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Dear Editor,

we thank you for handling our paper which we would like to resubmit to SciPost Physics. Our
paper was reviewed by three referees, whom we want to thank for their careful reading of our
manuscript and for their helpful suggestions, which have undoubtedly improved our work.
We were glad to read that the three referees acknowledged the scientific quality of our results.
Unfortunately, we cannot agree with the judgment of Referee 1 who suggested to publish our
paper in SciPost Core, since he considered that “none of the “expectations” for SciPost Physics is
clearly met”. In fact, this opinion is in strong contrast with the report of Referee 2, who wrote
explicitly that our paper “meets all the criteria for acceptance, and meets (if not exceeds) the
general expectation of clarity, correctness, and broad interest”. Similarly, Referee 3 also started
his report by writing that “[Our] calculation opens the possibility to understand the results for
the level compressibility conjectured in [23] and checked numerically in [31]”.

Below we give a detailed response to all the issues raised by the three Referees, indicating
the location of the corresponding changes in the revised manuscript. We have also highlighted
in blue color, for convenience, all the changes in the manuscript. These edits appear in the
Abstract, Introduction and Conclusions, as well as in Sections 1.1-2, 2.0-1, 2.4, 3.0, 3.2, 3.5-
6, B. A whole new section (Appendix F) has been included in response to comment 1 of the
third Referee. With these extensive changes, we hope that our manuscript will be accepted for
publication in SciPost Physics.

Yours sincerely, the authors.

1 First Referee report

1.1 Reply to report

We thank the Referee for their report (and for taking the time to read and comment our paper).
As we have tried to emphasize in our manuscript, the generalized RP model in the standard
form which we have chosen to address (i.e., with a generic distribution of the diagonal disor-
der pa(a)) already displays, despite its simplicity, some quite nontrivial fractal properties in its
partially extended phase. This is why it has already found wide application even beyond the
physics of quantum many body systems where it was initially conceived, ranging from theo-
retical ecology, to soft modes in disordered systems and even data science.
We do acknowledge that a lot of attention has recently been paid to the fractal/multifractal
properties of the eigenstates (rather than of the eigenvalues); however, the level compress-
ibility χ(E) which we have analyzed in the second half of our work is already sufficient to
highlight the fractal nature of the intermediate phase, since it can be used to characterize the
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local level statistics (see, e.g., Ref. [1]). It is also arguably simpler to address analytically –
indeed, most of the previous studies analyzing the eigenstates are numerical.
The scaling form of the level compressibility which we derived in Sec. 3.5 is, in our opin-
ion, quite an unexpected result: checking its universality in more complicated settings (e.g.,
Wigner/Wishart off-diagonal disorder, sparse matrices, genuine multifractal ensembles...) is
clearly important in relation to quantum many-body systems and quantum chaos. Besides its
physical applications, in the context of Random Matrix Theory it is very natural to ask whether
the universality we found in the full counting statistics of the GRP model persists in other struc-
turally similar random matrix ensembles, and this already motivates the need for substantial
follow-up work.
Finally, many other hints and open questions have been indicated in the report of the third
Referee (see also our replies). We have now revised the Conclusions of our manuscript in
order to give a more comprehensive overview of these research directions.

1.2 Reply to requested changes

Referee: Page 4: The authors claim that “the GUE case can be analyzed with only minor
changes of the calculations that we develop”. I doubt whether this is true. The Edwards-Jones
formula, an essential ingredient in the calculations presented in this work, can for example not be
trivially extended to complex-valued matrices (see e.g. Ref. [69]). This statement needs justifica-
tion.

Reply: We thank the Referee for pointing out this issue. The reason why we expected the
deformed GUE case to be possibly addressed within the same formalism as in our manuscript
is that a previous study (see Ref. [2]) has successfully applied this method to the pure GUE
ensemble, thus accessing the statistics of the number of eigenvalues in an interval, I[−E, E].
While the E-J formula may not be readily extended to a complex-valued matrix, on the other
hand we note that the average spectral density ρ(E) is formally proportional to the derivative
with respect to E of the first cumulant κ1(E) = 〈I[−E, E]〉 – see Eqs. (10) and (99) of the
revised manuscript. Of course, in order to access the finite-size corrections to the spectral
density one would need to compute the cumulant generating function of I[−E, E] beyond the
leading order in N (which is where we stopped in Section 3 of our work), but this still provides
in principle a way to bypass the E-J formula.

