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Abstract

We investigate the various physical mechanisms that underlie the dynamical instability of

a quantized vortex array at the interface between two counter-propagating superflows in

a two-dimensional Bose–Einstein condensate. Instabilities of markedly different nature

are found to dominate in different flow velocity regimes. For moderate velocities where

the two flows are subsonic, the vortex lattice displays a quantized version of the hydro-

dynamic Kelvin–Helmholtz instability (KHI), with the vortices rolling up and co-rotating.

For supersonic flow velocities, the oscillation involved in the KHI can resonantly couple

to acoustic excitations propagating away in the bulk fluid on both sides. This makes

the KHI rate to be effectively suppressed and other mechanisms to dominate: For finite

and relatively small systems along the transverse direction, the instability involves a re-

peated superradiant scattering of sound waves off the vortex lattice; for transversally

unbound systems, a radiative instability dominates, leading to the simultaneous growth

of a localized wave along the vortex lattice and of acoustic excitations propagating away

in the bulk. Finally, for slow velocities, where the KHI rate is intrinsically slow, another

instability associated to the rigid lateral displacement of the vortex lattice due to the

vicinity of the system’s boundary is found to dominate.
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1 Introduction

Parallel flows in hydrodynamics are known to give rise to instabilities, with one of the most

fundamental being the Kelvin–Helmholtz instability (KHI) occurring in the shear layer separat-

ing two parallel uniform flows [1, 2]. The effect of this instability is to amplify perturbations

located in the transition region and create a characteristic vortex-like flow pattern that grows

until the two flows mix up in a turbulent way.

In incompressible fluids, the KHI occurs both for a vortex sheet (or tangential discontinu-

ity), in which the velocity is discontinuous between the two uniform parallel flows (see for

example §29 in [3]), and in the case in which the velocity shows a smooth transition. In this

latter case, the effect of the finite width of the shear layer is to quench the instability at smaller

scales [1,2].

Even more exciting features are found when compressible fluids are considered, in partic-

ular for relative velocities∆v of the order of twice the speed of sound in the fluid. For a vortex

sheet in two spatial dimensions the KHI is suppressed and the discontinuity becomes stable

again for∆v > 2
�

2cs (see Problem 1 in §84 of [3]). In the case of a finite-size shear layer, the

instability is present for all values of ∆v, but displays different properties for ∆v > 2cs [4–8].

This change in behaviour is due to the appearance of negative-energy modes for acoustic per-

turbations in supersonically flowing compressible fluids.

This same feature also underlies the amplified reflection (or over-reflection) of acoustic

waves at an interface with ∆v > 2cs (Problem 2 in §84 of [3]). Within the gravitational anal-

ogy framework [9], this phenomenon can be related to superradiant scattering from rotating

black holes [10], whose analog has been recently observed in a water tank displaying a drain-

ing vortex flow configuration [11]. In parallel flows instead, amplified reflection is typically

associated to dynamical instabilities that complicate the picture (see for example discussion in

§11.5 of [12]).

Since the KHI is an inviscid phenomenon, determined by inertial effects and not by vis-

cosity, it can be expected to also take place in the inviscid flow of superfluids. In this con-

text, KHI was experimentally observed at the interface between the two superfluid phases of
3He [13–15]. Subsequently, dilute Bose–Einstein condensates (BECs) of ultracold atoms have

been theoretically considered for the study of this phenomenon: in particular, KHI was shown

to develop in phase-separated two-component BECs [16–18], while the KHI of a quantized

vortex array in a single component condensate was explored in [19]. Given the irrotational

nature of the velocity field of a single-component BEC, the only way to accommodate the ve-

locity difference is in fact by creating an array of quantized vortices along the shear layer.

More recently, a similar velocity field in a BEC with a different density distribution has been

experimentally investigated in [20]. Here, a condensate subject to a synthetic magnetic field

(obtained with a rotation of the trap) was prepared in a single Landau gauge wavefunction,

displaying an elongated shape. This configuration was shown to undergo a snaking instability

that was connected with a KHI and that leads to a crystallization of the BEC in droplets.

In this article we investigate the interplay of superradiant phenomena and the KHI of an
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array of quantized vortices in a single component atomic BEC confined between two hard-wall

potentials. While for ∆v < 2cs we recover and further characterize the KHI studied in [19], a

much richer physics is found for ∆v > 2cs when the KHI mixes with propagating sound waves

and gets effectively quenched. In finite-size configurations along the direction transverse to

the velocity, the KHI is replaced by a slower instability: the perturbation starts to appear in

the bulk of the two counter-propagating flows and only at later times it produces a significant

distortion of the vortex array. This is a superradiant instability (SRI) can be understood in

terms of a repeated amplified scattering of sound waves in the two surrounding bulk regions,

that are then bounced back towards the vortex array by the edges of the system. An analogous

mechanism was studied in [21] in a configuration where the velocity jump was created by a

static synthetic gauge field with no independent dynamics.

While this mechanism cannot take place in an unbound system, where no repeated ampli-

fications can occur, surprisingly we find yet another kind of instability in which surface modes

localized in the shear layer grow together with acoustic waves propagating away in the two

flows. This radiative instability (RI) is again superradiant in nature since it relies on the fact

that the localized mode is resonant with travelling waves and has an opposite-signed energy

with respect to them. As such it is analogous to the ergoregion instabilities of multiply quan-

tized vortices [22, 23], that are also given by the resonance of negative-energy localized core

modes with positive-energy propagating waves.

While in the KHI and SRI regimes the long-distance hydrodynamic picture qualitatively

captures the dominating physical effects, in the RI regime the short-distance quantized nature

of the shear layer becomes important for the existence of localized excitations on resonance

with travelling ones. This quantized nature is also important when small velocities are consid-

ered and the dominating instability turns out to be associated to a rigid lateral displacement

of the vortices. This drift instability (DI) gets faster when the system size is decreased and is

analogous to the motion of a vortex near the boundary of a condensate confined with a hard-

wall potential [24]. The presence of this additional instability however does not prevent the

development of the KHI that continues to dominate the long-time evolution of the system.

The structure of the paper is as follows. In Section 2 we introduce the system under study

and show the results of GPE numerical calculations for regimes displaying different kinds of

instability. In Section 3 we shine more light on the problem by computing the linearized

Bloch-waves Bogoliubov spectra for different velocities. In Section 4 we describe in detail the

different instability regimes: in Section 4.1 we describe the Kelvin–Helmholtz instability (KHI)

regime, in Section 4.2 we discuss the superradiant instability (SRI) and the radiative instabil-

ity (RI), and in Section 4.3 we address the drift instability (DI) happening at small relative

velocities. Finally, in Section 5 we draw the conclusions. As a further support to our conclu-

sions, in Appendix A we display the result of additional numerical calculations confirming the

occurrence of superradiant scattering in this system.

