
To the Editor and the Referee,

We are writing to resubmit our manuscript to SciPost Physics. We thank the Referee for

the pointing out the issues and have made changes to address them. We reply to Referee’s

comments, one by one below.

Referee’s comment- The authors do not provide an adequate review of where

this work fits into the literature. Overall, the parts that I understand in this

paper appear correct. The paper is unfortunately not clearly written. The

explanations presented are often rushed, especially so for the most technically

difficult arguments. Not enough trouble has been taken to put the work in

context within the field. The authors cite no other works in the introduction.

This must be fixed, and the relation of the manuscript to existing work clarified.

Authors’ reply- We thank the referee for this general comment. Our changes are high-

lighted in red in a separately attached manuscript pdf. We discuss all the changes made to

improve the clarity of the paper below. To begin, we have now added various references in

the introduction and modified the following paragraph by adding the line in red.

We further show in the paper that in 4+1d the electric, magnetic, and dyonic

loop excitations can tunnel into each other across invertible domain walls in

the bulk of the system. The domain walls, if interpreted as a time direction

boundary, give the explicit unitary circuits that map the loop excitations into

each other. This is similar to the Z2 electromagnetic duality symmetry in 2+1d

Z2 gauge theory that exchanges the electric and magnetic particles (but unlike

in our case, the symmetry leaves the dyon invariant), or the S3 permutation

symmetry in the three-fermion theory in 2+1d that permutes the three fermion

particles [1].

Referee’s comment- Below Eq 23 the authors say: "The boundary is Z2 2-

form gauge theory .... describes a Z2 topological order with confined charges"

I’m confused: The 3+1 D toric code has **deconfined** charges! It’s possible

I’ve misunderstood the construction, but in any case the text is very confusing
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without further elaboration. Relatedly, just above eq 36 the authors say: "Sim-

ilar to the e condensed and m condensed boundaries, there are two variants of

the condensed boundary, corresponding to whether the particle in the boundary

Z2 topological order is a boson or fermion" Again I’m confused: The 3D semion

model has no deconfined particles, so it’s meaningless to talk about exchange

statistics of the particle. Again, the text is confusing.

Authors’ reply- We thank the Referee for mentioning this confusion. The reason for

using "confined" was that these charges are created at the boundary at the points where

loop excitations intersect with the boundary. Due to the fact that the loop excitations

have macroscopic energetic cost required to create them, these end-point excitations at

the boundary are confined. Secondly, the 4+1D topological order is given a boundary by

coupling the bulk to a 3+1d boundary topological order. For the e boundary, the boundary

topological order we couple to can be a 3+1d toric code with an emergent boson or a 3+1d

toric code with an emergent fermion. This charge (the emergent boson or fermion) becomes

the end-point of the e-loop excitation coming from the bulk and the m-loop comes from the

bulk m-loop. Hence, there are two variants. For the m boundary, we can couple to the two

kinds of 3+1d toric codes in a similar way and hence there are two variants. Similarly, for

the ψ boundary, the boundary topological order we couple to can be a 3+1d semion Walker-

Wang model or 3+1d anti-semion Walker-Wang model. We have reworded our description

of the boundary in the paper as follows.

Generalizing the Beigi-Shor-Whalen (BSW) construction [2] to 4+1D and 2-

form gauge fields, the e condensed gapped boundary of the 4+1D toric code is

constructed by coupling to a 3+1D untwisted Z2 topological order which can be

the 3+1D toric code with an emergent boson or the 3+1D toric code with an

emergent fermion. This charge (the emergent boson or fermion) becomes the

end-point of the e-loop excitation coming from the bulk and the m-loop comes

from the bulk m-loop.

and

Similar to the e condensed and m condensed boundaries, there are two variants

of the ψ condensed boundary, corresponding to whether the Z2 topological order
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that is coupled to is the semion Walker-Wang model or the anti-semion Walker-

Wang model.

