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Abstract

We investigate the tetragonal phase of the binary transition metal oxide CuO (t-CuO)
within the context of cellular dynamical mean-field theory. Due to its strong antifer-
romagnetic correlations and simple structure, analysing the physics of t-CuO is of high
interest as it may pave the way towards a more complete understanding of high tem-
perature superconductivity in hole-doped antiferromagnets. In this work we give a for-
mal justification for the weak coupling assumption that has previously been made for
the interconnected sublattices within a single layer of t-CuO by studying the non-local
self-energies of the system. We compute momentum-resolved spectral functions using a
Matrix Product State (MPS)-based impurity solver directly on the real axis, which does
not require any numerically ill-conditioned analytic continuation. The agreement with
photoemission spectroscopy indicates that a single band Hubbard model is sufficient to
capture the material’s low energy physics. We perform calculations on a range of differ-
ent temperatures, finding two magnetic regimes, for which we identify the driving mech-
anism behind their respective insulating state. Finally, we show that in the hole-doped
regime the sublattice structure of t-CuO has interesting consequences on the symmetry
of the superconducting state.
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1 Introduction

Despite an unprecedented research effort for the last 35 years, the nature of high-temperature
superconductivity in cuprates and its proximity to other exotic phases like pseudogap and
charge-density phases still remain elusive [1–6]. In the quest for a microscopic theory for the
cuprates’ superconductivity, their CuO2 planes were early on identified to be key and quasi-
two-dimensional (2D) minimal low-energy models were proposed and studied [7–12]. In
order to connect model calculations with real materials, an ideal cuprate without any ligand
field, distortion or disorder effects was long sought after, and polymorphs of pure Cu-O planes
suggested themselves [13]. However, in contrast to other binary transition metal oxides (MnO,
FeO, CoO, NiO) CuO does not crystallize in a cubic or tetragonal phase that is made up of CuO
planes. Instead, a lower-symmetry monoclinic structure is realized [14].
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Figure 1: (a) Rock salt crystal structure of tetragonal CuO. (b) slab of CuO within the
a-b plane. Bright (dark) red atoms indicate the sublattice A and B of our model. (c)
Two identical Cu-sublattices and indication of the hoppings td , t, t ′ and t ′′ included
in the model. The arrows sketch the stripe

:::::::::
columnar

:::::::::
magnetic order

:::::::::::::
corresponding

::
to

:::
an

:::::::::
ordering

::::::
vector

::::::::::
Q = (0,π)

:
considered throughout the paper. Highlighted in

blue and green are the magnetic sublattices that correspond to the stripe order
:::
this

::::::::
ordering. (d-g) Clusters including different hopping terms as discussed in the text.

This changes when thin films of CuO are grown on a SrTiO3 substrate: CuO then crystallizes
in a tetragonal crystal structure, which is composed of 2D CuO planes that are arranged in a
staggered configuration along the c-axis [15–17]. In its distorted rocksalt structure, shown in
Fig. 1(a), the Cu-O distances for basal and apical oxygens differ by a factor 1.37 [15,16].
First principles studies including density functional theory (DFT) with hybrid functionals [18–
21] and DFT+U [22, 23] gave first insights into the electronic structure of tetragonal CuO
(t-CuO) and were able to reproduce the experimentally observed tetragonal distortion [19],
which could be traced back to Jahn-Teller orbital ordering at the Cu d9 ions [18,21].
Ab initio calculations also proposed an antiferromagnetic stripe order

:
a

:::::::::
columnar

:::::::::
magnetic

:::::
order

::
in

::::::
(1,0) [

::
or

:::::
(0,1)]

::::::::
direction

::
in

:::::
units

::
of

::::
our

::::::
lattice

:::::::
model [18,19,21], which is in agree-

ment with experimental findings from resonant inelastic x-ray scattering (RIXS) [24]. Extrap-
olation from other binary transition metal oxides [15, 25] and estimates from first principles
calculations [18, 19, 21] place the Néel temperature around ∼ 800K, which is much higher
than the critical temperature of its monoclinic bulk phase (TN ∼ 220K [26]). It is due to these
observations that we will also study magnetic properties within the framework of our quantum
cluster methods choosing clusters that allow for this ordering

:
a
:::::::::
columnar

:::::::::
magnetic

::::::
order

::::
with

::::::::
ordering

::::::
vector

::::::::::
Q = (0,π).

::
In

:::
the

::::::::::
following

:::
we

::::
will

:::::
refer

::
to

::::
this

:::::::::
ordering

:::
as

:::::::::
magnetic

:::::
stripe

:::::
order.

:::::::
Please

::::
note

::::
that

:::::::
within

::::
this

:::::
paper

::::
we

:::
did

:::
not

::::::
study

:::::::
charge

:::::
order

::
as

::::
we

:
it
::
is

::::
not

::::::::
expected

::
to

:::::
occur

:::
at

::::::::::
half-filling,

:::
in

:::::::::
particular

:::::
since

:::::::::
non-local

::::::::::::
interactions

:::::
were

:::
not

::::::
taken

::::
into

:::::::::
account.

t-CuO is an insulator with quite sizeable gap∆> 2.35 eV of which the electronic structure
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was measured via angle-resolved photoemission spectroscopy (ARPES) [17] and used to con-
struct effective three- and one-band t − J models [17,27,28]. Whereas the question whether
or not a Zhang-Rice singlet (ZRS) [10] band can describe the low-energy spectral features of
t-CuO [27,28] is a (re-)current question in cuprate materials [29,30], the effective one-band
model derived from RIXS in Ref. [24] is in qualitative agreement with the one derived from a
ZRS description [28].
ARPES measurements [17] show strong replica features outside the single sublattice (see
Fig. 1(b)) Brillouin zone (BZ), corroborated by RIXS [24]measurements of the t-CuO magnon
dispersion that exhibits a strong similarity to previous experimental findings for the magnon
dispersion of SCOC. This has been interpreted as a signature of weak coupling between the two
CuO2 sublattices and raises the question of the microscopic origin of this sublattice decoupling.

