra decomposes into two 3-dimensional algebras and one 5-dimensional
algebra: M3(C)⊕M3(C)⊕M5(C). A complete set of matrix units is given by

[e1]ij =




T[11|11]1 T[ψψ|11]ψ
T[ππ|11]π√

2

T[11|ψψ]ψ T[ψψ|ψψ]1
T[ππ|ψψ]π√

2
T[11|ππ]π√

2

T[ψψ|ππ]π√
2

1
4

(
T[ππ|ππ]1 +T[ππ|ππ]ψ +

√
2T[ππ|ππ]π

)



ij

(C2a)

[eψ]ij =




T[1ψ|1ψ]1 T[ψ1|1ψ]ψ
T[ππ|1ψ]π√

2

T[1ψ|ψ1]ψ T[ψ1|ψ1]1
T[ππ|ψ1]π√

2
T[1ψ|ππ]π√

2

T[ψ1|ππ]π√
2

1
4

(
T[ππ|ππ]1 +T[ππ|ππ]ψ −

√
2T[ππ|ππ]π

)



ij

(C2b)

[eπ]ij =




T[1π|1π]1 T[ψπ|1π]ψ T[π1|1π]π T[πψ|1π]π
T[ππ|1π]π

4√2

T[1π|ψπ]ψ T[ψπ|ψπ]1 T[π1|ψπ]π T[πψ|ψπ]π −T[ππ|ψπ]π
4√2

T[1π|π1]π T[ψπ|π1]π T[π1|π1]1 T[πψ|π1]ψ
T[ππ|π1]π

4√2

T[1π|πψ]π T[ψπ|πψ]π T[π1|πψ]ψ T[πψ|πψ]1 −T[ππ|πψ]π
4√2

T[1π|ππ]π
4√2

−T[ψπ|ππ]π
4√2

T[π1|ππ]π
4√2

−T[πψ|ππ]π
4√2

1
2 (T[ππ|ππ]1 −T[ππ|ππ]ψ)




ij

. (C2c)

Note that we are redundantly using the labels 1, ψ, π for the simple objects in: Rep(S3) as both a fusion and module
category, and as labels for the irreducible representations of the tube category.

A basis for the representations is given by

[v1]i =[e1]i0, [vψ]i = [eψ]i0, [vπ]i = [eπ]i0, (C3)

with

[ex]i,j [vy]k =δyxδ
k
j [vx]i. (C4)
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These vectors have norm

∥[v1]i∥ =
∥∥[vψ]i

∥∥ = 1 ∥[vπ]i∥ =
√
2. (C5)

The fusion category C∗
M therefore has 3 simple objects, labeled 1, ψ, π. Note that we are labeling the objects in C∗

M
with the same labels as the input category C since, as shown below, C∗

M ≡ C as a fusion category. From this point,
all labels are in C∗

M.

Step 2.

The composite basis is 683 dimensional. Unlike the two previous examples, 683 ̸= 432, since many of the composite
pictures evaluate to 0. The tensor products of the representations vx form a 43 dimensional subspace with basis





[v1]0 ⊗ [v1]0, [v1]1 ⊗ [v1]1, [v1]2 ⊗ [v1]2, [vψ]0 ⊗ [vψ]1, [vψ]1 ⊗ [vψ]0, [vψ]2 ⊗ [vψ]2,
[v1]0 ⊗ [vψ]0, [v1]1 ⊗ [vψ]1, [v1]2 ⊗ [vψ]2, [vψ]0 ⊗ [v1]1, [vψ]1 ⊗ [v1]0, [vψ]2 ⊗ [v1]2,
[v1]0 ⊗ [vπ]0, [v1]1 ⊗ [vπ]1, [v1]2 ⊗ [vπ]2, [v1]2 ⊗ [vπ]3, [v1]2 ⊗ [vπ]4,
[vψ]0 ⊗ [vπ]1, [vψ]1 ⊗ [vπ]0, [vψ]2 ⊗ [vπ]2, [vψ]2 ⊗ [vπ]3, [vψ]2 ⊗ [vπ]4,
[vπ]0 ⊗ [v1]2, [vπ]1 ⊗ [v1]2, [vπ]2 ⊗ [v1]0, [vπ]3 ⊗ [v1]1, [vπ]4 ⊗ [v1]2,
[vπ]0 ⊗ [vψ]2, [vπ]1 ⊗ [vψ]2, [vπ]2 ⊗ [vψ]0, [vπ]3 ⊗ [vψ]1, [vπ]4 ⊗ [vψ]2,
[vπ]0 ⊗ [vπ]2, [vπ]0 ⊗ [vπ]3, [vπ]0 ⊗ [vπ]4, [vπ]1 ⊗ [vπ]2, [vπ]1 ⊗ [vπ]3, [vπ]1 ⊗ [vπ]4,
[vπ]2 ⊗ [vπ]0, [vπ]3 ⊗ [vπ]1, [vπ]4 ⊗ [vπ]2, [vπ]4 ⊗ [vπ]3, [vπ]4 ⊗ [vπ]4





. (C6)

Step 3.