Referee’s comment-

Sec V and VI are very difficult to follow, and appear rather rushed.

To begin:

"As discussed for the Z2 gauge theory, this symmetry is non-anomalous on ori-

entable spacetime, where the integral of total derivative vanishes"

I’ve searched the text, and cannot find the discussion of anomalies in the Z2 case

prior to the quoted sentence.

Authors’ reply- We thank the referee for the comment. We have removed the line about

the Z2 case and to address the comment on the anomaly, we added the following sentence

in the main text

The ZN two-form symmetry generated by the dyon surface operator is non-

anomalous on orientable spacetime. To see this, we can turn on the background

B3 for the 2-form symmetry:

N

2π

∫ (
b1db2 + (b1 + b2)B3

)
. (1)

Under a two-form background gauge transformation b1 → b1 − λ, b2 → b2 +

λ,B3 → B3 − dλ for two-form λ, the action changes by a total derivative and

thus it is invariant on orientable spacetime.

Referee’s comment- Continuing, I’m confused as to exactly what role time

reversal symmetry is playing in the remainder of this paper. Does the H4 ob-

struction only exist only when time reversal is imposed? I strongly suspect

not, but the text above (63) suggests otherwise (or is a distracting aside whose

relevance should be clarified).

Authors’ reply- The 2-form symmetry is anomalous only when there is time-reversal

symmetry. Or there is a mixed anomaly between the time-reversal symmetry and 2-form
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symmetry. We stress that the H4 obstruction that we discuss means that the symmetry

participates in a three-group, and it is different from the ’t Hooft anomaly. We have added

the following paragraphs in Sec VI to make it more clear:

The defining feature of the H3 obstruction in symmetry-enriched topological

phase in 2+1d is that fusing the domain wall defects that generate the 0-form

symmetry can produce additional Abelian anyon, which generates the one-form

symmetry [1, 3, 4]. Such fusion algebra holds true even when the domain wall is

supported on closed submanifolds. Equivalently, performing a 0-form symmetry

transformation in the presence of background gauge field, which is specified by

the configuration of 0-form symmetry domain wall defects, produces one-form

symmetry background gauge field [4]. This is the global symmetry analogue

of the Green-Schwarz mechanism in string theory. As a consequence, it is not

possible to gauge the 0-form symmetry, where we sum over all possible inser-

tions of the 0-form symmetry defects, without also summing over the insertions

of one-form symmetry defect, since the fusion of the former produces the lat-

ter. The 0-form symmetry and one-form symmetry combines into a two-group

symmetry, and the 0-form symmetry is not a “subgroup”: we cannot gauge the

0-form symmetry alone in a two-group symmetry. This is familiar in group ex-

tension theory: consider Z4 = {1, ω, ω2, ω3} extension of Z2 by the Z′2 = {1, ω2}

subgroup, with ω = i. The element ω fuses into an element of Z′2, and thus we

cannot gauge the “Z2 symmetry” generated by ω without also gauging Z′2: we

need to gauge the entire extension Z4.

In the following we will show that there is a similar obstruction for the ZN
loop permutation symmetry T : (qe, qm) → (qe, qm + qe) in the ZN two-form

gauge theory in 4+1d. We will show that fusing the domain wall defects that

generate the 0-form symmetry produces two-form symmetry defect. This means

the 0-form symmetry has an “H4 obstruction”, or equivalently it participates in

a three-group symmetry together with the two-form symmetry. This means we

cannot gauge only the 0-form symmetry but not the two-form symmetry, since

summing over the 0-form symmetry defect insertions necessarily contains sum

over the one-form symmetry defect insertions as produced by the fusion of the
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0-form symmetry defects.

Referee’s comment- Focussing on Sec VI: My understanding of the obstruction

is that it captures the fact you cannot proliferate DN defects in the N even case.

Correct? I’m less clear as to why you cannot proliferate DN defects/gauge

m↔ ψ symmetry.

