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Abstract.

The quantum geometric properties of a Bloch state in momentum space are usually

described by the Berry curvature and quantum metric. In realistic gapped materials

where interactions and disorder render the Bloch state not a viable starting point,

we generalize these concepts by introducing dressed Berry curvature and quantum

metric at finite temperature, in which the effect of many-body interactions can be

included perturbatively. These quantities are extracted from the charge polarization

susceptibility caused by linearly or circularly polarized electric fields, whose spectral

functions can be measured from momentum-resolved exciton or infrared absorption

rate. As a concrete example, we investigate Chern insulators in the presence of impurity

scattering, whose results suggest that the quantum geometric properties are protected

by the energy gap against many-body interactions.

1. Introduction

The geometric properties of a quantum state |ψ(k)〉 in the D-dimensional parameter

space k = (k1, k2...kD) has long been of tremendous interest in many areas of physics.

The first and perhaps most important aspect of this kind is the Berry phase[1], which

is a geometric phase associated with the evolution of the quantum state in a closed

trajectory in the parameter space, and is the mechanism behind numerous phenomena

such as quantized Hall conductance[2, 3] and anomalous velocity[4], just to list a few.

The integrand in the calculation of Berry phase is the Berry curvature Ωµν , which

has been measured experimentally in cold atoms[5, 6] and solids[7], and is further

recognized as the imaginary part of the quantum geometric tensor[8] Tµν . The real

part of Tµν is yet another important geometric quantity called quantum metric[9]

gµν , which has also been measured by means of Rabi oscillations[10]. Generically,

how the quantum state |ψ(k)〉 rotates in the Hilbert space as the parameter changes

from k to k + δk defines the quantum metric according to |〈ψ(k)|ψ(k + δk)〉| =

1 − 1
2
gψµνδk

µδkν [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 10, 21, 22, 23, 24]. This aspect is

particularly important to describe quantum phase transitions, since the quantum metric

generally diverges near the critical point kc regardless of any detail of the system, giving

rise to the notion of fidelity susceptibility[25, 26, 27, 28, 29, 30, 31].
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Despite the ubiquity of Berry curvature and quantum metric behind numerous

quantum phenomena, their very definition becomes rather ambiguous in realistic

materials subject to many-body interactions and at finite temperature. This situation

is relevant to the gapped fermionic systems such as semiconductors, superconductors, or

topological insulators that are subject to various complications like disorder, electron-

electron, or electron-phonon interactions. In this case, |ψ(k)〉 is the filled band state at

momentum k[32, 33], which however is no longer an energy eigenstate in the presence

of many-body interactions, and moreover the state is only partially filled at finite

temperature due to Fermi statistics. As a result, one must resort to a more generalized

definition for Ωµν and gµν . In addition, if the interaction is weak, they must be able

to be defined perturbatively, and recover the usual definition in the noninteracting and

zero temperature limit.

In this paper, we provide such a generalized formalism for gµν , Ωµν , and Tµν that

are applicable to realistic gapped materials at finite temperature and in the presence

of many-body interactions. Our construction is based on the observation that the

momentum-derivative in the calculation of gµν and Ωµν actually corresponds to the

dipole energy caused by an oscillating electric field[33]. The oscillating field causes the

exciton or infrared absorption of the gapped material, and the frequency-integrated

absorption rate in the zero temperature and noninteracting limit nicely recovers the

usual definition of Berry curvature and quantum metric[17, 34, 35]. Since the absorption

rate itself is a well-defined, experimentally measurable quantity even in the presence of

many-body interactions and at finite temperature, it serves as a generalized definition for

the Berry curvature and quantum metric. The absorption rate can be formulated within

a linear response theory of charge polarization susceptibility, in a way analogous to the

theory of exciton absorption rate in semiconductors caused by the minimal coupling

between electrons and the vector field[36, 37]. Moreover, our formalism introduces the

spectral functions for the experimental measurements of Berry curvature and quantum

metric, and we will discuss how many-body interactions influence the shape of these

spectral functions.

The structure of the paper is organized in the following manner. In Sec. II A,

we introduce the linear response theory of charge polarization susceptibility in gapped

materials, from which the interaction-dressed Berry curvature and quantum metric

naturally emerge. The recovery to the usual definition of Berry curvature and quantum

metric in the zero temperature and noninteracting limit is demonstrated explicitly

in Sec. II B, and the perturbative calculation of these quantities in the presence of

interactions is discussed in Sec. II C. In Sec. II D, we link the susceptibility to the

exciton and infrared absorption rate, thereby providing a concrete measurement protocol

for the dressed Berry curvature and quantum metric. In Sec. II E, we use the Chern

insulator with impurities as a concrete example to elaborate how the spectral functions

are influenced by interactions. Finally, the results are summarized in Sec. III.
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2. Linear response theory of Berry curvature and quantum metric