2 GPE simulations

We consider an atomic BEC at T = 0 tightly confined in one direction so that the relevant

dynamics takes place in two spatial dimensions. The condensate can be described with a two-

dimensional GPE for the classical complex field Ψ(t, x , y), describing the BEC order parameter

[26]:

iħh∂tΨ =

"

−ħh
2∇2

2M
+ g|Ψ|2 + Vext(t, y)

�

Ψ. (1)

Here M is the atomic mass, g is the interatomic interaction constant and Vext is an external

potential that, as indicated, we take to depend only on y and to be possibly time-dependent.
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Figure 1: GPE simulations of the time evolutions of the density of a condensate con-

fined along y by hard walls at y = ±L y/2, with L y = 40À and with a central Gaus-

sian potential VG = Aexp(−y2/2Ã2) with A = 5µ and Ã = À. Opposite velocities

±v = ±∆v/2 are imposed in the two regions y < 0 and y > 0 and, when the Gaus-

sian potential is progressively lowered (between t = 0 and t = 100 µ/ħh), an array

of quantized vortices develops. The upper plots show the case ∆v = 0.98 cs and

the lower ones ∆v = 2.94 cs. In the leftmost panels we show cuts of the velocity

profile along y for a x = 32À position located in between a pair of vortices for time

t = 100µ/ħh after the formation of the array of vortices: the thicker black lines show

the numerical data, the thinner red lines are plots of equation (3), with the shear

layer width (4). The upper panels show the KHI behaviour presented in [19], in

which vortices cluster and co-rotate. The lower panels show an example of SRI, in

which the instability is slower and the unstable mode is not localized on the vortex

line, but is distributed all over the system. Times are expressed in units of ħh/µ. A

video of these evolutions is available online [25].

A stationary state of the GPE can be taken in the form Ψ(t, x , y) = e−iµt/ħh
�

n(x , y)eiΘ(x ,y),

where µ is the chemical potential, n is the density of condensed atoms and Θ is the phase, that

is related to the velocity of the condensate by v= ħh∇Θ/M . Interactions imply the presence of

a finite sound speed, that in a constant-density condensate is cs :=
�

gn/M , and introduce a

typical length scale, the so-called healing length À := ħh/(Mcs).

As was done in [19], we consider periodic boundary conditions along x and a potential

composed by two hard walls at y = ±L y/2 and by a repulsive Gaussian potential centered

in y = 0. This central Gaussian potential is initially strong enough so that the condensate is

composed by two parts separated and independent, as shown in the t = 0 panels of Figure 1.

The ground state of the GPE with this potential is computed via the conjugate gradient method

described in [27] and at t = 0 the two condensates are given equal and opposite momentum

kicks along x , so that they develop equal and opposite velocities±v = ±∆v/2. The intensity of

the central Gaussian potential is then linearly decreased in time so to vanish at t = 100 µ/ħh,

after which the external potential is composed only by the external time-independent hard

walls. Once the central barrier has been lowered, the only way for the condensate to satisfy

the irrotationality of the velocity vector field is to create an array of (singly) quantized vortices

along y = 0, in numbers equal to the difference of the winding numbers of the phase in the two

regions. In mathematical terms, given a relative velocity ∆v between the two condensates,

the number of vortices per unit length will be

nvort =
M

ħh

∆v

2Ã
. (2)

For a value of x that corresponds to a half point between two vortices, the y dependence
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of the velocity vx can in good approximation be fitted with a functional form

vx(y) =
∆v

2
tanh(y/¶∆v). (3)

¶∆v being the width of the transition region between the two counter-propagating uniform

flows ±∆v/2. This hyperbolic tangent velocity profile is well-known in hydrodynamics, whose

KHI for the incompressible fluid case was studied in [28], and whose stability in the compress-

ible fluid case was characterized in [4–6]. In the present case the shear layer width ¶∆v is not

independent of the velocity difference, but behaves approximately as

¶∆v ≃ À
"

1+
cs

∆v

"

. (4)

Two examples of the y dependence of the velocity can be seen in the leftmost panels of Figure

1, where the numerical profile (black) is successfully compared to the functional form (3)

shown in red.

The rest of Figure 1 shows, for two different values of the relative velocity, snapshots of

the time-evolution of the GPE following this procedure; a full video showing these evolutions

is available online [25]. In the first example, for ∆v < 2cs, the vortex line is unstable with a

mechanism similar to the hydrodynamic KHI: after some time vortices start to move from the

horizontal y = 0 line and begin to co-rotate in clusters of growing size, as first characterized

in [19]. In the second example, for ∆v > 2cs, instead, even if the vortices are much closer,

they do not initially move from the horizontal line and the unstable mode simultaneously

develops in the whole system, as can be seen from the emerging density pattern. Surprisingly,

the vortices take a longer time to move and this motion is associated to significant density

variations in the bulk of the two flowing regions. The spatially oscillating shape of the emerging

pattern indicates that the instability is due to a superposition of up-going and down-going

propagating phononic waves.

Further evidence of the different localization of the unstable modes in the two cases is

obtained by varying the transverse size of the system L y , that is the separation between the

two hard walls. We observe that for ∆v < 2cs the time needed for the vortex line to deform

is essentially independent from L y , while for ∆v > 2cs the instability rate decreases for in-

creasing L y . All these features suggest that the origin of the second kind of instability is the

same of the superradiant instabilities (SRI) observed in [21], where a tangential discontinuity

of the velocity was induced via a synthetic gauge field. These instabilities involve the repeated

amplification of propagating modes of opposite energies and give rise to patterns such as the

one visible in the t = 484µ/ħh snapshot of the second row of Figure 1.

While showing that instabilities with different features occur, time evolutions of the GPE

are not the best tool to obtain a complete picture of the underlying instability mechanisms. The

long time that is required for the instability to significantly deform the line of vortices indicates

that the configuration obtained by lowering the central Gaussian potential is a stationary state

of the GPE. This is confirmed by the fact that imaginary time evolutions of the GPE with fixed

winding numbers in the two regions converge to states of the same shape as those found with

the above time-dependent procedure1. In the following, we hence resort to a study of the

linear stability of this stationary state with a Bogoliubov approach.

1In the simulations of Figure 1 the departure from the stationary state is given by dynamical instabilities, that

are seeded by the excitations that are generated by the time-dependence of the potential as well as by numerical

noise.
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3 Bloch functions for the Bogoliubov problem

The natural approach to the study of the Bogoliubov problem in this configuration is to take

advantage of the periodic structure of the stationary states we are interested in; the vortices

along y = 0 are in fact equispaced along x , as can be seen in the second (t = 100µ/ħh) panels

of Figure 1. We consider a small deviation

Ψ(t, x , y) = e−iµt/ħh (Ψ∆v(x , y) +¶È(t, x , y)) , (5)

where the stationary state Ψ∆v , relative to a given velocity difference ∆v, has the periodicity

Ψ∆v

�

x +
2

nvort

, y

�

= Ψ∆v (x , y) . (6)

While the periodicity of the complex order parameter Ψ∆v is 2/nvort, what matters for the

fluctuations are the density and the velocity, that instead have a period 1/nvort. This can also

be seen from the fact that only the square of the order parameter enters in the linear problem

(9) we are now going to write.

