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Abstract

The matrix element method is widely considered the ultimate LHC inference tool for
small event numbers, but computationally expensive. We show how a combination of two
conditional generative neural networks encodes the QCD radiation and detector effects
without any simplifying assumptions, and allows us to efficiently compute likelihoods for
individual events. We illustrate our approach for the CP-violating phase of the top Yukawa
coupling in associated Higgs and single-top production. Currently, the limiting factor for
the precision of our approach is jet combinatorics.
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1 Introduction

In the search for optimal analysis methods at colliders, the matrix element method (MEM)
has been playing a key role since it was developed for the Tevatron [1, 2]. If offers an
especially simple

:::
and

:::::::::::::
interpretable

:
link between theory predictions and hypothesis tests,

with an optimality
:
.
:::
Its

:::::::::::
optimality

::
is

:
derived directly from the Neyman-Pearson theorem,

::::::
which

::::::
means

:::
it

::::::::
includes

:::
all

::::::::::
available

::::::::::::
information

::::::::
encoded

:::
in

::::::
phase

::::::
space

::::::::::::::
configurations

::::
and

:::::::::
evaluates

::
it

::::::
using

:::
an

::::::::
optimal

:::::::::::
hypothesis

::::
test. The MEM is based on the observation

that we can compute the likelihood of individual events, given a theory hypothesis, as
the scattering amplitude over phase space

:::::
from

:::::::::::::
first-principle

::::::::::
quantum

:::::
field

::::::
theory. Two

different theory hypotheses or parameter points then define a likelihood ratio for a given
event. The log-likelihood ratio of an event sample follows from adding individual events’
log-likelihood ratios. ,

:::::
but

::::::
unlike

:::::::::::
essentially

:::
all

::::::
other

:::::::::
inference

::::::::
method

::::
the

::::::::::::
combination

::
of

::
a

::::::::
number

::
of

:::::::
events

::::
into

::
a
::::::::::::
distribution

::
is

::::
not

::::::::::
necessary.

:

The first application of the MEM was the Tevatron measurement of the top mass
based on a limited number of statistically defined top quark events [3–6]. Also at the
Tevatron, it was used to discover the single-top production process [7]. At the LHC, several
studies [8–11] and applications [11–15] of the MEM exist. The challenge in applying the
MEM is that we have to integrate over the scattering amplitudes at the parton level for each
measured event. This makes MEM applications extremely CPU-expensive. For instance
Madgraph can already compute parton-level amplitudes for a given event automatically at
leading order [16]. To really use the power of the method we need to base it on precision
predictions, including QCD jet radiation [17] and NLO QCD corrections, as shown for
color-neutral particles in the final state [18, 19] and for jet production [20]. A consistent
treatment of the MEM at NLO has been developed for electron-positron collisions with
final-state radiation [21] and for hadronic collisions with modified jet algorithms [22], and
standard jet algorithms [23,24].

We will show how modern machine learning (ML) can enhance the MEM. Fast and
invertible LHC simulations benefit from generative networks [25–27] like generative adver-
sarial networks (GANs) [28], variational autoencoders (VAEs), normalizing flows, and
their invertible network (INN) variant [29]. Within the established simulation chain,
such networks can be applied to loop integrals [30], phase space integration [31, 32],
phase space sampling [33–36], event subtraction [37], event unweighting [38, 39], parton
showering [40–43], super-resolution enhancement [44, 45], or detector simulations [46–50].
Once we control the forward direction with NN-based event generators [51–56], condi-
tional GANs and INNs also allow us to invert the simulation chain, to unfold detec-
tor effects [57–59] or to extract the hard scattering process in a statistically consistent
manner [60, 61]. The fully calibrated inverted simulation uses the same conditional INN
(cINN) as simulation-based inference [62,63] or kinematic reconstruction [64]. Obviously,
any application of (generative) networks to LHC physics requires an uncertainty treat-
ment [56,65]. A related ML-approach to likelihood extraction is based on simulated versus
observed event samples [66].

:::
The

:::::::::::
connection

:::::::::
between

:::
the

::::::
MEM

:::::
and

::::::::
modern

::::::::::::
ML-methods

:::
was

::::::::::
pioneered

:::
in

::::
Ref.

:::::
[67]

:
.
:

In this paper we show how a combination of two cINNs makes
::::::
allows

:::
for

:::
a

::::::
better

:::::::::
modelling

:::
of

:::::
QCD

::::
and

:::::::::
detector

::::::
effects

::::::
while

:::::::
keeping

:
the MEM numerically efficient. First,

a Transfer-cINN learns the effects of the parton shower, detector resolution, and recon-
struction on simulated events. Second, an Unfolding-cINN provides a phase space mapping
for the integration over the hard-scattering phase space at parton level. For both networks
we use a Bayesian version

::::::::
network

:::::::
version

:::
of

:::
the

:::::
INN [56,65] to track their reliability. The
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Bayesian Transfer-cINN also provides an uncertainty estimate for the extracted likelihood.
Our toy example is the search for CP violation in the top Yukawa coupling, based on the
kinematics of single top and Higgs production. In Sec. 2 we introduce the physics pro-
cess and the effect of a CP-phase on the event kinematics. In Sec. 3 we introduce our
dual-cINN architecture, which we benchmark on simulated events with a leptonic and
hadronic top decay in Sec. 4.