2.1. Susceptibility formalism for Berry curvature and quantum metric

We begin by recalling that in the noninteracting and zero temperature limit, the

quantum geometric tensor, quantum metric, and Berry curvature of a quantum state

|ψ(k)〉 at momentum k are defined by

Tµν(k) = 〈∂µψ|∂νψ〉 − 〈∂µψ|ψ〉〈ψ|∂νψ〉,

gµν(~k) =
1

2
〈∂µψ|∂νψ〉+

1

2
〈∂νψ|∂µψ〉 − 〈∂µψ|ψ〉〈ψ|∂νψ〉,

Ωµν(~k) = i〈∂µψ|∂νψ〉 − i〈∂νψ|∂µψ〉, (1)

where ∂µ ≡ ∂/∂kµ. Our interest is to investigate these quantities for the electrons in gap

materials with multiple valence and conduction bands. In the absence of interactions,

the electrons in the material are described by a second-quantized fermionic Hamiltonian

H0(k) =
∑

``′ h``′(k)c†`kc`′k, where ` denotes the degrees of freedom of the fermionic

basis like orbitals, spins, etc. After diagonalizing the single-particle Hamiltonian

h(k)|nk〉 = Enk|nk〉, we introduce the creation operator c†nk for the eigenstate |nk〉.
Some of these Enk’s may be degenerate, such as the spin degeneracy, but this does not

affect our formalism. At zero temperature, all the valence band states Enk < 0 are filled

and all the conduction band states Enk > 0 are empty. Suppose there are N− valence

bands, then the fully antisymmetric valence band state is[32, 33]

|ψval(k)〉 =
1√
N−!

εn1n2...nN−|n1k〉|n2k〉...|nN−k〉, (2)

which may be inserted into Eq. (1) to obtain the corresponding noninteracting gµν
and Ωµν . Note that this state is not a physically sensible state in our full Fock space

since it ignores all the other momenta 6= k, but the resulting metric and curvature are

meaningful and measurable, as elaborated below[32, 33].

Our aim is to present a linear response theory that links Berry curvature and

quantum metric to optical absorption experiments. In fact, this strategy of formulating

Berry curvature in terms of a certain kind of response caused by some external field

has been explored in several previous works. Shin et al. consider the charge and spin

current caused by an oscillating vector potential, and show that Berry curvature as

the anamolous velocity can be extracted from the time-evolution of Bloch states[38].

Gritsev and Polkovnikov elaborate that Berry curvature can be extracted from the

response of the generalized force caused by adiabatically quenching a driving parameter,

a phenomenon called dynamical quantum Hall effect[39]. Moreover, the quantized Hall

conductance, which may be derived from expanding the Bloch state to leading order

in the external field[40], can also be expressed in terms of a frequency-derivative of a

linear response function at the zero frequency limit[41]. In contrast, our construction

links the Berry curvature to the exciton or infrared absorption experiments performed at

finite temperature, introduces the Berry curvature spectral function that can incorporate

any many-body effects in real materials and be expressed by Feynman diagrams, and



Measurement of interaction-dressed Berry curvature and quantum metric in solids by optical absorption4

moreover elaborates that quantum metric also emerges out of the same linear response

theory, as we shall see below.

We now consider the application of an external electric field Eµ that couples to the

operator i∂µ, which also plays the role of the generator of the transformation from k to

k + δk on the momentum space manifold, described by the dipole energy[42, 17, 33]

δh(k) = −iqEµ∂µ, (3)

where q is the charge of the particle. The change of Hamiltonian in the second-

quantization formalism is

δH(k) =
∑
nn′

〈nk|δh(k)|n′k〉 c†nkcn′k = −qEµUµ(k), (4)

which defines the charge polarization operator Uµ

Uµ(k) =
∑
nn′

Ann′µ (k) c†nkcn′k = −U †µ(k),

Ann′µ (k) = 〈nk|i∂µ|n′k〉 ≡ Ann
′

µ . (5)

where Ann′µ is the non-Abelian gauge field defined from the eigenstates. In the presence

of interactions described by a second-quantized Hamiltonian H ′, and denoting the

unperturbed Hamiltonian of the whole system by H0 =
∑

kH0(k), the operators evolve

with time according to Uµ(k, t) = ei(H0+H′)tUµ(k)e−i(H0+H′)t, except Ann′µ which has no

dynamics.