For the present example, there are no multiplicities. For clarity, we leave the free parameters unfixed, naming them
ω. This serves to demonstrate that they correspond to the gauge freedom in the F -symbols. The trivalent vertices
are given by the matrices

1
1

1
=




[v1]0 [v1]1 [v1]2

[v1]0 ⊗ [v1]0 ω1
11 0 0

[v1]1 ⊗ [v1]1 0 ω1
11 0

[v1]2 ⊗ [v1]2 0 0
√
2ω1

11




ψ
1

ψ
=




[vψ]0 [vψ]1 [vψ]2

[v1]0 ⊗ [vψ]0 ωψ1ψ 0 0

[v1]1 ⊗ [vψ]1 0 ωψ1ψ 0

[v1]2 ⊗ [vψ]2 0 0
√
2ωψ1ψ




ψ
ψ

1
=




[vψ]0 [vψ]1 [vψ]2

[vψ]0 ⊗ [v1]1 ωψψ1 0 0

[vψ]1 ⊗ [v1]0 0 ωψψ1 0

[vψ]2 ⊗ [v1]2 0 0
√
2ωψψ1




1
ψ

ψ
=




[v1]0 [v1]1 [v1]2

[vψ]0 ⊗ [vψ]1 ω1
ψψ 0 0

[vψ]1 ⊗ [vψ]0 0 ω1
ψψ 0

[vψ]2 ⊗ [vψ]2 0 0
√
2ω1

ψψ



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π
1

π
=




[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4

[v1]0 ⊗ [vπ]0 ωπ1π 0 0 0 0

[v1]1 ⊗ [vπ]1 0 ωπ1π 0 0 0

[v1]2 ⊗ [vπ]2 0 0
√
2ωπ1π 0 0

[v1]2 ⊗ [vπ]3 0 0 0
√
2ωπ1π 0

[v1]2 ⊗ [vπ]4 0 0 0 0
√
2ωπ1π




π
π

1
=




[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4

[vπ]0 ⊗ [v1]2
√
2ωππ1 0 0 0 0

[vπ]1 ⊗ [v1]2 0
√
2ωππ1 0 0 0

[vπ]2 ⊗ [v1]0 0 0 ωππ1 0 0

[vπ]3 ⊗ [v1]1 0 0 0 ωππ1 0

[vπ]4 ⊗ [v1]2 0 0 0 0
√
2ωππ1




π
ψ

π
=




[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4

[vψ]0 ⊗ [vπ]1 ωπψπ 0 0 0 0

[vψ]1 ⊗ [vπ]0 0 ωπψπ 0 0 0

[vψ]2 ⊗ [vπ]2 0 0
√
2ωπψπ 0 0

[vψ]2 ⊗ [vπ]3 0 0 0
√
2ωπψπ 0

[vψ]2 ⊗ [vπ]4 0 0 0 0
√
2ωπψπ




π
π

ψ
=




[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4

[vπ]0 ⊗ [vψ]2
√
2ωππψ 0 0 0 0

[vπ]1 ⊗ [vψ]2 0
√
2ωππψ 0 0 0

[vπ]2 ⊗ [vψ]0 0 0 0 ωππψ 0

[vπ]3 ⊗ [vψ]1 0 0 ωππψ 0 0

[vπ]4 ⊗ [vψ]2 0 0 0 0 −
√
2ωππψ




1
π

π
=




[v1]0 [v1]1 [v1]2

[vπ]0 ⊗ [vπ]2 ω1
ππ/

√
2 0 0

[vπ]0 ⊗ [vπ]3 0 0 0

[vπ]0 ⊗ [vπ]4 0 0 0

[vπ]1 ⊗ [vπ]2 0 0 0

[vπ]1 ⊗ [vπ]3 0 ω1
ππ/

√
2 0

[vπ]1 ⊗ [vπ]4 0 0 0

[vπ]2 ⊗ [vπ]0 0 0 ω1
ππ/4

[vπ]3 ⊗ [vπ]1 0 0 ω1
ππ/4

[vπ]4 ⊗ [vπ]2 0 0 0

[vπ]4 ⊗ [vπ]3 0 0 0

[vπ]4 ⊗ [vπ]4 0 0 ω1
ππ/2