::::::
While

:::
we

:::
to

::::
not

::::::
(yet)

::::::::
include

::
a

::::
full

:::::
NLO

::::::::::::
calculation

::
of

:::
the

::::::
event

:::::::::::
likelihood,

:::
we

:::
do

:::::::::
combine

::::::::
different

::::
jet

:::::::::
numbers

::::::::
through

::::::
initial

::::::
state

:::::::::
radiation

::
as

::
a

::::
first

:::::
step

:::
in

::::
this

:::::::::
direction

:::
in

::::
Sec.

::::
4.2.

::
We discuss some remaining challenges for the

network precision due to combinatorics once we include many jets.
:::::
Once

:::::
those

::::::
issues

::::
can

::
be

::::::::::
overcome,

::::
our

::::::::
method

::::::::::
naturally

::::::::
extends

::
to

::::::
NLO

::::::::::
likelihood

::::::::::::
predictions.

:

2 LHC process

To illustrate how we can use generative networks for measurements using the MEM, we
choose associated single-top and Higgs production

pp→ tHj . (1)

This process will allow us to study a CP-phase in the top Yukawa coupling at future LHC
runs [68–76], unfortunately with limited expected event numbers. This limitation means
that we need an optimal analysis framework for this measurement, specifically the matrix
element method based on likelihood ratios. We choose the decay H → γγ to illustrate our
point with a focus on the signal process. Our methods can be generalized to other decay
processes, for which we would also need to include continuum backgrounds.

To extract the likelihoods corresponding to different theory hypotheses for a given
phase space configuration, we will use a combination of two neural networks. The crucial
ingredient for our NN training are paired events at the hard-scattering level and after
parton shower and detector simulation. The usual Monte Carlo simulation starts from the
hard scattering matrix element and successively adds parton showers and detector effects.
For the simulation of our signal process we use Madgraph5, v3.1.0, with LO-NNPDF and
αs = 0.119 [77]. We produce the heavy top and Higgs on their respective mass shells and
decay them in a second step. Our simulation includes the standard Pythia [78] parton
shower, Delphes [79] as a fast detector simulation, and Fastjet [80] to reconstruct anti-
kT jets [81] of size 0.4. As illustrated in Fig. 1 we consider massless incoming bottoms,
while the jet in the final state always comes from a light quark. In the Standard Model,
the dominant contribution stems from the first diagram where the Higgs couples to the
top. Throughout our analysis we neglect the second diagram because of the small bottom
Yukawa.
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Figure 1: Leading-order Feynman diagrams for the hard process pp → tHj. We neglect
the second diagram in the limit of a massless bottom quark. The diagrams also appear
with an inverted light-quark line.
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Dataset cut rate [ab] fraction

leptonic σ 43.6 · 103
σ × BR 7.38
≥ 2 photons with pT > 20 GeV and η < 2.4 3.58 0.485
≥ 1 muon with pT > 20 GeV and η < 2.4 2.29 0.310
≥ 2 jets 1.69 0.230
1 b-jet with pT > 25 GeV and η < 2.4 1.00 0.136
≥ 1 jets with pT > 25 GeV and η < 2.4 0.41 0.055

hadronic, no ISR σ 43.6 · 103
σ × BR 44.28
≥ 2 photons with pT > 20 GeV and η < 2.4 19.56 0.442
≥ 4 jets 7.09 0.160
1 b-jet with pT > 25 GeV and η < 2.4 3.93 0.089
≥ 3 jets with pT > 25 GeV and η < 2.4 1.23 0.028

hadronic, with ISR σ 43.6 · 103
σ × BR 44.26
≥ 2 photons with pT > 20 GeV and η < 2.4 18.37 0.415
≥ 4 jets 12.67 0.286
1 b-jet with pT > 25 GeV and η < 2.4 6.44 0.146
≥ 3 jets with pT > 25 GeV and η < 2.4 3.06 0.069

Table 1: Cut flow for pp → tHj with H → γγ and for SM events (α = 0◦). We assume
mb = 0 and intermediate on-shell particles.

We generate three different datasets. First, the W decays leptonically, into a muon
and a neutrino,

pp→ tHj → (bµ+νµ) (γγ) j . (2)

Second, the W decays hadronically, resulting in two jets

pp→ tHj → (bjj) (γγ) j . (3)

In both cases, we neglect
:::
do

::::
not

::::::::
generate

:
initial state radiation (ISR) and multi-parton

interactions
::
by

::::::::::
disabling

:::
the

:::::::::::::::
corresponding

::::::::
settings

::
in

:::::::
Pythia. For the third dataset, we

again consider hadronic decays, but this time including ISR jets,

pp→ tHj → (bjj) (γγ) j +QCD jets . (4)

We allow for up to four additional jets in our datasets. They can come from final state
radiation, or, in the case of the third dataset, from initial state radiation. The total
proton-proton cross section for tHj production is 43.6 fb, where we always combine top
and anti-top production. Table 1 provides an overview of the cross sections and the
detector-level cuts.