The central quantity in our formalism is the susceptibility χµν of the ensemble

average of the charge polarization operator Uµ

〈Uµ(k, t)〉 = χµν(k, t)qE
ν(t), (6)

caused by the application of the electric field Eν(t) = Eνe−iωt. Within linear response

theory, the Matsubara version of the susceptibility is calculated by

χµν(k, iω) =

∫ β

0

dτ eiωτχµν(k, τ) = −
∫ β

0

dτ eiωτ 〈TτUµ(k, τ)U †ν(k, 0)〉, (7)

where iω = integer × 2πi/β is the bosonic Matsubara frequency, and the retarded

version can be obtained upon an analytical continuation iω → ω + iη. We propose the

imaginary part of the symmetrized retarded susceptibility to be the quantum metric

spectral function, and the real part of the antisymmetrized one to be the Berry curvature

spectral function

gdµν(k, ω) ≡ − 1

2π
Im [χµν(k, ω) + χνµ(k, ω)] ,

Ωd
µν(k, ω) ≡ − 1

π
Re [χµν(k, ω)− χνµ(k, ω)] ,

T dµν(k, ω) ≡ 1

2π

[
iχµν(k, ω)− iχ∗νµ(k, ω)

]
, (8)

where the superscript d indicates that these quantities are dressed by interactions. The

dressed quantum metric, Berry curvature, and quantum geometric tensor to be the
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integration of the spectral functions over positive frequency, since we aim at capturing

the absorption rate

Odµν(k) =

∫ ∞
0

dωOdµν(k, ω). (9)

where Odµν =
{
gdµν ,Ω

d
µν , T

d
µν

}
.

2.2. Zero temperature and noninteracting limit

In this section, we justify the definitions of
{
gdµν ,Ω

d
µν , T

d
µν

}
in Sec. 2.1 by showing that

they recover the {gµν ,Ωµν , Tµν} in the noninteracting and zero temperature limit given

by Eqs. (1) and (2). We first write the fully antisymmetric filled band state in the

second quantized form (ignoring the momentum index k) |ψval〉 =
∑

n∈v c
†
n|0〉 and

introduce the projection operators for the filled band Q− =
∑

n∈v |n〉〈n| and empty

band Q+ =
∑

m∈c |m〉〈m|. The inner product of the derivatives of |ψval〉 is

〈∂µψval|∂νψval〉 =

(∑
n∈v

〈∂µn|n〉

)(∑
n∈v

〈n|∂νn〉

)
+
∑
n∈v

〈∂µn|Q+|∂νn〉, (10)

which gives the noniteracting Berry curvature and quantum metric

Ωµν =
∑
n∈v

[i〈∂µn|∂νn〉 − i〈∂νn|∂µn〉] ,

gµν =
1

2

∑
n∈v

[〈∂µn|Q+|∂νn〉+ 〈∂νn|Q+|∂µn〉] . (11)

On the other hand, in the noninteracting limit of the Green’s function G → G(0), the

dynamic fidelity susceptibility is given by

χ(0)
µν (k, iω) =

∑
nm

Anmµ [Anmν ]†
1

β

∑
ip

G(0)
n (k, ip)G(0)

m (k, iω + ip). (12)

The frequency sum gives the usual Lindhard function, so the unperturbed real frequency

susceptibility is (suppressing k index for simplicity)

χ(0)
µν (ω) =

∑
nm

〈∂µn|m〉〈m|∂νn〉
f(En)− f(Em)

ω + En − Em + iη
. (13)

Let us first consider zero temperature limit such that the Fermi functions are step

functions, which demand En must belong to the valence bands n ∈ v and Em the

conduction bands m ∈ c. Symmetrizing the imaginary part yields

− 1

2π
Im
[
χ(0)
µν (ω) + χ(0)

νµ (ω)
]
T=0

=
∑

n∈v,m∈c

1

2
[〈∂µn|m〉〈m|∂νn〉+ (µ↔ ν)] δ(ω + En − Em). (14)

After an integration over frequency, one obtains the zero temperature and noninteracting

limit of the dressed quantum metric gdµν(k)|H′=0,T=0 = gµν(k), which recovers that of

the filled band Bloch state in Eq. (11).
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To see the Berry curvature, one may consider the combination iχ
(0)
µν (ω)|T=0 −

iχ
(0)
νµ (ω)|T=0 and integrate it over frequency

i

∫
dω χ(0)

µν (ω)|T=0 − i
∫
dω χ(0)

νµ (ω)|T=0

=
∑

n∈v,m∈c

[i〈∂µn|m〉〈m|∂νn〉 − i〈∂νn|m〉〈m|∂µn〉]
∫

dω

ω + En − Em

+ π
∑

n∈v,m∈c

[〈∂µn|m〉〈m|∂νn〉 − 〈∂νn|m〉〈m|∂µn〉] . (15)

The second line above is purely real and the third line purely imaginary, and hence

i

π
Re

[∫
dω χ(0)

µν (ω)|T=0 −
∫
dω χ(0)

νµ (ω)|T=0

]
=
∑
n∈v

[〈∂µn| (I −Q−) |∂νn〉 − 〈∂νn| (I −Q−) |∂µn〉]

=
∑
n∈v

[〈∂µn|∂νn〉 − 〈∂νn|∂µn〉] . (16)

Thus the dressed Berry curvature in the zero temperature and noninteracting limit

Ωd
µν(k)|H′=0,T=0 = Ωµν(k) recovers the noninteracting Berry curvature in Eq. (11).