Authors’ reply- This will be clear below in a longer reply to a particular question by the

referee on Eqns. (77)-(79). That question starts as "I think 77-79 form the proof that you

cannot gauge m↔ ψ symmetry."

Referee’s comment- Where does the final equality in (76) come from? Citation

needed.

Authors’ reply- We have added the explanation as follows

We can also use the mathematical identity

N2

4π

∫
b(1)b(1) = π

∫
Nb(1)

2π

Nb(1)

2π
= π

∫
Nb(1)

2π
w2(TM)| (2)

where w2(TM)| is the restriction of the second Stiefel-Whitney class of the tan-

gent bundle. We used the Wu formula x2 ∪ x2 = x2 ∪ (w2(TM) +w1(TM)2) for

Z2 two-cocycle x2 [5], and we assumed the ambient spacetime is orientable.

Referee’s comment-"Thus we find that the domain wall DN is completely

equivalent to insertion of the electric surface operator at a suitable locus in

any correlation function." Why is this important? Does this prove there’s an

obstruction? Why?

Authors’ reply- We have added the explanation as follows

Thus we find that the domain wall DN is non-trivial (and thus there is an ob-

struction to gauging the ZN symmetry). But it is completely equivalent to a

higher-codimension operator: it is the same as insertion of the electric surface

operator, that generates ZN 2-form symmetry, at a suitable locus in any corre-

lation function. Thus the fusion of 0-form symmetry defects produces a 2-form
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symmetry defect, indicating the 0-form symmetry mixes with the 2-form sym-

metry and it participates in a three-group. In particular, we cannot gauge the

0-form symmetry alone.

Referee’s comment- I think 77-79 form the proof that you cannot gauge m↔

ψ symmetry. But I do not understand the construction in (77). Where does this

come from? The authors need to spend more time explaining where (77) comes

from, and why it corresponds to an attempt to gauge m↔ ψ symmetry.

Authors’ reply- We have added the explanation as follows

We now repeat the discussion using background gauge fields instead of the sym-

metry defects. The symmetry defects and the corresponding background gauge

fields are related by the Poincaré duality. Let us turn on the background gauge

field B1 for the ZN 0-form symmetry and the background gauge field B3 for the

ZN 2-form symmetry. The action is modified by the coupling∫
N

4π
b(1)b(1)B1 +

∫
b(1)B3 , (3)

where we normalized
∮
B1,
∮
B3 = 0, 1, · · · , N − 1 mod N . We will investigate

the relation between the background gauge fields, which manifest in the fusion

algebra, by demanding the above coupling to be consistent. In particular, if we

extend the fields to a 5+1d bulk, the dynamical field b(1) should be independent

of the bulk extension. The bulk dependence is given by∫
6d

N

2π
b(1)db(1)B1 + π

Nb(1)

2π

Nb(1)

2π

dB1

N
+ db(1)B3 + b(1)dB3

= π

∫
6d

Nb(1)

2π

Nb(1)

2π

dB1

N
+ b(1)dB3 , (4)

where we simplified the first line using the property that db(1)

2π
, N
2π
b(1) have integer

periods. We can further simplify the equation using the identity

π

∫
Nb(1)

2π

Nb(1)

2π

dB1

N
= π

∫
Sq2

(
Nb(1)

2π

)
dB1

N

= π

∫
Sq2

(
Nb(1)

2π

dB1

N

)
+

(
Sq1

Nb(1)

2π

)(
Sq1

dB1

N

)
+
Nb(1)

2π
Sq2

(
dB1

N

)
= π

∫
w2(TM)

(
Nb(1)

2π

dB1

N

)
+
Nb(1)

2π

(
dB1

N

dB1

N

)
, (5)
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where we used the property Sq2(z) = z2 for Z2 two-form z, the Cartan formula