:::
We

:::
do

::::
not

::::::
apply

:::::
cuts

::
in

::::
pT :::

or
::
η

::
at

::::
the

:::::
level

:::
of

::::
the

:::::::::::::::
hard-scattering

:::::
level.

:
To illustrate the ML-based numerical approach to the MEM we limit ourselves to

the more challenging signal, with the narrow Higgs mass peak, and ignore all continuum
backgrounds.

CP-violating Yukawa coupling

To study the top Yukawa coupling independently of the top mass, we allow for a mixture
of CP-even and CP-odd interactions [82]. The top-Higgs interaction is parameterized by

Ltt̄H = − yt√
2

[
a cosα t̄t+ ib sinα t̄γ5t

]
H . (5)

4



SciPost Physics Submission

Dataset A [fb] B [fb] C [fb] D [fb] E [fb]

leptonic 4.07 · 10−4 2.37 · 10−3 −1.22 · 10−3 1.86 · 10−6 −2.90 · 10−7

hadronic, no ISR 1.23 · 10−3 7.59 · 10−3 −3.78 · 10−3 1.24 · 10−5 −7.96 · 10−6

hadronic, with ISR 3.06 · 10−3 2.05 · 10−2 −9.50 · 10−3 1.90 · 10−5 −5.77 · 10−6

Table 2: Fit parameters for the fiducial cross sections, for the formula given in Eq.(6).

with a = 1 and b = 2/3 [83], so the total gg → H cross section remains constant when we
vary α. This model has only one free parameter, the CP-angle α, interpolating between
a CP-even (α = 0◦) and a CP-odd (α = 180◦) Yukawa coupling. Because of this coupling
structure, all observables O for the tHj process obtained by integrating over the hard-
scattering phase space take the functional form

O(α) = A+B(1− cosα) + sinα (C sinα+D + E cosα) , (6)

as long as we only consider higher-order QCD corrections. A fit of the fiducial cross section
to the angles α = −180◦,−90◦,−45◦, 0◦, 22.5◦, 45◦, 90◦, 135◦, 180◦ gives the parameters
quoted in Tab. 2. With D,E ≪ A,B,C we see that there is an approximate degeneracy
in the sign of the CP-phase.

In Fig. 2 we show the fiducial tHj cross section including decays after cuts as a function
of α. Typical rates especially around the Standard Model (α = 0◦) are below 0.01 fb, which
means that in an actual analysis we need to extract as much information as possible from
a small number of events and their kinematic features. The rate increase with α is driven
by the interplay of the leading top Yukawa contribution, shown to the left in Fig. 1, and
the sub-leading gauge coupling to the right. The angle α defines a relative phase between
the two diagrams, which leads to a destructive interference in the Standard Model. The
change in the total rate reflects the shift from destructive to constructive interference.
From Fig. 2 we expect that small values α ≲ 40◦ will hardly be measured from the total
rate, especially once we include experimental and theoretical uncertainties. This means
we have to complement the rate information with kinematic features.

We show the distributions for the hard-scattering tHj kinematics in Fig. 3. Again,
the change in the kinematics is driven by the interference between the leading top Yukawa
contribution and the subleading gauge contribution. For pT,t and pT,H , large phases lead
to a harder transverse recoil of the heavy particles and a less central scattering process in
rapidity. In contrast, in the Standard Model the two leading Feynman diagrams cancel
in the central region. In the angular separation ∆Rtj a second maximum with a large
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Figure 2: Fiducial cross section including decays and after cuts as a function of the CP-
angle α. The lower panels illustrate the agreement between the generated data and the
fitted continuous function defined in Tab. 2.
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Figure 3: Kinematic distributions for the hard-scattering tHj final state for different values
of the CP-angle.

angular separation vanishes when we switch from destructive to constructive interference.
Unlike for the total rate we see that changing α from zero to 45◦ leads to visible kinematic
shifts.

Data samples

As mentioned above, we will work with three different datasets, consisting of paired events
at the hard-scattering level and after parton shower, detector simulation, and reconstruc-
tion. All samples share the same format for the hard scattering, including the CP-angle α
and the 4-momenta {pt, pH , pq}. For the leptonic top decay, Eq.(2), the reco-level events
are described by the 4-momenta {pγ,1, pγ,2, pb, pµ, pj,1}. ::::::

While
:::
we

::::::
could

::::
use

:::::::::::
established

::::::::
methods

:::
to

:::::::::::
reconstruct

::::
the

::::::::
neutrino

::::::::::::
momentum

:::::
from

:::
the

::::::::
missing

::::::::::
transverse

:::::::
energy,

:::
we

:::
do

:::
not

::::::::
include

::
it

::
as

:::
an

:::::::::::
additional

:::::
input

:::
to

::::
the

::::::::
network.

::::::
Since

:::
it

::
is

:
a
:::::::::::::
deterministic

:::::::::
function

::
of

:::
the

::::::
other

::::::::::
momenta,

::
it

:::::::
would

::::
not

::::::::
increase

::::
the

::::::::
number

::
of

::::::::
degrees

::
of

:::::::::
freedom

::::
and

::::::::
instead,

::::
only

::::::
make

::::
the

::::::::
training

:::::
more

::::::::::::
challenging.