In the revised manuscript, we have rephrased our initial claim in a less assertive form. We
have also briefly addressed this discussion in the introduction of Section 3.

Referee: Page 18: It might be helpful to add a brief comment on what is meant by “quenched”
and “annealed”. Although it is well-known in the field, to me it feels like a missing point since the
rest of the work is essentially self-explanatory.

Reply: We thank the Referee for spotting this missing point, which we have now briefly
addressed in the introduction of Section 2.

Referee: Page 27: If I understand correctly, “at low energy” here means “in a small range
around zero energy”. As “low energy” can also be interpreted as “close to the ground-state energy”,
it might be worth re-considering the formulation.

Reply: Yes, what we meant was indeed in a small range around zero energy. We have
changed the title of this Section in order to avoid possible confusion.

Referee: Page 30: In Eqs. (B.3) and (B.4), I think i ≤ j should read i < j.
Reply: We thank the Referee for pointing out this misprint, which has been corrected in

the revised manuscript.
With these changes and clarifications, we hope that Referee 1 will be convinced that our

paper deserves publication in SciPost Physics.
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2 Second Referee report

We warmly thank the Referee for their kind and eager support. We also welcome their sug-
gestion to include a comment on the “unreasonable effectiveness” of Eq. (76), which is not
only a curiosity but indeed a truly remarkable point (it can now be found in the introduction
of Section 3).
We have done so by also including references to Ref. [3], and to the discussion contained in
Appendix A of Ref. [4].

3 Third Referee report

We thank the Referee for his numerous interesting and useful comments, to which we reply
below.

3.1 Reply to report

1. (a) We thank the Referee for raising this illuminating point. The reason why we had
not attempted a direct comparison with the results of Ref. [5] is that we are actually
talking about two distinct (albeit structurally similar) random matrix ensembles: in
our manuscript the matrix B belongs to the Gaussian orthogonal ensemble (GOE),
while in [5] (at least for what concerns the calculation of the spectral form factor)
it is drawn from the Gaussian unitary ensemble (GUE). In particular, the analysis in
Refs. [5,6] relies on the Harish-Chandra-Itzikson-Zuber integral, a powerful analyt-
ical tool for which no equivalent exists in the GOE case.
Nonetheless, starting from the spectral form factor studied in [5] one can indeed re-
cover the corresponding level compressibility χ(E). This analysis is detailed in the
new Appendix F of the revised manuscript (and further commented on in Section 3.5
– we have also added changes to the abstract and to the Introduction, accordingly).
By choosing as a starting point the universal scaling form of the spectral form factor
found in [5], we show that the scaling form assumed by χ(E) in the fractal regime
coincides with the one of the GOE case derived in our manuscript (note that the two
level compressibilities do not coincide outside of this regime). This result is very
interesting, because it supports the idea that this universal function may stem from
the structural properties of the model, and be robust against changing the details
(and the symmetries) of the particular random matrix ensemble.

(b) The coherent potential approximation heuristically consists in writing down cavity-
like equations for the Green function of the model, and then replacing the self-
energy by its “average” (which is a scalar). By looking at Ref. [7], it is not clear to us
why the said approximation should solve exactly the RP model with Cauchy diagonal
disorder – note that Eq. (50) in the first version of our paper is simply the resolvent of
the pure Cauchy distribution, and not the density of states of the corresponding RP
model. Still, even in different contexts, cavity-like equations are indeed sometimes
solved exactly by the Cauchy distribution, at least in the thermodynamic limit [8].
In principle, we don’t see any reason why this conclusion should extend to other
generic choices of pa(a); besides, we don’t expect the approximation to work in any
case for a large but finite matrix of size N . However, investigating the accuracy of
the coherent potential approximation is surely an interesting perspective for future
work.