In this paper, we investigate the dynamical influence of the inter-sublattice hopping td
by the means of cellular dynamical mean field theory (CDMFT) [31]

::::::::
[31–34] and motivate

an efficient block-construction scheme for our cluster calculations. Our key finding is that the
inter-sublattice correlations are heavily suppressed as compared to local and short-range intra-
sublattice correlations, which formally justifies to regard t-CuO as weakly-coupled interlaced
CuO2 lattices. Using a matrix product state [35, 36] (MPS)-based impurity solver working
directly on the real axis [37–41] and at effectively zero temperature we can reproduce equal
energy maps and momentum resolved spectral functions in remarkable agreement with ARPES
measurements without the need for analytic continuation. Further we analyse the magnetic
ordering in t-CuO as a function of temperature and identify two driving mechanisms for the
insulating phase. Finally, we predict the presence of superconductivity (SC) upon hole-doping
by applying a complementary cluster technique, the variational cluster approximation (VCA)
[42]. As a direct consequence of the sublattice decoupling, we find coexistence of magnetic
stripe order and superconductivity of dx y -symmetry, whereas the usual cuprate dx2−y2 order
is strongly suppressed.

2 Model Hamiltonian

Each CuO plane of t-CuO is made up of edge-sharing CuO4 plaquettes, which can be viewed
as consisting of two interpenetrating CuO2 square lattices. Following this logic, we consider
one slab within the a − b plane as shown in Fig. 1(a). We consider a single band Hubbard
model [43]:

H = U
∑

i

ni↑ni↓ +
∑
i, j,σ
|i−j|=a

td c†
iσc jσ +

∑
i, j,σ

|i−j|=p2a

tc†
iσc jσ +

∑
i, j,σ
|i−j|=2a

t ′c†
iσc jσ +

∑
i, j,σ

|i−j|=2
p

2a

t ′′c†
iσc jσ

with i, j being site indices and σ ∈ {↑,↓}.
The single particle terms (td = −0.1 eV, t = 0.44 eV, t ′ = −0.2 eV, t ′′ = 0.075eV) were
obtained as a result of fitting the magnon dispersion, measured by RIXS, with a t-J model in
Ref. [24]. Contrary to the usual CuO2 planes found in cuprate superconductors, the interstitial
O atoms within one slab favor next-nearest neighbour (NNN) hopping t between Cu sites
rather than nearest-neighbour (NN) hopping td .
We use an Hubbard interaction strength of U = 7 eV, a significantly higher value than the one
from Ref. [24] but necessary for obtaining a gap that is larger than the experimental lower
bound 2.35 eV [17]. Similar values of U have been used in LDA+U calculations [22,23].
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Figure 2: Comparison between selected elements of the self-energy computed on
two different clusters using the MPS-based solver on the imaginary axis. Note the
difference in scales between panels (a,b) and (c). The components shown belong to
the block of the up-spin self-energy.

3 Results

3.1 Sublattice decoupling

At the single particle level it is hard to argue for the decoupling of the two sublattices since the
nearest-neighbour hopping td is of the same order of magnitude as the next-nearest neighbour
hopping (td ∼ − t

4). Therefore it is important to also take into account the self-energy which
captures the modification of the non-interacting Hamiltonian due to the presence of electronic
interactions in the correlated material.

Within the framework of CDMFT,
::::::::::::::::
[31–33,44–47],

:::::::
which

::::
has

:::::::
shown

::
to

:::
be

::::::::::
extremely

:::::::::
insightful

::
in

:::
the

:::::::
context

:::
of

::::::::
cuprates

:::::::::::
[33,48–55]

:
, local interactions, hopping terms on the given

cluster and dynamical fluctuations to an electronic reservoir are taken into account exactly,
while longer-ranged exchange with the rest of the lattice is included on the single-particle
level and enters via the self-consistency loop [56]. In CDMFT, the cluster self-energy Σ(ω) is a
matrix-valued quantity in terms of combined cluster-spin indices. It links the non-interacting
and interacting cluster Green’s functions, G0(k,ω) and G(k,ω), via the Dyson equation

Σ(ω) = G0(k,ω)−1 −G(k,ω)−1

Besides the local component, Σloc(ω), non-local self-energies within the cluster are accessi-
ble, which we denote with respect to the hopping term connecting the corresponding sites,
e.g. Σt(ω), Σtd

(ω). We compute the self-energy on different impurity cluster geometries
(Fig. 1(d)-(g)) and probe its influence on the coupling between the two sublattices.