Figure 1. (a) Feynman diagrams for the self-energy Σ caused by impurity scattering,

and the full Green’s function solved by Dyson’s equation G = G(0) +G(0)ΣG. (b) The

susceptibility χGµν calculated from the full Green’s function, and (c) χLµν calculated in

the ladder diagram approximation.

2.3. Perturbative calculation of dressed Berry curvature and quantum metric

In the presence of interactions H ′, there are various approximations that can be

used to calculate the susceptibility. For concreteness, in present work we discuss two

most frequently used approximations, which will be applied to a concrete example in

Sec. 2.5. The first uses the full Green’s function calculated from the Dyson’s equation

G = G(0) +G(0)ΣG in the polarization operator, as indicated in Fig. 1 (a) and (b) using
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impurity scattering as an example, which yields

χGµν(k, iω) =
∑
nm

Anmµ [Anmν ]†
1

β

∑
ip

Gn(k, ip)Gm(k, iω + ip). (17)

One may use the single-particle spectral function for the full Green’s function A(k, ω) =

−ImG(k, ω)/π to rewrite Eq. (17), yielding[37]

gGµν(k, ω) =
∑
nm

1

2

{
Anmµ [Anmν ]† +Anmν

[
Anmµ

]†}
×
∫
dεAn(k, ε)Am(k, ε+ ω) [f(ε)− f(ε+ ω)] , (18)

and likewisely for ΩG
µν(k, ω), where f(ε) is the Fermi distribution that determines

the filling at finite temperature. One sees that the self-energy broadens the spectral

function A(k, ω), and subsequently broadens gGµν(k, ω) and ΩG
µν(k, ω) from the δ-

functions peaking at ω = Emk − Enk, as explained in Appendix Appendix A using

a toy model with artificial broadening.

Another frequently used approximation are the ladder diagrams in Fig. 1 (c) that

correspond to

χLµν(k, iω) =
∑
nm

Anmµ (k)
1

β

∑
ip

G(0)
n (k, ip)G(0)

m (k, ip+ iω)

× Γnmν (k, ip, ip+ iω), (19)

where the vertex function Γnmν acts like a dressed non-Abelian gauge field. We will

use the intraband impurity scattering as an example, in which Γnmν satisfies the Bethe-

Salpeter equation (BSE)[37]

Γnmν (k, ip, ip+ iω) = [Anmν (k)]†

+
∑
k′

W nm
kk′ (iω)G(0)

n (k′, ip)G(0)
m (k′, ip+ iω)Γnmν (k′, ip, ip+ iω). (20)

where W nm
kk′ (iω) is the impurity scattering vertex. The G(0) may be replaced by the full

Green’s function G in more sophisticated calculations.

2.4. Measurements by exciton or infrared absorption rate

The oscillating electric field is expected to cause particle-hole excitations even at finite

temperature, which may be detected by exciton absorption in semiconductors and

infrared absorption in superconductors. In time-dependent perturbation theory with

the perturbation δh(k, t) = −iqE0e
−iωt∂µ, one can immediately identify the exciton

absorption rate R(k, ω) obtained from the Fermi golden rule with our quantum metric

spectral function[36] (in standard unit)

R(k, ω) = 2π

(
qE0

~

)2

gdµµ(k, ω), (21)

The off-diagonal components, for instance gdxy(k, ω) defined in the xy-plane, can be

extracted by considering two different measurement protocols[17] that applied the same
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force strength qE0 in the two directions but with a phase difference ±1

δh(±) =
(
U †x ± U †y

)
qE0e

−iωt, (22)

which induces the polarization

〈Ux(k, t)± Uy(k, t)〉 = χ(±)(k, t)qE0e
−iωt, (23)

where χ(±) = χxx ± χxy ± χyx + χyy, and hence subtracting the two absorption rates

yields

R(+)(k, ω)−R(−)(k, ω) = 2π

(
qE0

~

)2

4gdxy(k, ω). (24)

After gdµν(k) is measured, various differential geometric quantities that characterize the

momentum space manifold like Ricci scalar, Riemann tensor, and geodesics (in the

noninteracting limit, it is the trajectory along which the Bloch state rotates the least)

can be extracted according to their usual definitions in terms of gdµν(k). Likewisely, the