The perturbations (5) around a stationary state are described at the linear level by the

Bogoliubov equations, that can be written, by considering ¶È and ¶È∗ as independent vari-

ables [29], in terms of the Bogoliubov spinor2

"

¶È(x , y)

¶È∗(x , y)

"

= eiK x

"

¹K(x , y)

ÇK(x , y)

"

, (7)

that we decompose in decoupled Bloch waves, where ¹K and ÇK are independent spinor com-

ponents that have the periodicity 1/nvort we just discussed, and K belongs to the first Brillouin

zone

−M

ħh

∆v

2
f K f M

ħh

∆v

2
. (8)

The resulting Bogoliubov equations at given ∆v and K are

iħh∂t

"

¹K

ÇK

"

=

"

D∆v,K gΨ2
∆v

−g
�

Ψ
∗
∆v

�2 −D∆v,K

�"

¹K

ÇK

"

=: L∆v,K

"

¹K

ÇK

"

, (9)

with

D∆v,K = −
ħh2∇2

2M
− iħhK

M
∂x +
ħh2K2

2M
+ 2g|Ψ∆v |2 + Vext −µ. (10)

The matrix involved in the Bogoliubov equations is not Hermitian, however it isÃ3-pseudo-

hermitian, that is Ã3L
†
∆v,KÃ3 = L∆v,K , where Ã3 = diag(1,−1). This implies that the evo-

lution through the Bogoliubov equations conserves energy, but the energy of an eigenmode

|ÆK ,i,= (UK ,i , VK ,i)
T of L∆v,K is not given simply by its frequency, but by

EK ,i =
�

�ÆK ,i

�

�

B
ħhÉK ,i , (11)

where
�

�ÆK ,i

�

�

B
:=
�

d xd y (|UK ,i |2−|VK ,i |2) is the so-called Bogoliubov norm of the eigenmode.

This can have both signs (and also be zero), so that for example negative-norm modes at

positive frequencies have a negative energy; the presence of negative-energy modes is referred

2The choice of taking ¶È and ¶È∗ as independent variables is a convenient one to obtain a linear problem

for the fluctuations fields, whose governing equations are otherwise not linear since they mix ¶È and its complex

conjugate. This however doubles the number of degrees of freedom and, as a result, every eigenmode (Ui , Vi)
T of

frequency Éi has a particle-hole symmetric mode (V ∗
i

, U∗
i
)T of frequency −É∗

i
. The physical fluctuation field ¶Ψ is

recovered by taking the sum of these two modes, so that ¶Ψ = Ui e
−iÉi t + V ∗

i
e+iÉi t .
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Figure 2: Real (top panels) and imaginary (bottom panels) parts of the eigenfre-

quencies of the Bogoliubov problem as a function of the Bloch wavenumber K for

transverse size L y = 20À and four different values of the relative velocity ∆v. For

each ∆v the K range is truncated at the edge of the Brillouin zone. Black filled dots

correspond to positive-norm modes, red empty dots to negative-norm ones and blue

thicker dots to zero-norm dynamically unstable modes, giving rise to the bubbles of

instability visible in the lower plots. When ∆v is high enough energetically unsta-

ble phononic modes begin to be present. Since L y is finite and hence the phononic

spectrum discrete, this velocity threshold is larger that 2cs and close to the 2.42cs

value used in the second panel. The spectra for values 1.26cs < ∆v < 2.42cs are

similar to the one for ∆v = 1.26cs. One can see the transition between the KHI

regime, in which the dominating instability is at K = 0, to a regime of SRI, in which

the instability maxima occur at finite K . For comparison, the red line in the leftmost

lower panel is the hydrodynamic prediction (13), see Section 4.1 for details.

to as energetic instability. Zero-norm modes are instead associated to complex eigenvalues, that

come in pairs of complex-conjugate frequencies; the modes with positive imaginary part of the

frequencies are exponentially growing and are known as dynamical instabilities. These have

zero energy and can emerge with the resonance of two opposite-normed modes, so that they

can be thought as the simultaneous production of excitations with opposite energies.

To solve the Bogoliubov problem we first compute, for a given ∆v, the order parameter

with a conjugate gradient algorithm [27] on a numerical x range of 2/nvort, imposing unit

winding number in each region. We then construct the Bogoliubov matrix within half of the

x range and using discretized expressions for the derivatives. We diagonalize this matrix, for

a given Bloch wavenumber K , and repeat the diagonalization to sample K values throughout

the first Brillouin zone3. Examples of the obtained spectra for different values of the velocity

of the two opposite parallel flows are shown in Figure 2.

A general picture of these results can be obtained by neglecting for the moment the modes

at the edge of the Brillouin zone, whose wavelengths is similar to the inter-vortex spacing. One

can see that for ∆v < 2cs the spectra are composed of positive-energy modes (positive-norm

at positive frequencies and negative-norm at negative ones) and by a dynamically unstable

3We checked that the spectra obtained in this way are robust with respect to variations of the numerical pa-

rameters, e.g. by changing the spatial discretization. The fact that the complex-frequency modes we find are not

unphysical can also be checked by comparing the instability rates with the ones extracted from time evolutions of

the Bogoliubov equations; an example of such a comparison in shown later on in the paper in the L = 128À panel

of Figure 5.
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branch with a vanishing real part of the frequency and an increasing instability rate when

approaching K = 0. As we are going to discuss, these are the unstable modes responsible for

the KHI. For ∆v > 2cs instead, the positive- and negative-norm parts of the spectra merge,

reflecting the energetic instability associated to the Landau instability of supersonic flows in

both the upper and the lower regions of the system. As we have already anticipated, the

pseudo-Hermitian nature of the Bogoliubov problem implies that when modes of opposite

norm sign approach, they can give rise to a dynamically unstable branch.

The closing of the gap between the positive- and negative-norm modes for all Bloch wavenum-

bers perturbs the zero-frequency KHI branch and suppresses it. For high enough velocities, in

fact, the KHI behaviour dominated by small Bloch wavenumbers is replaced by a lower dom-

inating instability rate at finite K . The physical meaning of this behaviour of the spectra is

that the modes responsible for the KHI can resonantly couple to collective modes of the two

regions, so that the KHI is effectively damped by the emission of phonons in the two parallel

flows. On the other hand, the modes at the edge of the Brillouin zone deviate from this gen-

eral picture since they are the ones that are affected the most by the quantized nature of the

shear layer. Many different effects can hence contribute to the physics, as we are now going

to discuss in what follows.

