
Response to the report of the Reviewer-1

We greatly appreciate the constructive remarks and the suggestions made
by the referee. These remarks are addressed as follows.

1. The author correctly points out that microscopic derivations of energy
superdiffusion have already been obtained for this model. However, he does
not comment on these except for saying that the derivation presented here is
”simpler”. I think it would be necessary to add a more in-depth discussion
comparing the previous studies to the current one. This would also be a
nice occasion to discuss the advantages of the new derivation. This point is
particularly important since part of the derivation relies on some heuristics
(Eq. (38)), which is very reminiscent of NLFHD, which can already provide
a very concise derivation of some aspect of heat superdiffusion.

Response : We have added the below discussion comparing our study
with the previous derivations of the super-diffusive equation (see the sec-
ond page of the introduction.)

‘The procedure followed in [PRE 98(4), 042105 (2018)] involves finding
coupled differential equations for the correlation and the temperature
fields in open system set-up starting from the equations of the micro-
scopic two point correlations 〈ηi(t)ηj(t)〉c (subscript ’c’ represents con-
nected correlation). Integrating the correlation field provides a non-local
evolution for the temperature field. The approach in [Nonlinearity 25(4),
1099 (2012)] also involves analysing the scaling properties of the (micro-
scopic) energy-energy correlation with complete mathematical rigor. In
particular it was shown that after space-time scaling the energy-energy
correlation function (on infinite line) is given by the solution of a skew-
fractional heat equation with exponent 3

4 .’

We also made the below comments on the advantage of our method in
the context of the HCVE model and discussed the connection with the
NLFHD theory [see the new paragraph before Eq. (38)].

‘It is interesting to note that the equation (37) is same as the fluctu-
ating HD equations that one starts with in the NLFHD theory. For
generic Hamiltonian system one finds non-linear fluctuating HD equa-
tions. For the particular model studied here, the fluctuating equation
for the volume field is linear whereas the corresponding equation for the
energy field is non-linear. In the NLFHD theory one finds scaling forms
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for the space-time correlations of the density fields of conserved quan-
tities through mode-coupling solutions. Such solutions in many cases
exhibit super-diffusive scaling which, through linear response theory also
predicts super-diffusive evolution of small initially localised excitations
in the conserved fields. We point out that our starting point is differ-
ent from the NLFHD theory. We start from the FP equation and seek
solution of it that is in the LE form and always remain close to an un-
derlying GE state. As usually done in fluid hydrodynamics, we compute
the averages of the conserved fields and the associated currents (related
via continuity equations) with respect to these solution. Invoking cer-
tain physical assumptions, we have demonstrated that the contribution
from the deviations from the LE state to the average current indeed
comes from the time-integral of un-equal time correlations of currents at
different locations. Note such local current-current correlations are not
usually studied in the NLFHD theory, instead one often studies the total
current-current correlation. The particularly simple (linear) form of the
fluctuating equation satisfied by the volume field in our model allows us
to compute this correlation and its time integral analytically, both for the
closed and open-system (with reservoirs) set-up. The case for the closed
system set-up is discussed in the next, whereas the case with reservoirs
attached to the system is discussed in sec. 4.’

2. I think the phrasing of the second line of Eq. (1) is not very clear. In
fact, I did not understand what the model was until Eq. (11). It would be
helpful if the author could add a line below Eq. (1) to further clarify its
meaning.

Response : We have modified the second line of Eq. (1) as follows and
clarified its meaning.

η̇i = V ′(ηi+1)− V ′(ηi−1)
+ stochastic exchange at rate γ

(1)

for i = 1, 2, ..., N , where V (η) = ko
2 η

2 with ko > 0. The second line in the
above equation represents stochastic exchange between η variables across
a bond with rate γ, independently for each bond {i, i+ 1}.

3. In the introduction, in the paragraph starting with ”In the second part
of the paper [...]” the author discusses the different behaviour present in
a mesoscopic and macroscopic system. By reading the paper, I think the
author means that there is a crossover scale NC , such that, if the system
size N < NC , transport is well described by Fourier law, while, if N > NC ,
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transport is anomalous. If so, please phrase this more explicitly directly in
the introduction. Otherwise could the author please clarify this point?

Response : We have added the below discussion on the crossover scale
Nc in the introduction (2nd page). We also have added new citations [20
and 24] to this discussion.

‘More precisely, one would expect to have a crossover length scale Nc

depending on the microscopic parameters and the underlying equilib-
rium state (density, temperature), such that the dominant mechanism of
transport is diffusive for systems size N < Nc and the transport becomes
anomalous for N > Nc. Existence of such crossover behaviour has been
reported earlier [19-24].’

4. (Optional) The way the argument is phrased, the author starts from
the exact equation (15) and only much later the LE part of the evolution is
discussed. I think it would make the manuscript more pedagogical to start
with Sec. 3.1 and then discuss how to improve on top of it by taking into
account the deviations described by Pd.

Response : We have decided to keep the presentation as it was originally.
Somehow, we felt it is better to discuss the general scheme (as presented
in sec. 3) and then discuss the contribution from the LE state and the
modification from the deviation Pd separately in subsequent sections, 3.1
and 3.2 respectively.

5. The paragraph above Eq. (22) states that the ansatz in Eq. (12) is
valid when Pd is small. Could the author please clarify what this means, as
precisely as possible after Eq. (12). Which exact assumptions are needed
for the derivation to go through?

Response : We thank the referee for this remark. We have now added
a discussion clarifying what we mean by Pd small and clearly stated the
assumptions that are required for the derivation to go through. Formally
the solution in Eq. (11) is exact. However, since we are interested in
linearised hydrodynamics, it is sensible to assume that the deviations
from the global equilibrium characterized by T̃i(t) = Ti(t)−T0 and τ̃i(t) =
τi(t) − τ0 and their space-time variations are small so that the system
always remains close to a LE state which is slightly deviated from the GE
state. Equivalently, one can say that the deviation Pd, which depends
on T̃i(t) and τ̃i(t) and their space-time derivatives (see Eq. (16) ), is
also small. These assumptions, are used later in sec. 3.2 [see discussions
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between Eqs. (30) and (32)], where we neglect terms involving higher
order in deviations as well as higher order in derivatives.

6. Figure (2), panel (b), shows a scaling collapse trying to give numerical
evidence for superdiffusive scaling. The data is however not very convincing
at the moment, as the time goes from s = 70 to s = 80. I think it’s very
hard to determine the dynamical exponent from such a small time window.
Could the author please justify why such a small time window is used? If
the range cannot be extended (for reasons that should be explained), one
way to make the numerical data look more convincing would be to present
in an inset or an appendix an attempt at collapsing the same data with
different exponents near 2/3 (including 1/2) and show that their agreement
is much worse.

Response : We have now updated the scaling collapse plot in figure 2
with new data for larger system size and also over larger time window.
With the computing resources available, it was difficult to generate data
for system sizes larger than N = 512 and for a given system size data
for larger time gets affected by finite size effects (as the simulations are
done on a ring). We have now provided both diffusive and super-diffusive
scaling collapse. For the small ko case, it is clearly evident that diffusive
collapse is better than the super-diffusive scaling (top panel). On the
other hand for the large ko, one can observe that the super-diffusive
scaling is better than the diffusive one (bottom panel).

7. Many acronyms are used in the manuscript, and some of them appear
very few times, e.g. LR appears only 5 times. It would help clarity to
expand the acronyms that are not used often.

Response : We have tried to remove the acronyms that are not fre-
quently used.
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