Berry curvature can be extracted by applying the same force in the two directions but

with a phase difference ±i[34]

δhc1,c2 =
(
U †x ± iU †y

)
qE0e

−iωt, (25)

which are precisely the two circular polarizations, causing the polarization

〈Ux(k, t)∓ iUy(k, t)〉 = χc1,c2(k, t)qE0e
−iωt, (26)

where χc1,c2 = χxx ± iχxy ∓ iχyx + χyy. Subtracting the absorption rates of the two

protocols, i.e., a circular dichroism measurement, yields

Rc1(k, ω)−Rc2(k, ω) = 2π

(
qE0

~

)2

2Ωd
xy(k, ω), (27)

which gives the Berry curvature spectral function.

Experimental techniques that can resolve the momentum and frequency dependence

of exciton absorption rate can directly measure gdµν(k, ω) and Ωd
µν(k, ω). Note that

the usual exciton absorption experiment measures the spectral function integrated over

momentum k and plotted as a function of ω[43, 36, 44, 45], but our proposal requires to

integrate it over ω and plot it as a function of k. To serve this purpose, we anticipate that

the most promising technique may be time-resolved and angle-resolved photoemission

spectroscopy (trARPES)[46, 47, 48, 49, 50, 51]. In this technique, the change of particle

number in all the valence bands ∆nv(k, ω, t) and in all the conduction bands ∆nc(k, ω, t)

at k after the electrostatic force B0e
−iωt = qE0e

−iωt polarized along µ has been applied

for time t is

∆nc(k, ω, t) = −∆nv(k, ω, t) = R(k, ω) t

= N− − z(k)

∫ 0

−∞
dε1
∑
n∈v

An(k, ε1)f
∗(ε1, ω, t)

= z(k)

∫ ∞
0

dε1
∑
m∈c

Ac(k, ε1)f
∗(ε1, ω, t). (28)
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where f ∗(ε, ω, t) represents a nonequilibrium Fermi distribution function that evolves

with time, and the phenomenological fitting parameter z(k) can be used to adjust

the experimentally measured An(k, ε) until the spectral sum rule at equilibrium N− =

z(k)
∫ 0

−∞ dε1
∑

n∈v An(k, ε1)f(ε1) is satisfied. Equation (28) provides a measurement

protocol for gdµν(k, ω) and Ωd
µν(k, ω) in the proposed trARPES experiment, in which

one measures the lost of particle number in the valence bands or the gain of particle

number in the conduction bands after the electric field Eµ with frequency ω has been

applied for time t.

2.5. Disordered Chern insulator in a continuum

We proceed to use Chern insulator in a continuum with impurity scattering as a

concrete example. This example is chosen for multiple reasons. Firstly, analytical

results for the self-energy can be given, from which the broadening and shift of

single-particle spectral function and how they subsequently affect the Berry curvature

spectral function and quantum metric spectral function can be clearly demonstrated.

Secondly, the noninteracting Chern insulator has topological order, and therefore how

the disorder affects the topological and quantum geometrical property of the system

can be unambiguously understood. Thirdly, this simple model serves as a good example

to demonstrate how the band gap protects the topological and quantum geometrical

properties against many-body interactions, which must be understood before other

factors, such as realistic band structures, spin or orbital degrees of freedom, etc., should

be investigated. The single particle Hamiltonian of this model is expanded by the Pauli

matrices h(k) = d(k)·σ, with d1 = vkx, d2 = vky, and d3 = M , where v = 1 is the Fermi

velocity and M represents the band gap. The model contains only one filled band and

one empty band, and the modulus of momentum is restricted to 0 ≤ k ≤ π/a such that

the integration in the self-energy is finite, where a = 1 represents a lattice constant. In

the noninteracting and zero temperature limit, the square root of the determinant of the

quantum metric is equal to half of the module of the Berry curvature[11, 13, 14, 15, 52]√
det gµν = |Ωxy|/2, (29)

a relation that is a special case of the so-called metric-curvature correspondence[33] that

has been derived from a universal topological invariant[53]. Whether such a relation still

holds in the presence of interactions would be a good indication of whether the quantum

geometric properties remain unchanged. The Chern insulator in the presence of electron-

electron and electron-phonon interactions has been considered previously[54, 55], but we

will consider the intraband impurity scattering that does not transfer electrons between

the two bands. Details of the calculation is given in Appendix Appendix B, including

the argument to ignore the ladder diagrams, so we only focus on the gGµν(k, ω) and

ΩG
µν(k, ω) defined from Eq. (18).