A quick picture of the instability regimes can be obtained by looking at Figure 3 in which

we show, for three different values of L y , the maximum instability rate for different values

of v and the corresponding Bloch wavenumber. For intermediate velocities the maximum

instability occurs for K = 0, increases linearly with the velocity and is independent on the

system size; this is the KHI regime. For higher velocities ∆v > 2cs the maximum instability

rate occurs for finite values of K (increasing with ∆v), approaches a constant for increasing

velocities and strongly depends on the system size; this is the SRI regime. The fact that the

transition from KHI to SRI does not occur abruptly at ∆v = 2cs is due to the finite transverse

size of the system that results in discrete phononic modes in the two regions, so that higher

∆v are needed to have negative energy phononic waves. In the left panel of Figure 3 one

can see that the width of the transition region is smaller for larger systems, so that one can

expect the transition to occur exactly at ∆v = 2cs in an infinite system, in which a continuum

of phononic modes is available.

Besides these two regimes already observed from the GPE calculations, a third behaviour is

visible at small velocities ∆v ≲ 0.8cs, for which the maximum instability rate occurs for Bloch

wavenumbers at the edge of the Brillouin zone and does not strongly depend on the relative

velocity.

In the next Section we consider in detail each of these regimes.

4 Instability regimes

4.1 Moderate velocities: Kelvin–Helmholtz instability (KHI)

Before dealing with the new instability regimes we identified, it is worth to to take advantage

of our Bogoliubov approach to further characterize the KHI mechanism first observed in [19].

To this purpose, we compare the numerical solution of the Bogoliubov problem with well-

known analytical results of fluid mechanics, that emerge from a very different modeling the

system.

In hydrodynamics the KHI for a (continuous) vortex sheet (i.e. a tangential discontinuity

between two parallel flows v1 and v2) in an incompressible inviscid fluid of constant density

and without gravity is known to have a dispersion relation of the form (see for example [1]

8
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Figure 3: Instability rate (left plot) and corresponding Bloch wavenumber

(right plot) of the most unstable mode (respectively Γmax = max(Im(É)) and

Kmax = argmaxK(Im(É))) as a function of the relative velocity ∆v. Dashed lines

are a guide for the eye, the solid gray line in the right plot indicates the edge of

the Brillouin zone and the vertical dashed gray lines indicate ∆v = 2cs. The three

symbols correspond to different transverse sizes of the system L y , as indicated in the

legend of the left plot.

Section 4.3.1, or [2] Section 4)

É(kH) =
v1 + v2

2
kH ± i

v1 − v2

2
kH , (12)

where kH is the wavevector of the perturbation along the discontinuity, i.e. parallel to the

flows. This result is modified if, instead of a tangential discontinuity, a finite-width shear layer

is present; for example, for a piecewise continuous profile that is constant for |y | > ¶ and

changes linearly for −¶ f y f ¶ the dispersion relation becomes (see for example [1] Section

4.3.2 or [2] Section 23)

ÉKH(kH) =
v1 + v2

2
kH ± i

v1 − v2

4¶

�

e−4kH¶ − (2kH¶− 1)2. (13)

At low wavenumbers kH the instability rate increases linearly, as in the zero-thickness case

(12), while at higher transverse wavenumbers there is a decrease and above kH¶ ∼ 0.6 the

instability is quenched. An analogous suppression of the instability was found in [28] for an

hyperbolic tangent velocity profile, that, as already mentioned, well approximates the one of

our superfluid case.

While these hydrodynamic models cannot be expected to describe the condensate we

are considering, it is still interesting to compare qualitatively the features of equation (13)

with our numerical results of Figure 2. First of all notice that, since our case corresponds to

v1 = −v2 =∆v/2, the zero real part of the frequency of the KHI branch found in the numerics

is in accordance with equation (13). Moreover, from the left plot of Figure 3, we see that be-

tween ∆v ∼ 0.8 cs and ∆v ∼ 1.6 cs the maximum instability rate increases linearly with ∆v,

in agreement with the linear dependence of the imaginary part of (13) on the relative velocity.

To compare the wavenumber dependence of the instability rate we need to take into ac-

count that our choice of the shape of fluctuations (5), in which the spatial phase of the sta-

tionary state is not taken as an overall factor, makes our Bloch wavenumber K to differ from

the hydrodynamic wavenumber kH , that is instead measured with respect to the fluid. In

particular, the hydrodynamic wavenumber kH is the one of the field Æ in the expression

Ψ(t, x , y) = e−iµt/ħh
Ψ∆v(x , y) (1+Æ(t, x , y)). Also considering that the spectrum of (9) is

even in K , Bloch wavenumbers in the portion of the first Brillouin zone we plot in Figure 2

9
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correspond to hydrodynamic wavenumbers4

kH =
M

ħh
v − K . (14)

Hence we should compare our results for the instability rates with the imaginary part of

ÉKH(
M
ħh v−K), whereÉKH is given by (13). We plot this quantity with a red line in the leftmost

lower plot in Figure 2, where we use v1 − v2 =∆v and the width of the shear layer ¶ is taken

as in equation (4). An additional shift in wavenumber is included to improve the similarity be-

tween the two results. Despite the need for this adjustment and the additional discrepancy in

the unstable modes found at the edge of the Brillouin zone, the qualitative agreement with the

magnitude of the instability rate and with the K-dependence of our numerical data is surpris-

ingly good, considered that the hydrodynamic result is obtained from a very different model

that can not be a priori expected to describe well our system. These similarities between the

spectral features of the instability of our quantum superfluid and the ones of a standard KHI

in classical hydrodynamics further justify the use of the KHI terminology in our context.

Notice that the suppression of the instability predicted in the hydrodynamic case at higher

kH is instead not observed here. This can be interpreted with the fact that the threshold for

the suppression kH ≳ 0.6/¶ is fixed by the width of the shear layer, that in our case is velocity-

dependent and is given by (4); according to that scaling 0.6/¶ > M
ħh
∆v
2 , so that the hydrody-

namic suppression threshold lies outside of the Brillouin zone. This means that the quantized

nature of our shear layer removes the high-kH behaviour of the hydrodynamic prediction.

As a last comment it is interesting to note that, while the Bloch wavenumber K of the

fluctuation field ¶È is the most natural parameter to consider in our approach, the spatial

behaviour of density fluctuations ¶n = 2Re(Ψ∗
∆v¶È) is determined by kH . Hence the K = 0

dominating instability in the KHI regime corresponds to a fluctuation ¶È that (apart from the

periodic part of the Bloch function) is constant throughout the system and thus corresponds

to a density variation ¶n = 2Re(Ψ∗
∆v¶È) ∼ cos(M

ħh
∆v
2 x), that correctly has opposite signs on

neighboring vortices.