:::::
We

:::
do

:::
not

:::::
add

::::
the

::::::::
neutrino

::::::::::::
momentum

:::
to

:::
the

:::
list

:::
of

::::::::::::::
four-momenta

:::::
since

:
Additional light jets can come from final state radiation, and

the photon and jet momenta are ordered in pT . We do not allow for initial state radiation,
to simplify the problem as much as possible. We train our networks on 1.3M paired events

6
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with α drawn from a uniform distribution. The test dataset consists of 260k events for
each of the angles α ∈ {0◦, 45◦, 90◦, 135◦, 180◦}.

The other two datasets assume a hadronic top decay, without ISR (Eq.(3)) and with
ISR (Eq.(4)). The reco-level event format includes {pγ,1, pγ,2, pb, pj,1, pj,2, pj,3}, plus po-
tential additional light jet momenta. For the hadronic decays, the network has to learn
which of the jets comes from the hard scattering. This problem gets more challenging
when we include ISR, because jets become polluted and

:::
the

::::::::::
additional

:::::
jets

::::
can

:::::
lead

::
to

::::::
faulty

:::
or

:::::::::::
incomplete

:::::::::::::::
reconstruction.

::::::::
Hence,

:
we lose the clear correspondence between

parton-level and reconstructed jets in the high-multiplicity events. In this case
:::
We

:::::::
extract

:::
the

:::::::::::::::
hard-scattering

::::::::::
momenta

:::::::
before

:::
we

::::
add

:::::
ISR

::
in

::::
our

:::::::::::
simulation

:::::::
chain,

::
so

::::
our

::::::::
method

::::
does

::::
not

:::::::
require

::
a
::::::
boost

:::::
into

:::
the

::::::::::::::::
hard-scattering

::::
rest

:::::::
frame.

:::
In

:::
the

:::::
ISR

:::::
case,

:
we increase

the number of training events to 3.4M.

3 ML-MEM

For our signal-only toy example, the matrix element method tracks the dependence of
the hard scattering cross section on one continuous parameter of interest, the CP-phase
α appearing in the Lagrangian of Eq.(5). We denote the hard-scattering momenta at
parton level as xhard and split the differential cross section into a total cross section and
a probability density,

dσ(α)

dxhard
= σ(α) p(xhard|α) . (7)

The likelihood for a single hard-scattering event xhard to correspond to a given value for
α is then

p(xhard|α) =
1

σ(α)

dσ(α)

dxhard
. (8)

Next, we consider the effects of parton shower, hadronization, detector, and reconstruc-
tion. The corresponding forward simulation maps xhard to a reco-level configuration xreco,
provided it passes the cuts. In the forward direction p(xreco|xhard) is the conditional prob-
ability for a reco-level event xreco, given xhard at parton level. In general, this conditional
probability depends on our parameter of interest, p(xreco|xhard, α), so we can use it to
write the likelihood linking a single reco-level event xreco to the parameter α as

p(xreco|α) =
∫

dxhard p(xhard|α) p(xreco|xhard, α)

=
1

σ(α)

∫
dxhard

dσ(α)

dxhard
p(xreco|xhard, α) . (9)

The conditional probability p(xreco|xhard, α) corresponds to the usual transfer function,
which can sometimes be approximated by a Gaussian. In general, it is only defined
implicitly through a complex forward simulation. Using the single-event likelihoods at
the reco-level we can compute the likelihood for an event sample as a function of the
parameter of interest,

L(α) ≈
∏

events j

p(xreco,j |α)

=
∏

events j

1

σ(α)

∫
dxhard

dσ(α)

dxhard
p(xreco,j |xhard, α) , (10)

7
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where we omit any prefactors related to the observed number of events [27].

Transfer-cINN

We can simplify Eq.(9) by assuming that
::::::::
Because

::
of

::::
the

:
phase space cutsare defined as

hard cuts on the hard-scattering momenta xhard. We can then define an acceptance rate
a(xhard, α), so :

,
:
the conditional probability

:
in

:::::::
Eq.(9)

:
is not normalized to one, but to .

::::::::
Instead,

:::
we

::::
can

::::::
define

::::
the

:::::::::::
acceptance

:::::
rate

::::::::::
a(xhard, α):::

to
:::::::
obtain∫

dxreco p(xreco|xhard, α) = a(xhard, α) . sinβ (11)

Alternatively, we can account for this efficiency by replacing the full volume with the
fiducial volume at the

::::::::::::::
hard-scattering

::::::
level.

::::::
Here

:::
we

::::::::
assume

::::
that

::::::
there

::
is
::
a
:::::
hard

:::::::
cut-off

::
at

::::
the parton level xhard,:::::

even
::::::::
though

:::
we

::::::
define

::::
our

::::
cuts

:::
at

::::
the

:::::::::::::
detector-level. This means

we replace a(xhard, α) ̸= 1 by shifting σ(α)→ σfid(α) in Eq.(9),

p(xreco|α) =
∫
fid

dxhard p(xhard|α) p(xreco|xhard, α)

=
1

σfid(α)

∫
fid

dxhard
dσ(α)

dxhard
p(xreco|xhard, α) . (12)

In this integral, the differential cross section is available numerically and p(xreco|xhard, α)
can be encoded in a neural network. Normally, this would be a regression task, but in
our case we do not have the explicit training data to train a regression network. Instead,
we train a normalizing flow, specifically a conditional cINN, to reproduce the reco-level
kinematics for a given hard-scattering event from Gaussian random numbers

r ∼ p(r) ←→ xreco ∼ p(xreco|xhard, α) Transfer-cINN. (13)

In the inverse direction, this network estimates and encodes the conditional density over
the reco-level phase space, and in the forward direction, it is nothing but a fast detector
simulation generating reco-level events. We will see that for our purpose and implemen-
tation we can ignore the α-dependence of p(xreco|xhard, α). The best way to train the
network is to use data with variable α and ignore this input. Such a training improves
the phase space coverage even for extreme values of α and provides an averaging over any
remaining α-dependence.