Figure 2 (a) shows the single-particle spectral function of this model at different k,

where the impurity scattering shifts and broadens the quasiparticle peak as expected,

and the band gap can be identified from the peak positions. The module of Berry
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Figure 2. (a) Single-particle spectral function of the Chern insulator with impurity

density ni = 0.1 and impurity potential V = 1, plotted for several diagonal momenta

kx = ky = k. Each line is shifted upward for the sake of presentation. The chemical

potential is set at µ = 0.13 and temperature at kBT = 0.03. (b) The Berry curvature

spectral function |Ωdxy(k, ω)|/2 and quantum metric spectral function
√

det gdµν(k, ω),

which coincide at large momenta, signifying the metric-curvature correspondence, but

deviate at small momenta due to the reduced band gap.

curvature spectral function |Ωd
xy(k, ω)|/2 and the square root of the determinant of

quantum metric spectral function
√

det gdµν(k, ω) shown in Fig. 2 (b) peak at the

band gap, reminisce the feature of exciton absorption rates. At large momentum

and large band gap, the coincidence of the two spectral functions indicate that

Eq. (29) is satisfied, signifying the band gap protects the geometric properties against

the interaction. However, at small momentum, the two spectral functions deviate

significantly, suggesting that interactions can alter the quantum geometric properties

in regions with a small band gap, which is in accordance with our phenomenological

explanation using an artificial broadening given in the supplemental material.

3. Conclusions

In summary, we have presented a formalism of quantum metric and Berry curvature for

realistic gapped materials at finite temperature and subject to many-body interactions.

Our formalism is based on the linear response theory of charge polarization induced

by polarized electric field, which recognizes the real frequency charge polarization

susceptibility as the spectral functions of quantum metric and Berry curvature. The

spectral functions are also the exciton or infrared absorption rate caused by the polarized

electric field, suggesting a concrete protocol to measure these quantities even at finite

temperature and in the presence of many-body interactions. The spectral functions

integrated over frequency give the dressed Berry curvature and quantum metric at

momentum k, and hence experimental techniques that can measure exciton absorption

rate with a momentum resolution, such as the loss of valence band spectral weight

measured by trARPES, can directly detect these quantities.

The perturbative calculation of the spectral functions is analogous to that in the

theory of exciton absorption rate in semiconductors induced by minimal coupling. Using
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disordered Chern insulator as an example, we reveal that the spectral functions are

significantly broadened by interactions, as expected. However, within the full Green’s

function approximation and the ladder diagrams approximation, our results suggest that

the quantum geometric properties of the Chern insulator is protected by the energy

gap against interactions, in the sense that the metric-curvature correspondence between

Berry curvature and quantum metric remains unchanged if the energy gap is larger than

the strength of the impurity scattering. Finally, as our formalism is broadly applicable

to any semiconductors, superconductors, and topological insulators, we anticipate that

the influence of temperature and interactions on the quantum geometric properties of a

variety of gapped material can be investigated ubiquitously within our linear response

theory. On the other hand, we also anticipate that when combining our linear response

theory with the realistic band structures obtained from first-principle calculations, a lot

of technical details may arise, such as Wannierization[38], which are important issues

that await to be explored.

We thank exclusively A. F. Kemper for the discussion about various aspects related

to pump-probe experiments. W. C. is financially supported by the productivity in

research fellowship from CNPq.

Figure 1. (a) The integrals {Inn, Inm, Imn, Imm} that enter the expression of quantum

metric in Eq. (A.2) for our two-band toy model, plotted as a function of the band gap ∆

and artificial broadening η. (b) Schematics of the interband and intraband transition

processes at weak (top) and strong (bottom) interactions, and why in the later case the

dressed quantum metric and Berry curvature deviate from their noninteracting values.

Appendix A. Two-band toy model with artificial broadening

In the section, we use a two-band toy model to schematically demonstrate how the

broadening of single-particle spectral function by interaction causes the Berry curvature

and quantum metric to deviate from their noninteracting values. Consider a model that

contains only one filled band state |n〉 with energy −∆ and one empty band state |n〉
with energy +∆, which give some form of Anmµ that is not important at this stage (all of

these are functions of momentum k, but we omit this index for simplicity). The spectral

functions are assumed to take the Lorentzian shape with an artificial broadening η that
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comes from some source of scattering

An(ε) =
η/π

(ε+ ∆)2 + η2
, Am(ε) =

η/π

(ε−∆)2 + η2
, (A.1)

and we restrict the discussion to zero temperature such that the Fermi functions are step

functions f(ε) = θ(−ε). As a result, the quantum metric gGµµ calculated using spectral

representation, given in Eq. (12) of the main text, contains four terms (
∑

n′ and
∑

m′

both sum the two bands)

gGµµ =
∑
n′m′

An
′m′

µ

[
An
′m′

µ

]†
× In′m′ ,

In′m′ ≡
∫ ∞
0

dω

∫ 0

−ω
dεAn′(ε)Am′(ε+ ω). (A.2)

Out of the four integrations {Inn, Inm, Imn, Imm}, the {Inm, Imn} represent the interband

and {Inn, Imm} the intraband transitions. In the noninteracting limit limη→0An(ε) =

δ(ε + ∆) and limη→0Am(ε) = δ(ε − ∆), only the Inm = 1 gives unity and all others

are zero Imn = Inn = Imm = 0, so the noninteracting quantum metric is simply

gGµµ = Anmµ
[
Anmµ

]†
= 〈∂µn|m〉〈m|∂µn〉 = gµµ.