4.2 High velocities: superradiant (SRI) and radiative (RI) instabilities

4.2.1 Smaller systems: SRI

As we already discussed, the transition from the KHI regime to the SRI one by increasing the

flow velocity can be seen in the three rightmost panels of Figure 2, in which the emergence of

energetic instabilities associated to the supersonic flows above ∆v = 2cs implies the existence

of propagating phononic modes with which the Re(É) = 0 modes responsible for the KHI can

couple, suppressing thus the instability.

The presence of negative-energy modes associated to supersonic motion signals the possi-

bility of having superradiant scattering when these are resonant with a positive-energy wave:

if a positive-energy wave impinges on the shear layer from one region and there is a resonant

negative-energy mode in the other region, the positive-energy wave can be reflected with in-

creased amplitude. This is demonstrated in Appendix A.1, where we show how superradiant

scattering can occur in the present setup for frequencies and Bloch wavenumbers K for which

energetic instabilities are present in the system. With respect to the simpler case of a tangen-

tial discontinuity [21], the presence of the array of vortices allows for more complex amplified

scattering processes involving more waves5

4This relation depends solely on our choice for the analytical form of the fluctuation field, that we felt to be

the most natural in our approach to the system. Use of this choice does not rely on any physical property of our

superfluid system and an analogous choice could be made also in the classical hydrodynamics context.
5Notice that the ∆v > 2cs condition for the onset of the SRI has different meanings in different cases. In
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Figure 4: Dependence of the maximum instability rate Γmax = max(Im(É)) on the

system size L y for ∆v = 1.4cs in the KHI regime (black squares) and for ∆v = 3cs in

the SRI/RI regime (filled red circles); empty blue circles show the K-space location

of the most unstable mode Kmax = argmaxK(Im(É)) in the second ∆v = 3cs case (y

axis on the right).

In a finite system along y , as in the case of Figure 1, amplified scattering processes will

lead unavoidably to dynamical instabilities, since the reflection of the waves at the boundaries

of the condensate will cause repeated amplification. This is the physical meaning of the dy-

namically unstable branches that occur when two eigenmodes of opposite norm (and hence

opposite energy) approach the same frequency, as can be seen in the plots of the real part of

the frequency of Figure 2: the two modes correspond to travelling waves in the two regions;

whenever they are resonant, they can give rise to repeated amplified scattering. It is interest-

ing to comment that this mechanism based on the mixing of modes of opposite energies is also

responsible for superradiant scattering and superradiant instabilities in rotating spacetimes

and their fluid analogues [10,21].

The result of this linear instability is the behaviour shown in the rightmost panel in the

second row of Figure 1, the emerging pattern being due to the superposition of the up-going

and down-going waves of opposite energies, whose wavelength along x is reflected in the

maxima of the instability rate at finite values of K visible for example in the rightmost plot of

Figure 2.

Given this picture, one expects the instability rate to depend on the round-trip time of

excitations in the two regions, that is to decrease when the transverse size of the system L y is

increased. To verify this, we repeated the computation of the Bogoliubov spectra as in Figure

2 for a given∆v and different values of L y . In Figure 4 we show the maximum instability rate

for each size of the system. The black squares are the result for a velocity in the KHI regime,

that, as expected, shows little dependence on the system size; the red filled circles are instead

the result for a velocity in the SRI regime. One can see that in this case the instability rate

decreases quickly with the system size, as expected. Still, quite unexpectedly, for even larger

L y it approaches a finite value, and not zero as one would expect for a SRI.

hydrodynamic shear layers, in which the shear layer has a full translational invariance along x , this threshold can

be understood from the fact that for lower relative velocities a reference frame exists in which the flow is everywhere

subsonic [21]. In the present discrete case instead the quantized vortices break the Galileian invariance along x ,

since there is a single reference frame in which they do not move; superradiant phenomena can hence only occur

when supersonic flows with respect to this reference frame are available.
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Figure 5: Left plots: instability rates of all the dynamically unstable modes for

∆v = 3cs and four different values of the transverse system size. For L y = 120À

we also show with red empty circles the instability rates extracted from the time-

dependent calculations of Figure 6. The error bars are given by the finite evolution

time of our simulations. Right plot: schematics of the spectrum of the infinite system,

inferred from the distribution of the dynamically unstable modes of the L y = 120À

system, that are plotted with points. The colorscale of the points shows their insta-

bility rate. The red filled area is where energetic instabilities associated to supersonic

motion are expected in an infinite system. The blue line highlights the most unstable

modes, responsible for the RI, that also remain unstable in the infinite system. In the

surrounding white space only positive-energy modes are available.

4.2.2 Larger and infinite systems: RI

To get a better picture of what happens at larger sizes, in Figure 4 we also show a plot of the

K corresponding to the maximum instability rate (blue empty circles) and in the left panels

of Figure 5 we show the instability rates of all dynamically unstable modes for four different

values of L y . One can see that, while L y is increased, the instability bubbles increase in number,

corresponding to the increased density of modes in the larger system, that gives rise to more

dynamically unstable branches. Moreover the height of these bubbles decreases, as one would

expect for a SRI. However, for large systems, a branch of unstable modes becomes visible,

that depends little on the system size, as can be seen by comparing the L y = 60À and the

L y = 120À plots in Figure 5. From this comparison one can expect instabilities in the infinite

system at all K , with the maximum instability rate in the rightmost bubble, near the edge of

the Brillouin zone. This branch of unstable modes are what we call RI.

The behaviour of the spectrum in an infinite system can be inferred by comparison with

the result of the diagonalization of the largest system we considered, L y = 120À. In the right

panel of Figure 5, all the unstable modes obtained with the diagonalization are indicated as

dots, their color expressing their instability rate. The red shaded area is the region in which

one expects energetic instabilities in the two infinite uniform regions6. One can see that the

majority of the unstable modes fall in this region; these are the least unstable modes and

correspond to the many points visible under the main unstable branch in the L = 120À panel

in the left part of Figure 5. This is the portion of the spectrum responsible for the SRIs, whose

instability rate decreases with the system size and vanishes in an infinite system, leaving only

energetic instabilities that allow for stable superradiant scattering, as demonstrated in the

appendix A.1.

6The two lines delimiting the region are given by ±É(kx =
M

ħh

∆v

2
− K , ky = 0), where the frequency is given by

the Bogoliubov dispersion relation (15) of sound excitations in a uniform condensate.
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Figure 6: First three panels: snapshots of the time evolution of the density variations

obtained by evolving in time the Bogoliubov equations for ∆v = 3cs starting from a

noisy configuration. Two absorbing regions with a Gaussian spatial profile around

±L y/2 are included to simulate an infinite system. The growing unstable modes is

composed by waves travelling along the array of vortices and outgoing sound waves.

Times are expressed in units of ħh/µ. A video of this evolution is available online

[25]. Last panel: log-plot of the amplitude of some wavenumber components of the

growing perturbations; one can see the exponential growth. The gray area indicates

the interval between the lowest and the highest fitted rates.