Unfolding-cINN

Even with a fast surrogate integrand, the integral in Eq.(12) is numerically challenging,
because the squared matrix element spans several orders of magnitude and p(xreco|xhard, α)
drops rapidly away from the trivial mapping of the intermediate on-shell particles and hard
partons turning into single jets. We can define an appropriate mapping xhard → q(xhard),
or sampling of xhard ∼ q(xhard), such that Eq.(12) becomes

p(xreco|α) =
∫
fid

dxhard p(xhard|α) p(xreco|xhard, α)

=

〈
1

q(xhard)
p(xhard|α) p(xreco|xhard, α)

〉
xhard∼q(xhard)

(14)

=
〈
p(xreco|α)

〉
xhard∼q(xhard)

⇔ xhard ∼ q(xhard) = p(xhard|xreco, α) .
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The last line uses Bayes’ theorem and means our xhard-integration becomes trivial if we
sample xhard from the distribution p(xhard|xreco, α).

To sample the hard-scattering momenta xhard following such a distribution we again
train a conditional INN, mapping random numbers with a latent distribution p(r) to the
target distribution in momentum space,

r ∼ p(r) ←→ xhard(r) ∼ p(xhard|xreco, α) Unfolding-cINN. (15)

It turns out that sampling xhard from p(xreco|xhard, α) :::::::::::::::
p(xhard|xreco, α) defines the standard

cINN used for unfolding or Bayesian inference in Refs. [60–62].
::
A

:::::::
better

:::::::::
modeling

:::
of

:::
the

:::::::::::
distribution

:::
of

:::::
xhard:::::

will
:::::
lead

::
to

::
a
::::::
more

::::::::
efficient

::::::::::::
integration.

:
In Eq.(12) the Unfolding-

cINN transforms the xhard-integration into an r-integration. In the corresponding Jacobian
we have to account for the full conditional dependence of xhard(r;xreco, α),

p(xreco|α) =
1

σfid(α)

∫
dr p(r)

∂xhard(r;xreco, α)

∂r

[
dσ(α)

dxhard
p(xreco|xhard, α)

]
xhard(r;xreco,α)

≡ 1

σfid(α)

〈
∂xhard(r;xreco, α)

∂r

[
dσ(α)

dxhard
p(xreco|xhard, α)

]
xhard(r;xreco,α)

〉
r∼p(r)

.

(16)

The dual-network architecture of our MEM integrator is illustrated in Fig. 4.

Network architecture

Both cINNs are built as a sequence of rational quadratic spline coupling blocks [84],
each followed by a random rotation matrix. The spline coupling blocks implement a
mapping between hypercubes. To make them compatible with a Gaussian latent space
and the rotation matrices, we set their bounds to [−10, 10]. This ensures that the points
passed through the network are sufficiently far from the spline boundaries, after applying
a standard scaling to the training data. For a cINN that maps a batch of B data points

p(xreco|α) = 1
σfid ⟨ ∂xhard

∂r
dσ

dxhard

p(xreco|
xhard) ⟩

Unfolding
cINN

Transfer
cINN

α

xreco

{r}r∼p(r)

{xhard}

Figure 4: Dual-cINN setup of the MEM integrator evaluating Eq.(16) through sampling
r. The Unfolding-cINN is conditioned on the CP-angle α and the reco-level event xreco.
The Transfer-cINN is conditioned on the hard-scattering event xhard.
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xi to points ri in a Gaussian latent space, given a condition ci, the loss function is [27,60]

LcINN =

B∑
i=1

(
ri(xi; ci)

2

2
− log

∣∣∣∣∂ri(xi; ci)∂xi

∣∣∣∣) . (17)

For the two networks we identify

x = xhard c = (xreco, α) Unfolding-cINN,

x = xreco c = xhard Transfer-cINN.

The networks are implemented in PyTorch [85]. We use the Adam [86] optimizer
with a one-cycle learning rate scheduling [87]. After tuning the hyper-parameters of the
Unfolding-cINN, we found that the same setup and hyper-parameters also yield good
results for the Transfer-cINN. The network hyper-parameters are given in Tab. 3.

Uncertainty-aware cINN

Bayesian neural networks allow us to test the training stability and to estimate uncertain-
ties on the network output. They take the architecture of standard regression, classifica-
tion, or generative networks and allow the individual network weights to fluctuate. The
uncertainty on the network output is then estimated by sampling from the weight distribu-
tions [88–93]. For generative networks this concept has been applied to normalizing flows
or INNs [56,65]. Here the network encodes a density over phase space and the uncertainty
on this density over the same phase space. For more details on the Bayesian cINN we refer
to the original papers [56,65] and the lecture notes of Ref. [27]. By construction, Bayesian
networks include an L2-regularization, so with limited extra numerical effort Bayesian
networks deliver the same level of performance as their deterministic counterparts.