2. We reckon that the main difference between our calculation and those performed in
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Refs. [6, 9] is that the latter two considered a deformed GUE ensemble as a starting
point, rather than the GOE. For instance, Ref. [6] relies explicitly on the Harish-Chandra-
Itzykson-Zuber integral, for which there is no equivalent in the GOE case. Reference [9]
presents instead a perturbative diagrammatic calculation, and this method could only in
principle be extended to include the GOE and GSE ensembles (as the authors remark in
their conclusions). Thus, as they stand, these results are not directly applicable to the
GOE case addressed in our manuscript – although of course strong similarities do exist.
Conversely, Eqs. (36)-(37) in our (revised) manuscript instruct on how to compute ρ(λ)
in terms of the distribution pa(a) of the diagonal disorder, for large but finite N , in the
real case. We have now added several comments in the introductory sections of the re-
vised manuscript, which will hopefully clarify these points.
Besides, although we agree with the Referee that in the numerical calculations the pa-
rameter γ can be reabsorbed in a redefinition of the parameter ν as ν′ = νN (γ−1)/2 (and
γ′ = 1), we also note that ν and γ are not really interchangeable, because N is also the
actual size of the matrix H (see the next point).

3. In our work we have adopted the standard definition of the GRP model, with ν∼O(1),
so that for 1 < γ < 2 and finite N it is relevant to account for finite-size corrections.
But indeed our perturbative calculation is expressed in small powers of the parameter
η = ν2N1−γ/4, rather than in terms of N or ν separately. As a result, the final “shapes”
of ρ(λ) which we have predicted for γ > 1 and finite N formally coincide, only up to the
lowest perturbative order in η, with those found in a system with γ′ = 1, N ′→∞ and a
suitable choice of ν′(N).
In fact, in the particular case γ = 1 the parameter η becomes N -independent, and it
can be used to interpolate from ρ(λ) = pa(λ) to ρ(λ) = ρGOE(λ) – this is known in the
literature [10], and we had actually briefly recalled this point in Sec. 1.1.
While we agree with the Referee on this interesting observation, we would still prefer
not to report it explicitly in the manuscript, lest raising potential confusion with the
requirement ν∼O(1) adopted throughout our work.

4. The method proposed in Ref. [11] follows the technique first introduced in Refs. [12,13].
For each of the l = 1, ..., M realizations of the N ×N Hamiltonian H, one constructs the
matrix X whose elements X l

p store the p-th eigenvalue in the l-th realization. One then
performs the singular value decomposition of the matrix X , and constructs the so-called
scree plot of λk ≡ σ2

k vs k (where σk is a singular value and k = 1, . . . , rank(X )), or else
of its Fourier power spectrum with respect to k.
Since replica methods have indeed been adopted in the past to study problems involving
the singular value decomposition of random matrices (see [14] for a recent example),
then in principle the problem studied numerically in [11] may be treatable by means of
a replica-symmetric calculation reminiscent of the one we performed in our work.

5. This is an interesting, yet subtle point. Indeed, as correctly noted by the Referee (and as
it is clear from the plots in Figs. 6-7), our scaling function χT (E) (which tends to zero for
small arguments) does not reduce to the GOE result χGOE(E) (which instead tends to 1).
We do have an intuition of why this happens – we had tried to express it in Sec. 3.6, but
we have now commented further on this point in the revised manuscript (in the same
Section). The problem stems from having estimated the cumulant generating function
in Eq. (66) by using the saddle-point method, see Eq. (78). For energies down to the
mean-level spacing δN ∼ N−1, we are basically trying to quantify the variations of the
action S in eNS in correspondence of variations of O(1/N) in its parameters, and this is
necessarily delicate. One may thus expect that the variations of S on this scale are too
small to be accounted for by the leading order term eNS alone, thus requiring to explicitly
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resum all the next O(1/N) contributions. This is however technically challenging (see
our attempt in Appendix D2), and we reckoned it would go beyond the scopes of our
work. It is also a “known” problem in the RMT community: for instance, this is why
the Tracy-Widom distribution for the top eigenvalue of a GOE matrix has never been
obtained using replicas.
On the other hand, we stress that a matching between the GOE result and our scaling
function does occur: indeed, for large arguments one has that χGOE(E)→ 0, while for
small arguments χT (y)→ 0. In fact, the typical scale for χGOE(E) is given by the mean
level spacing δN ≃ [N pa(0)]−1, while the typical scale for χT (E) is the Thouless energy
ET ∼ N1−γ. This means that for 1 < γ < 2 and for large N one typically has δN ≪ ET ,
and the matching occurs in between these two regions.