In the presence of interaction η 6= 0, how much Inm deviates from unity and

how much {Inn, Imn, Imm} deviate from zero would give us a sense of how much gGµµ
deviates from gµµ, which ovbiously depends on the strength of interaction η and the

band gap ∆. Figure 1 (a) shows the numerical result of {Inn, Inm, Imn, Imm} for this

toy model. At large gap ∆ and small broadening η, the spectral functions An(ε) and

Am(ε) are well separated peaks whose shapes are close to δ-functions, leading to the

interband transition amplitude Inm ≈ 1. Because An(ε) has a negligible weight above

chemical potential ε > µ, the intraband transition amplitude is practically zero Inn ≈ 1.

As a result, the dressed quantum metric and Berry curvature roughly preserve their

noninteracting values gGµν ≈ gµν and ΩG
µν ≈ Ωµν . In contrast, at small gap ∆ and large

broadening η, signifying strong interactions, the spectral functions An(ε) and Am(ε)

overlap significantly and each has notable weight above or below the chemical potential,

causing Inm < 1 and Inn > 0. After multiplying by the matrix elements of non-Abelian

gauge fields, these deviations cause gGµν and ΩG
µν to differ from their noninteracting

values. Although this result is in accordance with the expectation that the band gap

protects the quantum geometric properties against any source of interactions, it should

be noted that even for broadening η as small as 20% of the gap ∆ there is already a

notable change of Inm and Inn. For instance, at ∆ = 0.2 and η = 0.04, where the two

Lorentzians peaks An(ε) and Am(ε) appeared to be very apart, the interband transition

is already reduced to Inm ≈ 0.878 and the intraband transition increased to Inn ≈ 0.059.
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Appendix B. Detail of the Chern insulator with impurity scattering

We now detail the susceptibility χµν(k, ω) for Chern insulator in a continuum with

impurities. Parametrizing the 2× 2 Dirac Hamiltonian by

H = d · σ = d1σ1 + d2σ2 + d3σ3 , (B.1)

the components are given by d1 = vkx, d2 = vky, and d3 = M . Denoting d =√
d21 + d22 + d23, the filled band state |nk〉 with energy Enk = −d and the empty band

state |mk〉 with energy Emk = d are given by

|n,mk〉 =
1√

2d(d∓ d3)

(
d3 ∓ d
d1 + id2

)
, (B.2)

where the upper sign is for |nk〉 and the lower sign |mk〉. In this gauge, the non-Abelian

gauge field takes the form

Annµ = 〈n|i∂µ|n〉 =
d2∂µd1 − d1∂µd2

2d(d− d3)
,

Ammµ = 〈m|i∂µ|m〉 =
d2∂µd1 − d1∂µd2

2d(d+ d3)
,

Anmµ = 〈n|i∂µ|m〉 =
d2∂µd1 − d1∂µd2 − id∂µd3 + id3∂µd

2d
√
d21 + d22

=
(
Amnµ

)∗
. (B.3)

In the xy-plane of the continuous Chern insulator, they are

Annx =
v2ky

2d(d−M)
, Ammx =

v2ky
2d(d+M)

, Anny = − v2kx
2d(d−M)

,

Ammy = − v2kx
2d(d+M)

, Anmx =
v2ky + iMv2kx/d

2dvk
= (Amnx )∗ ,

Anmy =
−v2kx + iMv2ky/d

2dvk
=
(
Amny

)∗
. (B.4)

The bare retarded Green’s function G
(0)
n (k, ω) = G

(0)
n (k, ω) does not depend on the

azimuthal angle ϕ but only the module of the momentum k. Assuming only intraband

scattering, the impurity potential V × I2×2 gives the matrix elements

V n
kk′ = 〈nk′|V |nk〉 =

V

2d(d− d3)

[
(d3 − d)2 + (d21 + d22)e

i(ϕ−ϕ′)
]
,

V m
kk′ = 〈mk′|V |mk〉 =

V

2d(d+ d3)

[
(d3 + d)2 + (d21 + d22)e

i(ϕ−ϕ′)
]
. (B.5)