Because the Unfolding-cINN is only used to improve the importance sampling for
the numerical integration, its uncertainty is irrelevant for the actual integral, so we do
not generalize it to a Bayesian version for our final application. However, we will use a
Bayesian Unfolding-cINN to estimate its uncertainties and confirm its reliability.

In contrast, the Transfer-cINN encodes the reco-level phase space density, which means
we can use a Bayesian cINN to estimate the uncertainty of this learned density. Whenever
we show results for this density, we also indicate the corresponding uncertainty from the
network training. For tricky applications like the MEM this additional check on the
network performance is crucial.

Parameter cINN

Blocks 20
Block type Rational quadratic
Layers per block 5
Units per layer 256
Spline bins 30
Epochs (Bayesian) 100 (200)
Learning rate scheduling One-cycle
Initial learning rate 1 · 10−4

Maximum learning rate 3 · 10−4

Batch size 1024
Training events 1.3M

Table 3: Identical setup and hyper-parameters for the Transfer-cINN and the Unfolding-
cINN.
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Figure 5: Forward-simulated kinematic distributions for the leptonic top decay, assum-
ing five different CP-angles and including uncertainties from the Bayesian cINN. These
distributions test the Transfer-cINN.

4 Performance

To illustrate the advantages and the remaining challenges of a ML-realization of the matrix
element method, we show results for the associated Higgs and single-top production. We
only consider signal events, because of the especially challenging Higgs mass pole. We
test the two cINNs independently, including an uncertainty analysis through a Bayesian
network setup.

4.1 Leptonic top decay

The first results we discuss in detail are for the leptonic top decay, as defined in Eq.(2). We
start with a test of the Transfer-cINN from Eq.(13) in the forward direction. As mentioned
above, the network generates 4-momenta of five final state particles at reco-level, including
one light jet. Assuming these particles to be produced on their mass shell we remove the
photon and muon energies from the network’s degrees of freedom, leaving us with a phase
space dimensionality of 5 · 4 − 3 = 17. The forward generation is conditioned on the
corresponding set of three hard-scattering momenta, all of them assumed to be on-shell.
In all cases we implement a standard scaling, including a subtraction of the mean values
and a normalization to standard deviation one. All hyper-parameters are shown in Tab. 3.

The kinematic distributions from the network evaluated in the forward direction are
shown in Fig. 5, compared to the true reco-level distributions from the training dataset.
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Figure 6: Unfolded kinematic distributions for the leptonic top decay, assuming five dif-
ferent CP-angles and including uncertainties from the Bayesian cINN. These distributions
test the Unfolding-cINN.

One assumption we can test is that the Transfer-cINN does not have to be conditioned
on α, which means that this detail of the underlying model is numerically irrelevant. To
make such a statement we need the uncertainties of the network prediction as a reference
measure. The reliability of the network is best seen in the lower panels, where we see that
deviations from the true distributions appear in the tails of the distributions. The uncer-
tainty estimate is reliable in the bulk of all distributions, reflects the increased uncertainty
in the pT -tails, and covers the rapidly dropping rapidity distributions less well. Looking at
this uncertainty we confirm that the distributions differ for varying α, but this variation
is explained entirely by the effects on the hard-scattering distributions, combined with an
α-independent Transfer-cINN.

Next, we test the Unfolding-cINN, which we will use to improve the numerical in-
tegration. The three generated momenta are defined at the parton level, all particles
are on-shell, and we assume momentum conservation in the azimuthal plane. The cor-
responding 7-dimensional phase space is spanned by the coordinates (p⃗t, p⃗h, p

z
q). The

conditional input is the reco-level phase space, where we allow for up to four additional
jets, i.e. altogether up to nine 4-momenta zero-padded. In addition, we condition on the
angle α. As for the Transfer-cINN we implement a standard scaling for all data. The
results for the unfolding, with uncertainties, are shown in Fig. 6. Again, we see that the
network reproduces all features, including the α-dependence, and remaining differences
between the cINN-unfolded and truth events are covered by the network uncertainties.

After testing both networks individually, we can use their combination to extract
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Figure 7: Likelihoods for the leptonic top decay as a function of the CP-angle α, extracted
from 400 events for three assumed truth angles. For the Bayesian uncertainties we show
the integrated likelihoods from 10 sampled networks.

likelihoods as a function of the CP-angle α for a given set of reco-level events. While
our method allows us to compute these likelihood for individual events, we only show
combinations of 400 events, to see if the corresponding distributions are reliable. In the
center panels of Fig. 7 we show likelihood distributions for an assumed true value α = 45◦.
According to Fig. 3 we expect the event kinematics to be comparably sensitive to CP-
angles around this value.