Sq2(xy) = Sq2xy + Sq1xSq1y + xSq2y with Sq1 dB1

N
= 0, and the Wu formula

Sq2x4 = w2(TM)x4 for Z2 4-cocycle x4 = Nb(1)

2π
dB1

N
mod 2. Thus for the bulk

term to be independent of the dynamical field b(1), these backgrounds should

satisfy

dB3 =
N

2

(
w2(TM)

dB1

N
+
dB1

N

dB1

N

)
mod N ≡ Θ4 ., (6)

Let us relate the above equation to the fusion algebra of the 0-form symme-

try. The relation between the background gauge fields implies which has the

background gauge transformation (for simplicity, we omit the transformation of

w2(TM))

B1 → B1 +NC1, w2(TM)→ w2(TM) + dλ1,

B3 → B3 +
N

2
(w2(TM)C1 + C1dC1)λ1

d(B1 +NC1)

2
mod N , . (7)

where we take a lift of the ZN background gauge field B1 in Z, and change we

find that changing the lift by NC1, which is a 0-form background gauge transfor-

mation, produces additional background for the two-form symmetry. This agrees

with the previous finding that fusing N of the ZN 0-form symmetry domain wall

defects gives a two-form symmetry defect.

The second term on the right hand side (6) can be explained as follows. Consider

the junction of five domain walls that generate the ZN 0-form symmetry. We

first fuse two defects to form a codimension-two junction of three domain walls,

then we add another domain wall to form a codimension-three junction of four

domain walls, and adding another domain wall gives codimension-four junction

of five domain walls. The term implies that the codimenion-four locus, i.e. one-

dimensional, emits an electric loop. If the domain walls are g1, g2, g3, g4,−(g1 +

g2+g3+g4) ∈ ZN . then the electric loop is N
2

((g1 + g2 − [g1 + g2])/N) ((g3 + g4 − [g3 + g4])/N),

where we used the addition as the group multiplication in ZN , and [x] =

x mod N .

The first term on the right hand side (6) also has the following interpretation.

If the theory is consistent as a bosonic theory and the symmetries are internal

symmetries, then the fermion parity symmetry should act trivially. Suppose
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w2(TM) = dρ, ρ is a Z2 one-form and it can be viewed as the background

gauge field for the fermion parity symmetry. Then we find that the first term is

equivalent to the shift B3 → B3+ N
2
ρdB1

N
. If B1 = 0, then the fermion parity acts

trivially, as ρ is decoupled from the rest of the theory. If there is non-zero B1, the

fermion parity couples as follows. Consider a junction of three domain walls that

generate the ZN 0-form symmetry, labelled by g1, g2,−(g1+g2), and the junction

has codimension two. Then, we intersect the junction with the domain wall of

the fermion parity symmetry, and obtain a new junction of codimension-three,

i.e. two-dimensional in space time. The junction contain the electric membrane

operator labelled by N
2

(g1 + g2 − [g1 + g2])/N . Now, if we braid the electric

membrane supported at the junction with the magnetic loop labelled by qm, we

find the sign (−1)qm(g1+g2−[g1+g2])/N . If the theory is bosonic and the symmetries

are internal, then the fermion parity domain wall should act trivially on the

theory; here we find it is not the case. Concretely,if we take g1 = N − 1, g2 = 1,

then (g1 + g2 − [g1 + g2])/N = 1. Thus piercing the magnetic loop qm with the

domain wall labelled by N (more precisely, the domain wall obtained by fusing

the N − 1 and 1 domain wall) gives a point-like excitation with self-statistics

πqm, and when qm is odd the point-like excitation is a fermion.

Referee’s comment- 3. Below (69) "am" -> "an" 4. Repeated reference [20]

and [36]. 5. Below (73) aciton-> action

Authors’ reply- We thank the Referee for pointing out these typos and reference issues

and we have now fixed them.

We hope that with these changes and additions, the manuscript is clear and suitable for

publication.
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Sincerely,
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