To this aim, we choose the dimer cluster including the next-nearest neighbour hopping
t (Fig. 1 (d)) and the plaquette cluster containing two such dimers connected by the next-
neighbour hopping td (Fig. 1 (e)). The following results have been obtained by a MPS-based
impurity solver [57–59] working on the imaginary axis and were computed using CDMFT at
effectively zero temperature (T = 0K). More details on the solver can be found in Sec. 4 and
App. A.

In Fig. 2 we show selected elements of the self-energy computed for those two clusters. As
shown in Fig. 2(a,b) the elements of the self-energy already included in the dimer cluster do es-
sentially not change by considering the cluster containing a dimer on each sublattice. Indeed,
the self-energy element corresponding to the inter-sublattice hopping (Fig. 2(c)) is found to be
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about three orders of magnitude smaller than the intra-sublattice element (Fig. 2(b)). On the
other hand, the inter-sublattice hopping (td) is roughly about one fourth of the leading order
hopping (|td | ≈ | t4 |). Therefore, the inter-sublattice self-energy suppression is far from trivial
and indicates that electronic correlation effects strongly favour the hopping between sites that
are connected by t, i.e. that are part of one sublattice.
We believe that the driving mechanism behind the formation of sublattices is that the hopping
elements td ,t,t ′,t ′′ are not decreasing monotonically with distance. The leading order hopping
is largely favoured by electronic correlations irrespective of whether it is the nearest neighbour
or any higher ranged hopping. Furthermore, in systems where hopping terms monotonically
decrease with distance, the sites are all connected to each other through processes including
only the favoured hopping term. This leads to self-energies which smoothly decay with dis-
tance since higher-order hopping processes of the largest hopping term still connect to every
site. However, due to the position of the oxygen atoms in t-CuO, the NNN hopping term (t)
is favoured. Since the latter connects only sites from the same sublattice, the inter-sublattice
self-energy shows a strong suppression.

::::::
Please

:::::
note

::::
that

::::
this

::::::::::
decoupling

::::::::::
behaviour

::::
can

::::
also

::
be

::::::::
observed

:::
at

:::::
finite

:::::::::::::
temperatures

::
as

:::::::
shown

::
in

:::::
App.

:::
B. We want to stress the importance of this

result, as it proves that thinking of t-CuO as two weakly coupled sublattices is well justified
and reveals the physical origin of this behaviour.
This insight can be used to motivate a self-consistent super-cluster construction (Fig. 1(g))
consisting of two intercalated four-site intra-sublattice clusters (Fig. 1(f)) allowing us to in-
crease the momentum resolution within our CDMFT calculations to one corresponding to an
eight-site diamond cluster, while retaining the computational effort of a four site plaquette.
This super-cluster is of special interest since it allows to treat t and t ′ exactly while td is
treated perturbatively.

:
It
::
is
::::::::::
moreover

:::::
based

:::
on

::::
the

:::::
2× 2

:::::::::
plaquette

:::
on

::::
each

::::::::::
sublattice,

::::::
which

::
is

::::::
argued

:::
as

::::::
being

:::
the

:::::::::
minimal

::::::
cluster

:::::::::::::
incorporating

::::
key

:::::::::::
ingredients

:::
of

:::
the

:::::::::::
low-energy

:::::::
physics

::
of

::::::::
cuprates

::::::::::::
[33,60–66]

:
.
:

Hereafter, we refer to the emerging cluster as block-construction.
Technical details of the construction can be found in App. C.

3.2 Spectral function

In the following, we compare calculated spectral functions using the block-construction to
ARPES data. The results presented in this section were obtained by the MPS - based im-
purity solver on the real axis [37–41], see Sec. 4 and App. A.

:::::
While

:::
the

::::::::::::
single-band

::::::::
Hubbard

::::::
model

::::::
solved

:::::
with

::::::::
quantum

:::::::
cluster

::::::::
methods

::::
has

::::
been

:::::::
shown

::
to

:::::::
capture

::::
the

:::::
main

::::::::::::
characteristic

:::::::
spectral

::::::::
features

:::
of

:::::::::
undoped

::::
and

::::::
doped

:::::::::
cuprates

:::::::::::::::
[48,49,67,68],

::::
we

:::::
apply

::::
this

::::::::
method

:::
for

:::
the

::::
first

:::::
time

::
to

:::::::
t-CuO.

In Fig. 3(a) we show an equal energy cut on the top of the valence band, which agrees
well with the energy map measured in experiment (Ref. [17], Fig. 1(a)): We recover the
strong maxima in the middle of the BZ, which are offset by 90◦. We also reproduce the replica
features outside the single-sublattice BZ (dashed black line) that experimentally justified the
assumption of only weakly coupled sublattices. To elaborate on this point in more detail, we
note that on the one hand the two sublattices would be entirely decoupled only for td = 0,
yielding the spectral function of a single sublattice. In such a case, the features inside the first
BZ of a single sublattice would be periodically replicated outside the BZ. On the other hand,
the vanishing inter-sublattice self-energy (see Fig. 2(c)) keeps the hopping td bare, whereas
the intra-sublattice self-energy enhances the hopping t (see Fig. 2(b)) by a factor of ∼ 2. This
effectively renders the t hopping ∼ 10 times stronger than td , explaining the close resem-
blance of the replica features with respect to the ones in the original BZ. Note that unlike in
ARPES [69] there are no matrix-element effects present in our calculation, which is why our
replicas do not undergo any additional intensity modulations. In order not to favor any direc-
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Figure 3: Spectral function A(k,ω). (a) Equal energy map at E = −2.2 eV where the
dashed black line depicts the first BZ of a single sublattice. (b) A(k,ω) along high-
symmetry k-path as computed with the block-construction scheme and compared
to the experimentally measured dispersion (purple circles in inset) extracted from
Ref. [17] and shifted by 0.4 eV in order to align the chemical potentials. All heat
maps are normalized to the maximal value displayed and averaged over the possible
orientations in the block-construction (see App. D).