We compute the negative log-likelihood −2 logLi(α) for a given event i from the in-
tegral given in Eq. 16, evaluated for 100k sampling points. To improve the numerical
stability we use trimmed means and standard deviations for the integration, which means
we leave out 1% of random numbers in the lower and upper tails when computing the
integral. Also in the integration we remove rare unphysical configurations, for instance
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Figure 8: Calibration of the α-measurement from leptonic top decays, in terms of mean
values and 68% confidence intervals extracted from 20 sets of 100 events at parton level
and measured.
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when the unfolding network generates events with momentum fractions x > 1 or the
leading-order differential cross section turns negative. The log-likelihoods for individual
events is then added to give smooth log-likelihood distributions for small event samples.
In the upper central panel of Fig. 7 we show the likelihood values for 400 events as a
function of α. We show the actual data points as well as a polynomial fit to those points.
The uncertainties on the log-likelihood are computed using Gaussian error propagation
of the Monte Carlo integration error. Because we are interested in likelihood ratios, we
always show the difference in the log-likelihoods to the minimum of the fitted curve. In
the lower panel we show the results from the Bayesian Transfer-cINN, where we visualize
the training uncertainty by repeating the likelihood calculation for 10 networks sampled
from the distribution over their trainable weights. Comparing the two panels we see that
the variation of points around the polynomial fit are what we expect from the network
uncertainties. The deviation from the hard-scattering truth distribution shows a small,
insignificant shift, which might come from the reconstruction of the longitudinal neutrino
momentum.

In the outer panels of Fig. 7 we show the same results for assumed CP-angles of 0◦

and 90◦. The general pattern is the same as for 45◦, but we see that the quality of the
measurement decreases for larger angles and becomes a challenge towards the SM-value.
The reason can be seen in Fig. 3, namely that the effect of small shifts in the angle on the
event kinematics is smaller than for α = 45◦. An additional complication for the SM-value
α = 0◦ is that the total rate is symmetric under a sign flip of the CP-angle, and Eq.(6)
shows that this symmetry is approximately also true for the kinematic distributions.

Finally, we check the calibration of the extracted CP-angle for 20 sets of 100 events
defined at different angles. For each of those sets we extract a mean and a 68% confi-
dence interval on the hard-scattering level truth and extracted angles. We compute the
confidence intervals by assuming an approximately Gaussian likelihood distribution with
different lower and upper tails, such that the likelihood values at the two limits are the
same. This can lead to asymmetric error bars.

:::::::
Instead

:::
of

:::::::
testing

::::
our

::::::::
method

:::
on

::
a
:::::
large

:::::::
number

:::
of

:::::::::
different

::::
CP

::::::::
phases,

::::
we

::::
use

::
a

::::::
small

::::::::
number

:::
of

:::::::
values

::::
for

::
α

:::::
and

:::::
show

::::
the

::::::::::
correlation

:::::::::
between

:::
the

:::::::
MEM

::::::
result

::
at

::::
the

:::::
reco-

:::::
and

:::::::::::::::
hard-scattering

:::::
level

:::
for

:::::::
several

::::
sets

::
of

::::::
events

:::
to

:::::::
obtain

::::::::::::
approximate

:::::::::::
calibration

:::::::
curves.

:
In Fig. 8 we show the calibration

::::
such

curves for the three assumed true α-values. For the best measurement at α = 45◦ the true
and extracted values of the angle are nicely correlated. A slight bias towards overestimat-
ing the angle can be removed through a proper calibration. For α = 90◦ the situation is
similar, but, if anything, the bias tends to underestimate the true angle. Finally, for the
challenging SM-value α = 0◦ the range of the correlation and the error bars increase, but
the calibration is perfectly fine.

4.2 Hadronic top decay

Moving on to the more challenging hadronic top decay, we use the same neural network
setup as before and see how it deals with the challenge moving from the neutrino recon-
struction to increasingly complex jet combinatorics.

Without ISR

The only change between the leptonic top decay study and the hadronic top decays is
that the hard-scattering

:::::::::
reco-level

:
phase space now covers two on-shell photons, one b-

jet and three light-flavor jets, leading to 6 · 4 − 2 dimensions. In Fig. 9 we show the
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Figure 9: Likelihoods for the hadronic top decay as a function of the CP-angle α, extracted
from 400 events for three assumed truth angles. For the Bayesian uncertainties we show
the integrated likelihoods from 10 sampled networks.

extracted likelihood distributions for 400 events, to be compared with Fig. 7 for the leptonic
case. We see that the results are completely comparable, which means that the additional
complication of having to separate W -decay jets from the forward jet is not a problem
for the networks. In Fig. 10 we see a new feature, as compared to Fig. 8, where for
the SM-value α = 0◦ the networks sometimes chooses a mismatch of the sign of the
angle between the hard-scattering level and the reconstruction level. This reflects the
approximate symmetry from Eq.(6) and does not affect the likelihood extraction in a
significant way.
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Figure 10: Calibration of the α-measurement from hadronic top decays, in terms of mean
values and 68% confidence intervals extracted from 20 sets of 100 events at hard-scattering
level and measured.
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With ISR

The situation changes when we allow for initial state radiation (ISR). In the absence of
jets radiated from the initial state the network only has to distinguish decay jets from the
forward jet in the hard process. The only difference between the two analyses without ISR
and this one is that we now use a larger training dataset with 3.4M events, so the network
can learn the more complex kinematic patterns. From Fig. 3 we know that the kinematic
distribution of this hard forward jet, relative to the top and Higgs, is intimately tied to
the CP-angle α. Final state radiation can lead to a third decay jet or a splitting of the
hard forward jet, in both cases not affecting the event topology much. This is different
for ISR, because the additional jets can look similar to the hard forward jet, but they
are really not part of the hard process and therefore only indirectly sensitive to the CP-
angle. This makes it much more complicated to evaluate the hard-scattering likelihood. In
general, the hadronic top decay combined with ISR breaks the one-to-one correspondence
of hard-scattering partons and jets, which we have confirmed in detail, for instance using
geometric correlations.