6. We had indeed been imprecise on this point. The regular character of the distribution
pa(a) at a = 0 seems to have been more or less tacitly assumed in most of the past
literature on the GRP model: we have made the same assumption, as we have now better
specified in the revised manuscript (see Section 3.5). A divergence of pa(a→ 0), albeit
integrable, would likely affect the mean level spacing in that region, and its outcome on
the level statistics is not clear to us (we have included this among the open problems
listed in the Conclusions). We are in fact additionally assuming pa(0) ̸= 0, as we have
now pointed out.

7. We thank the Referee for raising this interesting point. As we stressed in our manuscript,
the assumption that the diagonal elements ai are independent (and identically dis-
tributed) was unfortunately crucial in our derivation – see, e.g., Appendices B and D.
As it stands, we thus see no way to address the effects of changing the dimensionality
of pa(a) by direct application of our analytical results. However, we do agree that the
generalization here proposed would possibly be within reach of the replica method, and
more in general that it would be important to try to release the requirement of i.i.d.
diagonal elements ai so as to allow for their correlations. We have now commented on
this point in the Conclusions, by also referring to Ref. [15].

8. As the Referee correctly mentioned (and as we also specified in the Introduction, Sec. 1.1),
the non-ergodic extended phase of the RP model is fractal but not multifractal: we thus
expect that there is no need to resort to a RSB solution in order to describe it. We have
now briefly commented on this point in the revised manuscript (see Section 2.1).

3.2 Reply to requested changes

1. We agree that all the references suggested by the Referee are relevant, and we have now
included them in the revised manuscript. We have also added a comment on the use of
the Itsykson-Zuber formula for the Hermitian GRP model (slightly later, in Sec. 1.2, and
then more extensive ones in Sec. 3.5 and Appendix F). We also thank the Referee for
pointing out some misprints, which have been corrected.

2. We have now stressed in the Introduction that the deformation comes from the addition
of the diagonal random matrix A to the GOE matrix B.

3. We have now added numerical data supporting the analytical prediction in Eq. (54) for
the average spectral density in the Wigner case – they can be found in the new Fig. 3b.

4. The form of our Ansatz is suggested by the structure of Eq. (76), which contains the
factor ψa

�

−τ⃗ L̂ τ⃗/2
�

. However, in hindsight this is not exactly natural as we claimed,
so we have now replaced that sentence with a more explicative one (in Section 3.2).
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5. We believe that there is in fact no discrepancy between Secs. 3.4.1 and 3.5. First, as
we think the Referee correctly intended, nowhere in the manuscript we have claimed
that Emax(η) and the Thouless energy ET ∼ η were the same – on the contrary, these
two quantities do not coincide. Our analysis provides no clear physical intuition on the
origin of Emax(η), but plots akin to Fig. 5 show that it generally depends on the specific
form of pa(a). As a general rule, this maximum occurs for energies of O(1), hence much
larger than the Thouless energy. In Section 3.4.1 we merely noted that Emax(η) (i.e., the
point at which the level compressibility χ(E) is maximum) shifts towards larger energies
upon increasing η, and it does so with a sublinear dependence on η (the precise growth
exponent is pa-dependent). The decay at large energies of the level compressibility
χ(E) for E ≳ Emax(η) is a typical feature of the Poissonian regime (see Appendix A), and
indeed at E ∼ Emax(η) we are already into this regime: hence we see no contradiction
with our statements in Sec. 3.5.
We have now commented on this point in Sec. 3.5 of the revised manuscript to avoid
further confusion.
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