tion by using an asymmetric super-cluster we average over possible cluster orientations. This
procedure is described in more detail in App. D. The remaining difference between the x and
y direction in Fig. 3 is entirely due to the magnetic stripe order.
In panel (b), we show the momentum resolved spectral function of the valence band using
the block-construction and compare it to the ARPES spectrum along the high symmetry path
through the BZ depicted in Fig. 3(a). Comparing our results to ARPES (cf. Fig. 2(a) in
Ref. [17]) we find overall good agreement. In particular the low-energetic Zhang-Rice-like
bands, which are separated from the lower Hubbard band at higher binding energy coincide
(see inset of Fig. 3(b)). We identify this band to stem from a spin-polaron, i.e. a hole propagat-
ing in an antiferromagnetic background. ,

:::::::::
similarly

::
to

:::
the

::::::::::::::
interpretation

::
of

:::::
Refs.

::::::::::::
[68,70–72]

:::
for

:::::::::
standard

:::::::::
cuprates.

:
The incoherent and very dispersive spectrum without well-defined

structures around the M and Γ points are also consistent with the measured spectrum. More-
over we reproduce the experimentally observed missing spectral weight at the X point, a fea-
ture which was not obtained within a self-consistent Born approximation calculation based
on a Zhang-Rice singlet (ZRS) [10] spin-model [28]. An obvious feature that the calcula-
tions presented in this work can not reproduce are the contributions from a lower lying band
marked with β in the experimental data [17], which is not included in our low-energy model.
However, apart from these features the agreement between our model and the experiment is
striking.

3.3 Finite temperature analysis

All results so far presented were computed at T = 0K, however, there have been multiple
predictions about the Néel temperature TN for the antiferromagnetic ordering of t-CuO in
the literature [15, 18, 19, 25], which underlines the necessity to better understand the finite-
temperature behavior of the system. To this end, we employ CDMFT with a continuous-time
Quantum Monte Carlo solver using the dimer and the block-construction clusters (Figs. 1(d),(g)).
In Fig. 4 we show the staggered magnetization as a function of temperature as well as the spin-
and momentum-resolved self-energy for three characteristic temperatures.
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V

)

Figure 4: (a) Staggered magnetization calculated using the dimer cluster and the
block-construction. The dashed black lines indicate the β =∞ result computed with
the MPS based impurity solver on the imaginary axis. The vertical lines depict the
inverse critical temperature βc = (18.5±0.7)eV−1 ((14.5±0.8)eV−1) for the block-
construction (dimer) cluster. The shaded area depicts the error bar for βc . (b) Real
part of the diagonal components of the self-energy for different inverse temperatures
β indicated in (a). The curves shown left correspond to the spin up (solid) and down
(dashed) components on a cluster site. On the right, we show the self-energy at the
two cluster momenta K1 = (0,0) (dashed) and K2 =

�
0, πa

�
(solid) respectively.

First, we note asymptotic convergence of the staggered magnetization towards the T = 0K
value obtained with the MPS - based solver for β →∞. Most importantly, Fig. 4(a) allows to
identify an inverse temperature at which the order melts, namely βc ≈ 18.5 eV−1 (14.5 eV−1),
corresponding to a critical temperature of Tc ≈ 627K (800K) obtained with the block-construction
(dimer) cluster. Details about the estimation of Tc can be found in App. F.
While the dimer cluster overestimates magnetic order, the block-construction, which includes
slightly longer-ranged magnetic fluctuations, leads to a smaller value of Tc . We study a sim-
plified 2D model of t-CuO, which does not include the inter-layer magnetic exchange cou-
pling. Long-range AF magnetic order should hence not be stable at finite temperature due
to fluctuations between the two equivalent stripe configurations [73]. In fact the staggered
magnetization of our CDMFT calculations is rather a consequence of choosing one of the two
possible stripe directions within the mean-field scheme, than an actual hallmark of long-range
magnetic order. Despite prohibiting a direct determination of TN , the reduction of Tc upon
extending the cluster size nevertheless shows the importance of including in-plane spin fluc-
tuations.
In Fig. 4(b), the Matsubara self-energies of the dimer cluster are compared at T = 0 K and at
three characteristic temperatures corresponding to the paramagnetic (PM), the magnetically
ordered and the transition region of the phase diagram. First, we observe in

:::::
First,

::
as

:::
the

:::::::
system

::::::
enters

:::
the

::::::::::
insulating

:::::::
ordered

:::::::
phase,

:::
we

:::::::
observe

:::
the

:::::::::::
asymptotic

:::::::::::
convergence

:::::::
towards

::::
the

:::::
MPS

::::::
(T=0)

::::::
result

::::
(see

:
Fig. 4(b)asymptotic convergence towards the MPS result

in the ordered phase. Secondly one observes that the frequency dependence
::
).