The T -matrix of impurity scattering satisfies the self-consistent equation

T
n/m
kk′ (ω) = V

n/m
kk′ +

∫ 2π

0

dϕ1

2π

∫ π/a

0

k1 dk1
2π/a2

V
n/m
kk1

T
n/m
k1k′

(ω)G
(0)
n/m(k1, ω)

=
V

2

(
d± d3
d

)[
1 + bei(ϕ−ϕ

′)
]

+

[
V

2

(
d± d3
d

)]2 [
1 + b2ei(ϕ−ϕ

′)
] ∫ π/a

0

k1 dk1
2π/a2

G
(0)
n/m(k1, ω) + ... (B.6)
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where b = (d21 + d22)/(d± d3)2. The radial integration of retarded Green’s function can

be performed analytically by∫ π/a

0

k1 dk1
2π/a2

G
(0)
n/m(k1, ω) =

∫ π/a

0

k1 dk1
2π/a2

[
1

ω ± d
− iη

(ω ± d)2 + η2

]
, (B.7)

where η is an artificial broadening, whose real and imaginary parts are

Ren/m =
a2

2πv2

{
±
(
M̃ − |M |

)
− ω ln

∣∣∣∣∣ ω ± M̃ω ± |M |

∣∣∣∣∣
}
,

Imn/m =
ηa2

2πv2

{
±ω
η

[
arctan

M̃ ± ω
η

− arctan
|M | ± ω

η

]

−1

2
ln

∣∣∣∣∣ (M̃ ± ω)2 + η2

(|M | ± ω)2 + η2

∣∣∣∣∣
}
. (B.8)

After an impurity averaging, the self-energy is given by impurity density multiplied by

the T -matrix at the same momentum index Σn/m(k, ω) = niT
n/m
kk (ω), which can then

be used to calculate the spectral function An(k, ω) = −ImGn(k, ω)/π, yielding

An(k, ω) = − 1

π

ImΣ(k, ω)

(ω − Enk − ReΣ(k, ω))2 + ImΣ(k, ω)2
, (B.9)

and subsequently the susceptibility χGµν that uses the full Green’s function.

For the ladder diagrams of the susceptibility, the Matsubara four-fermion vertex

that enters the Feynman diagrams is given by the T -matrix

W nm
kk′ (iω) = niT

n
kk′(iω)Tmkk′(iω), (B.10)

which does not transfer frequency between the filled band propagator and the empty

band propagator. As a result, the vertex function Γnmν in the ladder diagrams satisfies

Γnmν (k, ip, ip+ iω) = [Anmν (k)]†

+
∑
k′

W nm
kk′ (iω)G(0)

n (k′, ip)G(0)
m (k′, ip+ iω)Γnmν (k′, ip, ip+ iω)

= [Anmν (k)]†
{

1 +
∑
k′

W nm
kk′ (iω)G(0)

n (k′, ip)G(0)
m (k′, ip+ iω) + ...

}
. (B.11)

The first term in the last line gives the bare susceptibility χ
(0)
µν . The second order term,

after inserting it back to the expression of ladder diagrams, will contribute to a frequency

sum of four propagators

− 1

β

∑
ip

S(iω, ip) =
1

β

∑
ip

1

ip− Enk
1

ip+ iω − Emk

1

ip− Enk′
1

ip+ iω − Emk′
.

(B.12)

Performing the frequency sum and subsequently an analytical continuation iω → ω+iη,

and then taking the imaginary part to get the spectral function, this second order term
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gives

− 1

π
Im

{
− 1

β

∑
ip

S(iω, ip)

}
iω→ω+iη

=

[
δ(ω + Enk − Emk)

ω + Enk − Emk′
+
δ(ω + Enk − Emk′)

ω + Enk − Emk

]
f(Enk)

Enk − Enk′

+

[
δ(ω + Enk − Emk)

ω + Enk′ − Emk

+
δ(ω + Enk′ − Emk)

ω + Enk − Emk

]
f(Emk)

Emk − Emk′

+

[
δ(ω + Enk′ − Emk′)

ω + Enk′ − Emk

+
δ(ω + Enk′ − Emk)

ω + Enk′ − Emk′

]
f(Enk′)

Enk′ − Enk

+

[
δ(ω + Enk′ − Emk′)

ω + Enk − Emk′
+
δ(ω + Enk − Emk′)

ω + Enk′ − Emk′

]
f(Emk′)

Emk′ − Emk

, (B.13)

which vanishes after a frequency integration

− 1

π

∫
dωIm

{
− 1

β

∑
ip

S(iω, ip)

}
iω→ω+iη

= 0. (B.14)

We conclude that this second order term does not contribute to the quantum metric or

Berry curvature. The next order in the ladder diagrams is proportional to the impurity

density square n2
i , which may be ignored.
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