The most unstable modes fall instead on the blue line. These are modes that are expected

to remain dynamically unstable also in the infinite system. The part of the spectrum at the

edge of the Brillouin zone in which the branches at finite Re(É) join at Re(É) = 0 corresponds

to the highest bubble visible in the imaginary part of the spectrum. Notice that this RI branch

exits from the superradiant red region; this means that positive-energy phononic propagating

modes are involved.

The fact that this branch remains dynamically unstable in the infinite system can be con-

firmed by a time-dependent simulation of the fluctuations on top of the flowing configuration,

that evolve according to the two-dimensional Bogoliubov equations (9). Instead of working

at fixed Bloch wavenumber, as we did for the diagonalizations, we take K = 0 in (9) and

we sample many Bloch wavenumber values by considering a background composed by many

lattice cells. We also start the evolution from a noisy configuration, so to seed instabilities.

Absorbing regions for the fluctuations are included near ±L y/2 to simulate an open system

in the y direction and avoid SRIs. Snapshots of the resulting time evolution of the density

variations ¶n= 2Re(Ψ∗v (U + V ∗)) is shown in Figure 6; a full video is available online [25].

One can see that the system is dynamically unstable from the fact that a particular density

perturbation is selected from the initial noise and quickly grows in time. The exponential form

of the growth of the different wavenumber components is visible in the last panel of Figure

6. The density perturbation has a component that is spatially peaked around the vortices,

composed by waves travelling along the quantized shear layer. Together with these localized

excitations, also waves propagating away from the shear layer are present, visible in the striped

pattern in the bulk of the flowing regions. Note that this pattern differs from the interference

pattern visible in the second row of Figure 1, since waves propagating towards the shear layer

are not present here. This time-dependent simulation hence confirms what was expected from

the analysis of the spectra, namely that the instability corresponds to a simultaneous creation

of negative-energy surface waves and of positive-energy sound waves that radiate away, hence

the name RI.

While different from the SRI, this instability is still superradiant in nature, since it is based

on the repeated amplification of the modes localized in the vortex array, at the expense of

waves of opposite energy that are emitted away. In contrast to the SRI this instability does

not need a boundary to trap part of the amplified excitations, that are automatically bound

in the center of the system, and therefore is also present in an infinite system. Interestingly,

this RI is similar to the ergoregion instability of multiply quantized vortices [23], in which the
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splitting into singly quantized vortices is driven by the simultaneous growth of negative-energy

modes localized in the central core and a positive-energy one propagating away. In spite of the

dynamical instability, superradiant scattering of waves can still occur along the lines of [23].

Differently from the SRI case, however, the amplified scattering is immediately followed by

the quick growth of the RI. Further details on this process are given in Appendix A.2.

A quantitative comparison with the results of the diagonalization can be obtained by ex-

tracting the instability rates from the numerical time evolution. By means of a spatial Fourier

transform, we extract the time evolution of the different kx components of the fluctuations.

For each kx in the first Brillouin zone, we then fit the time dependence of the largest peak with

an exponential curve. Some of these fits are shown in the last panel of Figure 6. The resulting

growth rates are shown as red empty circles in the L y = 120À panel of Figure 5, where the

error bars display the uncertainty given by the finite length of T = 500µ/ħh of our simulation.

One can see that these values compare well with the largest instability rates obtained for a

finite but large system, apart from a deviation in the rightmost bubble that contains the domi-

nating instabilities. This difference can be ascribed to a finite size effect in the diagonalization

result; the height of that bubble can in fact be seen to be higher for the smaller L = 60À sys-

tem, and can hence be expected to further decrease in the limit L y →∞. Apart from these

minor quantitative deviations, this comparison confirms the expectation that the dynamically

unstable branch in the right panel of Figure 5 is still present in an infinite system, and can

hence be associated to the RI.

Notice that, while the SRI does not rely on the quantized nature of the shear layer and can

be expected to take place in generic compressible fluids, the RI crucially relies on the small scale

structure for the existence of the interfacial waves. Conceptually similar mechanisms have

been predicted for incompressible fluids with density stratification, in which internal waves can

have negative energy and interfacial gravity waves can exist. Configurations displaying SRI

and others displaying RI have been considered (see §4 in [12] for a discussion). Interestingly,

the system under study in the present work naturally displays both instability mechanisms in

the context of compressible fluids.

4.3 Small velocities: drift instability (DI)

Up to now we characterized the regimes of instability occurring in the vicinity of ∆v = 2cs.

However, while further decreasing the velocity, a marked deviation from the linear KHI de-

crease of the instability rate occurs for small velocities ∆v ≲ 0.8cs, as can be seen in the left

panel of Figure 3. The modes responsible for this change of behaviour are already visible in the

leftmost panel of Figure 2, where a deviation from the main KHI branch is visible at the edge

of the Brillouin zone K = M
ħh
∆v
2 . We call the instability given by these modes drift instability

(DI), since we are going to see that its main effect is to make the vortex array to drift laterally.

The instability rate of these modes is essentially independent on the relative velocity ∆v,

as can be seen in the upper panels of Figure 7, where the imaginary part of the frequencies of

the unstable mode are shown for even smaller velocities than the ones considered in Figure 2.

DIs hence do not depend on the spacing between the vortices. Differently, the KHI maximum

at K = 0 diminishes with the velocity, until its instability rate falls below the one of the modes

on the edge of the Brillouin zone. From Figure 3 one can also see that, differently from the KHI

that is essentially size-independent, the dominating instability at small velocities is stronger

for smaller systems.

To get a better physical picture of DI we performed time evolutions of the GPE, analogous

to the ones of Figure 1, for smaller relative velocities and longer times. While the long time

fate of these evolutions is always of the KHI kind, with the vortices that move away from the

central line and begin to corotate, at earlier times the behaviour is different.
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Figure 7: Upper panels: Plots of the instability rates analogous to Figure 2, for

L y = 20À and smaller relative velocities ∆v. While lowering ∆v, the system goes

from a KHI regime (last panel ∆v = 1.05cs) to a regime in which the instability is

dominated by the modes near the edge of the Brillouin zone and is essentially inde-

pendent of the velocity. Lower panels: Snapshots of the late time evolution of the

density variation obtained by solving the GPE for ∆v = 0.2 cs and L y = 20 À. The

first snapshot at t = 1000 µ/ħh shows the DI dominating at small velocities at early

times, while the second one at t = 2000 µ/ħh shows the subsequent development of

a KHI.

This can be seen in the lower panels of Figure 7, where we show two snapshots of the den-

sity difference with respect to the initial state just after the complete formation of the quantized

shear layer. Initially, density fluctuations grow in the same way around each vortex and corre-

spond to a rigid drift of all vortices along the central line, hence the name DI. This is the effect

of the fluctuations in the unstable modes on the edge of the Brillouin zone ¶È∝ ei M
ħh
∆v
2 x , that

in fact correspond to density fluctuations ¶n= 2Re(Ψ∗
∆v¶È)∼ cos(2 M

ħh
∆v
2 x), with a periodicity

equal to the distance between the vortices.