::::
The

:::::::::
frequency

:::::::::::
dependence

:::
of

:::
the

:::::::::::
self-energy

:
gets strongly suppressedfor large polarization. This can be

understood in terms of a smaller active space for the electrons, as in the stripe order the orbitals
on neighbouring sites are either occupied by another electron with the same spin orientation,
which amounts to a Pauli spin blockade in that direction, or they are already occupied by an
electron with opposite spin, which causes a Coulomb blockade.

::::
This

::
is
:::::
well

:::::::::
described

:::
in

:::
the

::::::
atomic

:::::
limit

::
as

::::::::
derived

::
in

::::
Ref.

:::::
[74],

:::
or

::
by

::::
the

::::::::::
asymptotic

::::::::::::
development

:::
of

:::
the

::::::::::
self-energy

::::::
which

::::::::
becomes

:::::
static

:::
in

:::
the

:::::::::::::::::
antiferromagnetic

::::::::
ordered

:::::
limit

:::::
[75]

:
.

We note that even at β = 10 eV−1 the material is still insulating as the diagonal of the Green’s
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function (not shown) still approaches 0 in the limit of ωn → 0. In the PM phase this can not
be attributed to a freezing of dynamics due to large spin polarization, but by a momentum-
selective level splitting (right panel of Fig. 4(b)): Close to the real axis, the K1 = (0, 0)
orbital is very strongly favoured with respect to the K2 = (0, πa ) orbital. We interpret this

::::
This

::
is

::::::::::
consistent

::::
with

:::::::::
previous

:::::::::
quantum

::::::
cluster

::::::::::::
calculations

::::::::::
performed

:::
for

::::::
dimer

::::
and

::::::
larger

:::::::
clusters

::::::::
[76,77]

:
,
::::
and

::::
can

:::
be

:::::::::::
interpreted

:
as a freezing of

:::
the electron movement that is not

generated by spin polarization but rather by penalizing electrons with non-zero momentum.
Overall, this underlines that there is correlation-driven static level splitting present in the or-
dered phase whereas the PM phase is driven by dynamic splitting of momentum orbitals. We
note in passing the enhancement of ReΣ at β = 20eV−1 (c.f. Fig. 4(b)) near ωn = 0. Even
though here the system already is in the ordered phase, the splitting is larger than U at low
frequencies. This can be traced back to thermal fluctuations (see App. H for a more detailed
discussion).

3.4 Superconductivity away from half-filling

In order to address the question of superconductivity upon doping the system, we employed
the variational cluster approximation (VCA) method [42, 78, 79]. This technique is particu-
larly well suited to study the energetics of different symmetry breaking solutions of the model
and their competition. It is based on finding stationary points of the self-energy functional
Ω(Σ), which approximates the grand potential of the (lattice) system in the space of cluster
self-energies [80]. These self-energies are parametrized via suitably chosen one-body param-
eters of the quantum cluster, potentially augmented by Weiss fields to allow for solutions with
long-range order.
We checked for different singlet-pairing channels and found stable solutions for superconduct-
ing Weiss fields of dx y and dx2−y2 symmetry. These two pairing channels have been discussed
already in the context of the t − t ′ − U Hubbard model [81], which would correspond to
only take into account td and t. Whereas the dx2−y2 channel and its competition with Néel
antiferromagnetism are important close to half-filling for t/td < 1, the (π, 0) collinear anti-
ferromagnet and SC of dx y symmetry were identified to be key for t > td [81, 82]. Here,
however, we focus on the superconducting channels of dx y and dx2−y2 symmetry away from
half-filling.
For both dx y and dx2−y2 symmetry, the superconducting solutions are energetically favoured
over the normal state (PM) solution for fillings n < 1. The same is true for antiferromagnetic
stripe order (AFS) , see Fig. 5, which we find even lower in energy down to n ≈ 0.87. How-
ever, when allowing for competition between these symmetry-breaking orders, a coexistence
of superconductivity and AFS (AFS+SC) leads to the overall lowest energy solution at zero
temperature, see red curve in Fig. 5.
Comparing the corresponding antiferromagnetic and superconducting order parameters of
these solutions shows that they are reduced in the coexistence solution as compared to the
pure AFS and SC solutions. This indicates a competition between magnetic and superconduct-
ing orders upon doping. Most interestingly, the order parameter of the dx2−y2 SC is strongly
suppressed by the presence of antiferromagnetic stripe order such that the Cooper pairing is
mainly of dx y -symmetry.
Finally, we note that SC of dx y symmetry actually corresponds to dx2−y2 symmetry within each
of the two sublattices. Therefore, in the context of sublattice decoupling, our energetically
most favourable solution could be interpreted as the emergence of a dx2−y2 superconducting
state with coexisting (Néel) antiferromagnetic order on each sublattice.
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Figure 5: (a) Internal energy Ω as a function of filling n for different solutions within
VCA: Antiferromagnetic stripe order (AFS), superconductivity (SC) of dx y or dx2−y2

symmetry as well as coexistence of all three. (b) Order parameters corresponding to
the phases in (a); the colors correspond to the solutions in (a). For all calculations we
used the full 8-site diamond cluster of Fig. 1(g), i.e. without block-construction and
optimized the functional in addition with respect to the (cluster) chemical potential
µ (µ′).