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ψ
π

π
=




[vψ]0 [vψ]1 [vψ]2

[vπ]0 ⊗ [vπ]2 0 0 0

[vπ]0 ⊗ [vπ]3 ωψππ/
√
2 0 0

[vπ]0 ⊗ [vπ]4 0 0 0

[vπ]1 ⊗ [vπ]2 0 ωψππ/
√
2 0

[vπ]1 ⊗ [vπ]3 0 0 0

[vπ]1 ⊗ [vπ]4 0 0 0

[vπ]2 ⊗ [vπ]0 0 0 ωψππ/4

[vπ]3 ⊗ [vπ]1 0 0 ωψππ/4

[vπ]4 ⊗ [vπ]2 0 0 0

[vπ]4 ⊗ [vπ]3 0 0 0

[vπ]4 ⊗ [vπ]4 0 0 −ωψππ/2




π
π

π
=




[vπ]0 [vπ]1 [vπ]2 [vπ]3 [vπ]4

[vπ]0 ⊗ [vπ]2 0 0 0 0 0

[vπ]0 ⊗ [vπ]3 0 0 0 0 0

[vπ]0 ⊗ [vπ]4 ωπππ 0 0 0 0

[vπ]1 ⊗ [vπ]2 0 0 0 0 0

[vπ]1 ⊗ [vπ]3 0 0 0 0 0

[vπ]1 ⊗ [vπ]4 0 −ωπππ 0 0 0

[vπ]2 ⊗ [vπ]0 0 0 0 0 ωπππ/2

[vπ]3 ⊗ [vπ]1 0 0 0 0 −ωπππ/2
[vπ]4 ⊗ [vπ]2 0 0 ωπππ 0 0

[vπ]4 ⊗ [vπ]3 0 0 0 −ωπππ 0

[vπ]4 ⊗ [vπ]4 0 0 0 0 0




.

Note that these matrices are not isometric matrices, but are matrices for isometric operators.

Step 4.

The full set of F -symbols is computed from these. Fixing ωcab = 1, these are

[
F 1
111

]
11

= 1
[
Fψ11ψ

]
1ψ

= 1
[
Fπ11π

]
1π

= 1
[
Fψ1ψ1

]
ψψ

= 1
[
F 1
1ψψ

]
ψ1

= 1
[
Fπ1ψπ

]
ψπ

= 1
[
Fπ1π1

]
ππ

= 1
[
Fπ1πψ

]
ππ

= 1
[
F 1
1ππ

]
π1

= 1
[
Fψ1ππ

]
πψ

= 1
[
Fπ1ππ

]
ππ

= 1
[
Fψψ11

]
ψ1

= 1
[
F 1
ψ1ψ

]
ψψ

= 1
[
Fπψ1π

]
ψπ

= 1
[
F 1
ψψ1

]
1ψ

= 1
[
Fψψψψ

]
11

= 1
[
Fπψψπ

]
1π

= 1
[
Fπψπ1

]
ππ

= 1
[
Fπψπψ

]
ππ

= 1
[
Fψψππ

]
π1

= 1
[
F 1
ψππ

]
πψ

= 1
[
Fπψππ

]
ππ

= −1
[
Fππ11

]
π1

= 1
[
Fππ1ψ

]
πψ

= 1
[
F 1
π1π

]
ππ

= 1
[
Fψπ1π

]
ππ

= 1
[
Fππ1π

]
ππ

= 1
[
Fππψ1

]
πψ

= 1
[
Fππψψ

]
π1

= 1
[
F 1
πψπ

]
ππ

= 1
[
Fψπψπ

]
ππ

= 1
[
Fππψπ

]
ππ

= −1
[
F 1
ππ1

]
1π

= 1
[
Fψππ1

]
ψπ

= 1
[
Fπππ1

]
ππ

= 1
[
Fψππψ

]
1π

= 1
[
F 1
ππψ

]
ψπ

= 1
[
Fπππψ

]
ππ

= −1
[
Fππππ

]
11

= 1
2

[
Fππππ

]
1ψ

= 1
2

[
Fππππ

]
1π

= 1√
2

[
Fππππ

]
ψ1

= 1
2[

Fππππ

]
ψψ

= 1
2

[
Fππππ

]
ψπ

= − 1√
2

[
Fππππ

]
π1

= 1√
2

[
Fππππ

]
πψ

= − 1√
2

[
F 1
πππ

]
ππ

= 1
[
Fψπππ

]
ππ

= −1
[
Fππππ

]
ππ

= 0

,

the F -symbols for Rep(S3) as expected.
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