The origin of this drift can be understood by performing additional numerical evolutions

of the GPE with the vortex array placed at a different vertical position. What we observed (not

shown) is that the direction of the horizontal motion depends on the location of the nearest

boundary. In the present case in which we consider a velocity directed to the left (right) in

the upper (lower) region, we found that the vortices move to the right if placed nearer to the

upper boundary and to the left if placed near the lower boundary.

This indicates that the rigid drift of the array has the same physical origin as the motion

of a single vortex near a hard-wall boundary of the condensate, where the wavefunction of

the condensate vanishes. This was studied in [24], where a semi-infinite uniform condensate

was considered. It was found that a vortex near the boundary moves parallel to it and that

this motion can be understood by considering an image vortex with opposite circulation on

the other side of the boundary, so that the motion of the vortex is analogous to a vortex-

antivortex pair moving in parallel. While only this mechanism is active in our configuration,

the precession of vortices would be a more complex effect in smoother, e.g. harmonic, traps,

where it is also driven by the smooth density gradient towards the edge of the cloud [30,31].

For a hard-wall instead the density reaches its bulk value within one healing length from the

boundary and the effect of the density gradient is (exponentially) smaller.

In the present case we have two hard-wall boundaries, at equal distances from the vortices,

so that the array can equally well drift in either direction, along either one of the image arrays

of antivortices on the sides. One can hence think that the instability at small velocities stems

from vertical fluctuations of the vortex array, that make it approach one of the two boundaries.

The direction along which the array drifts will hence be given by the initial conditions in the
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fluctuations.

While being faster than the KHI for these velocities, this drift of the vortices does not

prevent KHI from developing. This can be seen in the second snapshot in the lower part of

Figure 7, where the density fluctuations are clearly seen to change periodicity. The hydrody-

namic instability of the shear layer hence continues to dominate also at small velocities at late

times, with the added physics of the lateral drift of vortices, that is obviously absent in the

continuous hydrodynamic models.

5 Conclusions

In this paper we investigated the stability properties of the quantized shear layer occurring at

the interface between two counter-propagating flows in an atomic two-dimensional BEC and

found a rich interplay between different instability mechanisms as a function of the relative

velocities ∆v.

At moderate relative velocities ∆v < 2cs we found, as already predicted in [19], an in-

stability analogous to the hydrodynamic Kelvin–Helmholtz instability (KHI) with the vortices

displacing from their initial position and corotating. At smaller relative velocities, a drift insta-

bility (DI) involving a lateral rigid displacement of the vortex array, analogous to the motion

of vortices near a sharp boundary of the condensate, occurs on time scales shorter than those

of the KHI, that however continues to dominate the late time fate of the shear layer.

At higher relative velocities ∆v > 2cs instead, the KHI behaviour stops occurring due to

the opening of phononic channels in which the modes responsible for the KHI can decay and

different instabilities emerge. In a small enough system along y , the instability develops with

excitations accumulating on each side of the shear layer. This instability has its origin in the

existence of negative energy modes in the system, associated to supersonic motion of the

condensate, that can give rise to superradiant scattering of sound excitations. The repetition

of this process gives rise to superradiant instabilities (SRI). If an infinite system along y is

considered, the SRI is replaced by a radiative instability (RI) in which there is a simultaneous

growth of interface waves travelling along the vortex array and of sound waves radiating away

from it.

The mechanism responsible for SRI can be seen, through the ideas of analogue gravity, to

be the same of superradiant instabilities in rotating spacetimes [10]. The occurrence of this

kind of instability in the present system could be easily predicted from the point of view of our

earlier work [21], in which a similar configuration (but without vortices) was considered to

gain insight into the physics of superradiant scattering. The present work is hence an example

in which analogies can help to look at problems from different perspectives.

From this same point of view, the mechanism of the RI instability, involving propagating

waves and localized excitations, can be thought as something that could happen in a rotating

spacetime in which the ergosurface has some extra structure that can host localized modes.

The interplay with the SRI also suggests that the presence of this extra structure does not

prevent the usual superradiant phenomena to happen. We are going to pursue these ideas in

future work.

While the suppression of the KHI and the SRI can be expected to occur in any compressible

inviscid fluid, since they essentially rely on the properties of sound waves, the existence of the

RI depends on the specific structure of the shear layer and on its ability to support surface

waves. It is also interesting to notice that the reliance of the RI on the resonance between

a localized excitation mode with propagating sound modes makes it similar in nature to the

instabilities of multiply quantized vortices [23].

Even if in the present work we focused on atomic Bose–Einstein condensates, this physics
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can be expected to also occur with similar phenomenology in other systems such as quantum

fluids of light [32], whose superfluid properties are under active study and whose controlla-

bility could also allow experimental investigations of the instabilities that we characterized

here.

To conclude, we showed that the flow around an array of quantized vortices displays an

intriguing interplay between instabilities of different nature, with rich connections to various

phenomena in different contexts, from well known behaviours of quantized vortices in trapped

condensates, to classic hydrodynamic instabilities, to the physics of quantum fields in curved

spacetimes.
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A Superradiant scattering

In this Appendix we show the occurrence of amplified scattering for suitably prepared wavepack-

ets when the relative velocity is above the ∆v > 2cs threshold. This gives further evidence of

the superradiant nature of the instabilities we analyzed. Two kinds of superradiant scattering

are possible here: the amplification of phononic waves at the expense of phononic waves of

the opposite energy and the amplification of positive-energy phononic waves at the expense

of the negative-energy modes localized around the vortex array. The first kind of amplification

is responsible for the SRI, while the second one for the RI.

A.1 Superradiant scattering responsible for the SRI

To understand the different kinds of scattering that can occur at the vortex array one can con-

sider a large enough system, so that, far enough from the vortices, small amplitude fluctuations

have a conserved momentum and obey the Bogoliubov dispersion relation that can be derived

for a uniform condensate

ħhÉ(kx , ky) = ħhvx kx ±

�

�

�ħh2k2

2M

"

ħh2k2

2M
+ 2gn

"

. (15)

The first term is a Doppler shift due to the velocity of the condensate, that is vx = +∆v/2 for

y < 0 and vx = −∆v/2 for y > 0.

We are interested in scattering events in which a wave approaches the array of vortices

from one of the two regions. In these scattering events the frequency is conserved, while

kx is not. What is conserved is instead the Bloch wavenumber K in the first Brillouin zone;

when looking for the waves that are involved in the scattering one should hence also consider

the extra modes that may be available at fixed K due to the periodicity of the problem. In

practical terms, besides É(kx , ky) given by equation (15), one also needs to consider all other

É(kx + n∆v, ky), with n integer.