4 Methods

Our method of choice to treat the interacting many-electron problem is a cluster extension of
dynamical mean-field theory (CDMFT) [?, 31,83]

:::::::::::::::
[31–33,44,83]. In CDMFT, the full lattice

problem is mapped to an effective cluster of several sites which is dynamically coupled to an
electronic reservoir that represents the rest of the solid. This cluster-bath system is solved
numerically for its Green’s function and linked to the full lattice problem via a self-consistency
loop.
Due to the long-range magnetic stripe order, see Fig. 1(c), we perform magnetic calculations
choosing cluster tilings, that are inline with the order. We propose several cluster geome-
tries as shown in Fig. 1(d)-(g) for our CDMFT calculations, both to investigate the question of
weak coupling (Fig. 1(d,e)) as well as to obtain further observables like the spectral function
(Fig. 1(d,f,g)). In order to allow for a polarized solution, the CDMFT loop was initialized with
a strongly polarized (constant) self-energy.
To investigate possible superconducting solutions upon doping, we use the variational cluster
approximation (VCA) [42, 78, 79], which is an established variational quantum cluster tech-
nique well suited to check for different symmetry-breaking orders of the lattice system [84,85].
Both techniques can be explained in terms of self energy functional theory [80,86] and are in
this sense complementary [87]. They rely on the solution of the embedded cluster problem,
for which we used different solvers as detailed below.

4.1 Imaginary axis MPS impurity solver

We use the MPS-based impurity solver introduced in Ref. [57] and successfully applied in the
context of DFT+DMFT in Refs. [58,59,88]. Using Matrix Product States (MPS) [35,36]we are
able to access effectively zero temperature. MPS need a Hamiltonian formulation of the cluster
impurity problem, which we obtain by following the fitting procedure introduced in Ref. [89]
in the context of exact diagonalisation (ED). However with MPS we are able to treat a larger

10
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if the norm becomes smaller than 10−8.
Over the course of the last two iterations the self-energies presented in Fig. 2 did not change
by more than 7 · 10−4eV on the diagonals (Fig. 2 (a)), by not more than 5 · 10−4eV on the
offdiagonal corresponding to the intra-sublattice hopping t (Fig. 2 (b)), and by not more than
6 · 10−6eV on the inter-sublattice component (Fig. 2 (c)).
To improve the numerical accuracy for the computation of the high-Matsubara frequency part
(tail) of self-energies we use the additional correlator introduced by Bulla et al. [111].

A.1.2 Real axis

For real axis calculations we use a broadening of η = 0.05 eV. In ground state searches we
allow for a maximal bond dimension of 1536. We time-evolve using TDVP [109,110] up until
Tmax = 40 eV−1 (Tmax = 60eV−1) for the block construction (dimer) calculations. Even though
more costly in real time calculations we also use the additional correlator introduced by Bulla
et al. [111] to improve the quality of the self-energy as compared to Dyson’s equation. For
calculations with the dimer cluster we use a mixing factor of 0.7 in the last few iterations.

A.2 Continuous-Time Quantum Monte Carlo (CTQMC) solver

CDMFT calculations at finite temperatures were performed using the hybridization-expansion-
based CT-HYB [94] solver, based on CTQMC [95] method and ALPSCore librairies [96].
We used Nω = 500 Matsubara frequencies and a grid of Nτ = 2001 imaginary time points for
all β , adapting the number of Legendre polynomials to the different β values. For all β and
cluster sizes the fermionic sign was always larger than 0.7, maximal sampling count for the last
iterations was larger than 7 ·106 for the dimer clusters, and 2 ·106 for the block construction.
We considered the CDMFT loop converged when the change in local Green’s function became
smaller than 10−3.

B
::::::::::::
Sublattice

:::::::::::::::
decoupling

::::
at

:::::::
finite

::::::::::::::::::
temperatures

::
In

::::
Fig.

:::
A1

:::
we

:::::
show

::::
the

::::::::::::
temperature

:::::::::::
dependence

:::
of

:::
the

:::::
ratio

::::::::
between

::::
the

::::::::::
self-energy

::::::::
element

::::::::
Σtd
(iωn)::::::::::::::

corresponding
::
to

::::
the

::::::::::::::
inter-sublattice

::::::::
hopping

:::
td :::

and
::::
the

::::::::::
self-energy

:::::::::
elements

:::
on

:::
the

:::::
same

:::::::::
sublattice

:::::::::
Σloc(iωn)::::

and
:::::::::
Σt(iωn).::::

The
::::::::::::
self-energies

::
in

::::
Fig.

:::
A1

::::::
were

::::::::
obtained

:::
by

:::::::
CDMFT

:::::::::::
calculations

:::
on

:::
the

:::::::
cluster

::::::::::
consisting

:::
out

:::
of

:
a
::::::
dimer

:::
on

::::::
every

:::::::::
sublattice

:::::
(Fig.

::
1

::::
(e))

:::::::
exactly

::
as

::
in

::::
Sec.

::::
3.1.

::::::::
Similar

:::
to

::::
Sec.

::::
3.3

:::
we

::::::::::
employed

:
a
::::::::::
continous

:::::
time

:::::::::
Quantum

:::::::
Monte

:::::
Carlo

::::::
solver

:::
for

:::
the

:::::
finite

::::::::::::
temperature

::::::::::::
calculations.