In the upper panels of Fig. 11 we show the unfolded kinematic distributions for the
top, Higgs, and forward jet from the hard process. The Unfolding-cINN generally does
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Figure 11: Top: unfolded kinematic distributions of the forward quark for hadronic top
decay with ISR, assuming five different CP-angles and including uncertainties from the
Bayesian cINN. These distributions test the Unfolding-cINN. Bottom: forward-simulated
kinematic distributions for the hadronic top decay with ISR, assuming five different CP-
angles and including uncertainties from the Bayesian cINN. These distributions test the
Transfer-cINN.
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Figure 12: Likelihoods for the hadronic top decay, including ISR, as a function of the
CP-angle α, extracted from 400 events for three assumed truth angles. For the Bayesian
uncertainties we show the integrated likelihoods from 10 sampled networks.

well in reconstructing the hard process, which means the phase space integration as part
of the MEM is remains efficient after we include ISR.

In the lower panels of Fig. 11 we test the Transfer-cINN. We omit the kinematic
distributions related to the top and W -kinematics, where the network does essentially as
well as without ISR, and only show the critical distributions related to the jets. Here we can
see that the performance of the Transfer-cINN is significantly worse, with typical deviations
of up to 20% on the underlying phase space density. At this level the Bayesian uncertainty
does not cover the difference between the truth and the cINN-generated distributions, and
the size of the deviations is going to affect the extraction of the CP-angle. These results can
immediately be generalized to the forward simulation of QCD jet radiation and detector
effects.

As before, we show the extracted likelihood as a function of the CP-angle α in Fig. 12.
For the deterministic Transfer-cINN we find that the likelihoods extracted from sets of
400 events reproduce the idealized hard-scattering level results fairly well. Problems occur
around the SM-value, where we know that the effects of α only grow slowly. We find
that for the shown event sample values α ≲ 10◦ cannot really be distinguished from the
Standard Model. This impression is confirmed by the uncertainties from the Bayesian
network, indicating that there is a significant loss in sensitivity compared to the idealized
hard-scattering level. On the positive side, the insensitive range of α ≲ 10◦ is to be
compared to the insensitive range of α ≲ 45◦ for the total rate, as seen in Fig. 2. For the
largest assumed angle α = 90◦ there is also a bias towards an underestimation of α, which
we have confirmed to be a general feature.

We find the same issues in the calibration curves shown in Fig. 13. Around |α| ≲ 10◦

the network finds hardly any sensitivity to the mixing angle. The situation improves for the
most sensitive region around α = 45◦, and for α = 90◦ the measurement indicates a bias
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Figure 13: Calibration of the α-measurement from hadronic top decays with ISR, in terms
of mean values and 68% confidence intervals extracted from 20 sets of 100 events at hard-
scattering level and measured.

which can, however, be removed through a standard calibration of the α-measurement.

5 Outlook

The matrix element method is the method of choice to measure fundamental Lagrangian
parameters from a small number of events at colliders. At hadron colliders, this method
is computationally challenging. We have presented a way to compute the likelihoods at
the hard-scattering level for reconstruction-level events with the help of two conditional
generative neural networks, specifically two cINNs. First, a Transfer-cINN encodes the
effects of QCD jet radiation and detectors in a forward simulation. This network is nothing
but a fast detector simulation, conditioned on the hard process. Second, the established
Unfolding-cINN allows us to efficiently compute the integration over the hard-scattering
phase space, just like a learned phase space mapping. In combination, the two conditional
generative networks allow us to compute event-wise likelihood ratios efficently and without
any assumptions on the form of any transfer function.

We illustrate our method using the extraction of the CP-angle in the top Yukawa
coupling, accessible at the LHC through the associated production of a Higgs with a
single top quark. Around the SM-value α = 0◦ the total rate of this process shows
essentially no dependence on the CP-angle. We show how this changes once we include
the full kinematic information through the MEM. For a leptonic top decay and for the
hadronic top decay without initial state radiation our method shows a sensitivity close to
the truth at the hard-scattering level. Once we include ISR, the combinatorics become
more challenging, because the correspondence of jets and partons is broken and additional
jets are hard to distinguish from the forward jets of the hard process. Nevertheless, even
the results with ISR are promising and indicate that the MEM will allow us to extract
maximal information for LHC processes with a small number of expected events.
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[73] D. Gonçalves, J. H. Kim, K. Kong, and Y. Wu, Direct Higgs-top CP-phase
measurement with tth at the 14 TeV LHC and 100 TeV FCC, JHEP 01 (2022) 158,
arXiv:2108.01083 [hep-ph].
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