In the right panels of Figure 8 we show cuts atÉ = 0 of the dispersion relation. The lower

panel refers to the uniform region below the vortices, the upper panel to the one above them.

Black thin lines are positive-norm modes and red thicker lines are negative-norm ones, that

respectively correspond to the plus and minus signs in equation (15). Notice that the horizontal
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Figure 8: Left panels: snapshots of the time evolution of the Bogoliubov equations

starting from an initial wavepacket at É = 0 with a wavevector chosen to travel to-

wards the array of vortices. In the top row we plot the density variation ¶n with

respect to the stationary state Ψ∆v , in the bottom one we plot the pointwise Bo-

goliubov norm |U(x , y)|2 − |V (x , y)|2 of the excitations. White arrows indicate the

direction of motion of the wavepackets. Right panels: dispersion relation in the first

Brillouin zone at fixed É = 0 in the uniform regions far enough above and below

the array of vortices. Black thinner lines are positive-norm modes, red thicker lines

negative-norm ones. The gray vertical line indicates the conserved Bloch wavenum-

ber at which we are working, and the dots indicate the modes involved in the scat-

tering process, with the arrows pointing in the direction of their group velocity. The

considered case corresponds to ∆v = 3.14cs and gives rise to the kind of superradi-

ant scattering of phononic waves that is at the basis of the SRI.

axis is restricted to the first Brillouin zone and the presence in each region of modes of both

norms for some values of the Bloch wavenumbers is due to the periodicity of the system along

x .

Suppose we consider the scattering of a positive-norm packet in the lower region peaked

on the filled black dot on the dispersion curve. The other two dots show the available modes at

the same frequencyÉ = 0 and Bloch wavenumber K that will take part in the scattering (with

the arrows indicating the direction of their group velocities vg = ∇kÉ): the initial packet

will be transmitted to the negative-norm outgoing mode indicated with a red dot and will

be reflected on the positive-norm mode indicated with a black circle. Because of norm (i.e.

energy) conservation, the reflected packet will have a larger amplitude than the ingoing one.

This superradiant scattering can be verified with a time evolution of the Bogoliubov equa-

tions (9), taking as an initial condition a wavepacket in the lower region that is a plane wave

along x and has a Gaussian profile along y , centered in wavenumber around the black dot on

the corresponding dispersion plot and wide enough in space so thatÉ = 0 is the most relevant

frequency and the overlap with the dynamically unstable RI modes is negligible. Snapshots

of this time evolution are shown in the left part of Figure 8, where the corresponding varia-

tions of the condensate density are shown in the upper row, while the pointwise norm of the

fluctuations |U(x , y)|2− |V (x , y)|2 is shown in the lower row. One can see that the scattering
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Figure 9: Same calculation as in Figure 8 for the same ∆v = 3.14cs and É = 0, but

a different value of the conserved Bloch wavenumber K . For this choice, additional

modes enter into play. The result is a superradiant process in which the incident

positive-norm packet is amplified in transmission, while a negative-norm packet is

reflected. The presence of the additional modes is signalled by the weak oblique

fringes that are visible on top of the wavepackets in the lower panel for t = 90ħh/µ.

occurs as expected: the initial packet has a positive norm, is transmitted to a negative-norm

packet and is correspondingly reflected in an amplified way (notice the different colorscales

of the second and third snapshots).

This kind of scattering is completely analogous to the one we investigated in [21] in a

configuration where the motion of the condensate is given by an externally applied synthetic

gauge field, that allows to have a shear layer without quantized vortices. However, the peri-

odic structure due to the presence of vortices in the present setup also gives rise to different

scattering events. As an example, in Figure 9 we show the scattering of a wavepacket of the

same frequency É = 0 but with a different K , at which also another branch of modes is avail-

able in both regions due to Bloch’s theorem. There are now two transmitted modes and two

reflected modes, of both norm signs. Correspondingly, differently from the previous case, one

can see in the snapshots for t = 90 that the packets show fringes due to the simultaneous

presence of more than one mode. But the most striking difference is that the main process

in this case is the reflection of a negative-norm packet and the transmission of an amplified

positive-norm one (again notice the different colorscales), so superradiance is now happening

in transmission instead of reflection.

Despite this curious physics added by the discrete nature of the shear layer, these simula-

tions clearly show the occurrence of sizable amplification of the wavepackets. A finite size of

the system will cause these amplified packets to be reflected back to the shear layer, where they

undergo further amplified scattering. The repetition of this process gives rise to superradiant

instabilities, that occur for frequencies and Bloch wavenumber at which phononic waves of

both norms coexist in the two regions, that is in the red region of the right panel of Figure 5.

These growth rates of these dynamical instabilities decrease while increasing the system size,

vanishing in an infinite system, where they only give rise to the dynamically stable amplified

scattering that was demonstrated in this Appendix.
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Figure 10: Same calculation as in Figures 8 and 9 for different values of ∆v = 3cs

and É = 0.5µ/ħh. Here only positive-energy modes are available in the two asymp-

totic regions, so that scattering results in an amplified transmission together with the

seeding of the RI. The white arrows indicate the direction of motion of the incident

and transmitted wavepackets, while the black arrows indicate the propagation direc-

tion of the phononic waves due to the RI.

A.2 Superradiant scattering responsible for the RI

Let us now consider a different frequency, at which no negative-energy phononic waves are

available, but at which the dynamically unstable branch responsible for the RI is present, for

instance one of the points of the blue line of the right panel of Figure 5 that do not fall in the

red region. An example of the dispersion relations at fixed frequencies in the two regions is

shown in the right panels of Figure 10.

We take as initial condition a packet that is a plane wave along x , with wavenumber indi-

cated by the gray line, and peaked in ky at the filled black dot on the y < 0 dispersion curve.

The evolution of the density fluctuations and of the corresponding pointwise norm are shown

the snapshots on the left. As expected, the initial positive-energy wavepacket is transmitted

as a positive-energy wavepacket in the upper region, as indicated by the white arrow in the

second snapshots for t = 68. The amplitude of this packet is visibly larger than the incident

one.

This amplification is due to the presence of a resonant negative-energy mode localized near

the array of vortices, that is clearly visible in the second and third snapshots of the pointwise

norm. The subsequent dynamics is however very different from the previous cases. Since

the localized mode is resonant with phononic modes modes of opposite energy sign in both

regions, it will continue to grow in time while emitting these waves (black lines in the last

snapshots): this is the RI.

Differently from superradiant scattering of phononic waves, this superradiant process does

not need a finite system to become unstable since the negative-energy modes are trapped and

thus automatically subject to repeated amplification. This behaviour is analogous to the one

of multiply quantized vortices, whose splitting instability is driven by the superradiant ampli-

fication of a negative-energy mode localized in the core of the vortex when this is resonant

with some phononic wave in the rest of the condensate [23].
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