::::
Over

::::
the

::::::
entire

::::::::::::
temperature

:::::
range

::::
the

::::::::::::::
inter-sublattice

:::::::::::
component

::
of

::::
the

::::::::::
self-energy

:::::::::
Σtd
(iωn)

::::
stays

:::::
very

::::::
small

::::::::::
compared

:::
to

:::
the

::::::::::::
components

::::::::::
contained

:::
on

::
a
:::::::

single
::::::::::
sublattice.

::::::
Note

::::
that

:::
the

::::::
ratios

::::::
range

:::::
from

::::::::
roughly

:::::
10−2

::
to

::::
less

:::::
than

:::::
10−3

::::::::::
indicating

::::
that

::::
the

::::::::::
sublattices

::::::
seem

::
to

::::::::
decouple

:::::
over

::::
the

::::::
entire

::::::::::::
temperature

::::::
range.

::::::
This

:::::::::::
observation

::::::::
justifies

::::
the

:::
use

:::
of

::::
the

:::::
block

:::::::::::
construction

::::::::
scheme

:::
(cf.

:::::
App.

:::
C)

::::::::::
mentioned

:::
in

::::
Sec.

:::
3.1

:::
at

:::::
finite

:::::::::::::
temperatures.

:::::::::::::
Furthermore

:
it

::::::::
indicates

::::
that

::::
the

:::::::::
sublattice

:::::::::::
decoupling

::::::
seems

::
to

:::
be

::::::::::::
independent

::
of

::::
the

:::::::::
magnetic

:::::::::
ordering,

::
as

::::
even

:::
in

:::
the

:::::::::::::
paramagnetic

:::::::
regime

::::
the

::::::::::::::
inter-sublattice

:::::::::::
component

::
is

::::::::
strongly

:::::::::::
suppressed.

:

C Block construction scheme

The self-consistent construction scheme consists in assuming a block structure of the cluster
self-energy. One proceeds by first assuming the off-diagonals of the self-energy that correspond
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Figure A1:
:::::::::::
Temperature

::::::::::::
dependence

::
of

::::
the

:::::
ratio

::
of

::::
Σtd ::::

and
::::
Σt ,::

as
:::::
well

::
as

::::
the

:::::
ratio

::::::::
between

:::
Σtd::::

and
:::::
Σloc.:::

We
:::::::::
evaluate

:::
the

::::
self

::::::
energy

::
at

::::
the

::::::
lowest

::::::::::
Matsubara

::::::::::
frequency

:::
ω0 ::::::::

available
::::
for

:
a
::::::
given

:::::::
inverse

::::::::::::
temperature

:::
β .

to td to be zero, which is a fair approximation as we confirmed when inspecting Fig. 2. Then,
the two interlaced sublattices are no longer interconnected and the cluster self-energy is of
block structure when regrouping cluster site indices that belong to the same sublattice. This
is for instance the case for the differently coloured sites in Fig. 1(g). Therefore, it is sufficient
to solve the impurity problem on one of the two sublattices. After closing the self-consistency
loop we project down onto one of those blocks and obtain an impurity problem on the unit
cell of a single sublattice (Fig. 1(f) in the main text). Solving this problem yields one of the
two blocks of the aforementioned self-energy.
This construction amounts to a momentum resolution as obtained by considering the cluster
depicted in Fig. 1(g), but with the computational effort of considering the unit cell shown in
Fig. 1(f). The approximations described in this paragraph in essence correspond to treating
the inter-sublattice hopping included in the diamond on the single-particle level via a feedback
from the self-consistency loop [56]. A similar block construction of a supercluster was already
used successfully within CDMFT [112,113].

D Averaging dimer/diamond orientations

Most of the results in this work were computed using the t-dimer or the block construction as
unit cells. Fig. A2(a,b) shows two different orientations for these unit cells, that are in line
with the stripe order proposed in Ref. [24]. Choosing one of them would artificially introduce
an asymmetry, which is why the results presented in the paper were averaged over the two
possible orientations. This approach goes by the name oriented cluster DMFT and was already
introduced in Ref. [114,115] and applied to Sr2IrO4 [114–116].
For completeness we show the equal energy maps obtained for every orientation compared to
their respective mean in Fig. A2(c,d). We observe that the dimer results are far more sensitive
to the orientation, however apart from the minimum in the middle of the BZ their average
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Figure A3: Comparison of equal energy maps (a,c) and spectral functions on a path
through the BZ (b,d) for the two different possible direction of the stripe order. The
results shown were obtained with the block construction discussed in the main text.
The heat maps were normalised to the maximal value shown. The path through the
BZ is the one depicted in Fig. 3(a) of the main paper.

is already very similar to the energy maps computed with the block construction. This has
two promising implications. First, it implies that the dimer results already capture very well
the physics in t-CuO, indicating that the most important physical content of the extended unit
cells is actually the delocalisation along the dominating bonds, as was already argued in the
main text. On a second note we interpret the fact that the block construction result is almost
independent of the orientation as an indication for convergence in cluster size.

E Stripe orientation

As mentioned in the main text we initialized our solvers such that the stripe order depicted in
Fig. 1 is favoured. However there is no reason why the stripes should specifically be oriented
in x-direction as opposed to y-direction. Thus in order to deliver a more complete picture
we compare in Fig. A3 the results obtained when favouring the order in y-direction to those
presented in the main text. In Ref. [27] the possibility of having multiple domains in the ARPES
sample was mentioned. This would yield a spectral function that amounts to some weighted
superposition of the two spectra and equal energy maps shown in Fig. A3, where the weight
would depend on the portion of the sample that has a certain

::::::::
magnetic

:
stripe orientation.

However as both
::::::::
magnetic

:
stripe orders yield qualitatively very similar results we only discuss

one of them in the main text.
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F Estimation of the critical temperature

In the main text we mention an estimate for the critical temperature and also depict it with
error bars in Fig. 4(a). In order to extract this estimate we fitted a function of the form

M(T ) = θ (Tc − T )γ
�

1− T
Tc

�β

to the staggered magnetization. Here γ, Tc and β are fit parameters and θ is the Heaviside
step function, that was added in order to make the fits more stable. Note that unlike the rest
of the manuscript here β is the critical exponent of the transition, while βc in the following
denotes the inverse critical temperature.
By inspection of the self-energies in the transition region we find upper and lower boundaries
for βc . We set the lower boundary such that the spin splitting vanishes and the upper one such
that the imaginary part of the diagonal components of the self-energy tends to 0 as ωn → 0.
By this criterion we identify βc = 16 eV−1 (βc = 20eV−1) and βc = 13eV−1 (βc = 17 eV−1) as
upper and lower boundary for the dimer and block-construction clusters respectively.
Varying the upper and lower boundaries of the fit interval we obtain a collection of fits, of
which we discard those, which either display a deviation bigger than 0.05 from any data point
or which do not give βc in the region that was determined by inspection of the self-energies.
Thus we end up with a collection of valid fits over which we average the resulting βc . The
error bars in Fig. 4(a) correspond to the standard deviation in the set of valid fits.
The average values we obtain for the critical exponent are β = 0.44±0.15 (β = 0.66±0.34) for
the block-construction (dimer) respectively. The errors are again determined as the standard
deviation in the set of valid fits. Finally, we note that the exponents are in good agreement
with the expected mean-field critical exponent of β = 0.5 [117].

G Comparing CTQMC and MPS data at low temperature

At lowest temperatures (e.g. for β = 50eV−1), the Green’s functions obtained from applying
the CTQMC solver and the MPS-based solver at T = 0K coincide, see Fig. A4. It is important to
point out that the only notable deviations occur in the off-diagonal part of the cluster Green’s
function, where the absolute value of Gi, j(iωn) is small (∼ 10−3). In order to achieve good
agreement between the two methods we ensured a sufficiently large sampling in the CTQMC
solver: maximal sampling count was larger than 7 · 106 for the dimer clusters, and 2 · 106 for
the block construction.

H Self-energy temperature dependence

While already being in the ordered phase, at finite temperatures (e.g. β = 20 eV−1) the real
part of the self-energy in Fig. 4(b) in the main text shows an additional dynamic splitting at low
Matsubara frequencies. This dynamical effect decreases when temperature is lowered. The
static part given by the high-frequency tail however shows a constant increase. To identify
the leading mechanism we derive in the following a simple toy-model able to capture this
behaviour by including thermal effects only at the single-site level.
Following the idea of Stepanov et al. [74], we consider a single Hubbard site subject to a small
external magnetic field representing the spin-exchange coupling between neighbouring spins
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Figure A4: Real and imaginary part of chosen elements of the cluster Green’s func-
tion G(iωn) using the horizontal block construction scheme with the MPS solver at
β =∞ and with the CTQMC solver at β = 50eV−1. Panel (a) shows Gloc(iωn) the
local Green’s function on a orbital that is polarized in up direction. Panel (b) shows
the component corresponding to the t hopping element. Panels (c,d) show compo-
nents corresponding to hopping along the t ′ direction. Ge and Gf in panels (c,d)
stand for orbitals that are close to empty and filled respectively. Note that due to
the

::::::::
magnetic

:
stripe order t ′ only connects orbitals with identical polarization (c,d),

while t connects those with opposite polarization (a). All the components shown
correspond to the spin down block of the cluster Green’s function.

in a mean-field fashion:

H = −µ
∑
σ

nσ − h(n↑ − n↓) + Un↑n↓, (1)

where µ = U/2 is the chemical potential set for half-filling, h is the effective field, and U the
on-site Coulomb interaction. The latter being larger than the other characteristic energies of
the system, we assume βU � 1 and βU � βh. Using the finite-temperature Lehmann Green’s
function:

G0
↑ (iωn) =

1

iωn + h+ U
2

G0
↓ (iωn) =

1

iωn − h+ U
2

G↑(iωn)≈
1

(iωn + h)2 − U2

4

�
iωn + h− U

2
tanh(βh)

�

G↓(iωn)≈
1

(iωn − h)2 − U2

4

�
iωn − h+

U
2

tanh(βh)
�

where G0 and G are respectively the non-interacting and interacting Green’s function. The
self-energy is obtained using Dyson equation:

Σ↑(iωn) =iωn + h+
U
2
− (iωn + h)2 − U2

4

iωn + h− U
2 tanh(βh)

Σ↓(iωn) =iωn − h+
U
2
− (iωn − h)2 − U2

4

iωn − h+ U
2 tanh(βh)

.
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