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Dear Editor and Referees,
We would like to thank the referees for the very careful and thorough reading of our manuscript.

Referee report 1:

This is the referee report to the manuscript entitled “Lattice Simulations of Non-minimally Coupled Scalar
Fields in the Jordan Frame” written by Daniel G. Figueroa, Adrien Florio, Toby Opferkuch and Ben A.
Stefanek.

In this manuscript, the authors study numerical lattice simulations of scalar field non-minimally coupled
to the gravity in the early universe which is motivated by the renormalization theory in the curved spacetime
and the cosmological inflation model. In particular, the authors newly formulate an algorithm for the lattice
simulation in the Jordan frame where the non-minimal coupling is explicitly maintained in the Lagrangian.
This is in contrast to most of the previous studies in which the conformal transformation of the metric is
performed in order to make the non-minimal coupling term absent in the Lagrangian.

First, the authors have carefully derived the self-contained system of evolution equations for both the
non-minimally coupled scalar field and the background expansion of the universe in the Jordan frame. Then,
the authors give a formulation for the numerical lattice simulation by discretizing the spacetime variables
and replacing spatial derivatives of the scalar field with the finite deferences. The formulation is clearly
written in the main text and the technical detail is sufficiently supplemented in the appendices.

In addition, the authors focus on the geometric preheating model as an explicit application of their
formulation. Starting from the analysis of the linear evolution of the scalar field sourced by the inflationary
fluctuations, which sets the initial values for the lattice simulation, the lattice simulation is performed to
follow the subsequent non-linear evolution of the system. Resultant power spectra of the non-minimally
coupled scalar field computed by lattice simulations are carefully compared with the results of the linear
analysis and the non-linear effect is clearly shown. The evolution of the energy density of the system is
computed as well and the authors discuss how the reheating proceeds in this model depending on the non-
minimal coupling parameter and the inflaton potential.

Finally, the manuscript contains clear summary and conclusions. The authors also mention their plan to
provide publicly available code based on the algorithm presented in the main text. It will allow anyone to
reproduce all of the results in this manuscript.

On the whole, the discussion is clear without any ambiguities. In particular, this work opens a new
avenue for simulating the non-minimal coupling model and also it will become useful reference especially
for users of publicly available CosmoLattice code provided by authors themselves. Thus, I think this work
satisfies the acceptance criteria and desrves the publication in SciPost Physics.

We are very grateful to the referee for their very positive comments on our results.

Referee report 2
The main revisions I request are the following:

1. Though the authors’ introduction provides a thorough overview of the relevance and motivation for
nonminimally coupled scalar fields, the current submission is most lacking in its discussion of its
contributions relative to existing literature. In particular, numerous papers have studied numerous
variations of the geometric preheating model—e.g., the authors’ Refs. [37-40], and in particular, their
Ref. [40] and [a] and [b] (which the authors do not currently reference, linked below) perform numerical
simulations of highly similar models, generalized to multifield inflation cases where both scalars are
nonminimally coupled. Since the authors’ aim is to present (and make publicly available) a numerical
scheme for solving such systems, a more thorough comparison of their simulation results to those of
existing work is warranted.

[a] https://arxiv.org/abs/2005.00433



[b] https://arxiv.org/abs/2007.10978

We wholeheartedly agree with the referee on the importance and necessity of comparing
previous interesting cases presented in the literature, with our proposed Jordan-frame
technique. This is however no small endeavor, as making a proper comparison requires
significant extensions of our current code. This arises as the models considered in these
references are not exactly the same and, in addition, approach solving the dynamics in
a different fashion. This leads to two main problems: Firstly, we would need to perform
our simulations in the Einstein frame to ensure that our initial conditions are the same
as it is currently unclear that a comparison between an Einstein-frame and Jordan-frame
simulation will yield the same result. And secondly, this requirement of an Einstein
frame simulation yields the additional challenge of non-canonical kinetic terms due to
the presence of more than one non-minimally coupled scalar in the above models. We
are planning to do such a comparison with some of the most relevant scenarios in the
literature, like e.g. Refs.[38-41] (+[a]), but this study is still a major undertaking and
will (in our opinion) constitute a project unto itself, which we hope to begin in the not
too distant future. In the present manuscript we content ourselves with solving (for
what we believe to be the first time) the non-linear regime of the original geometric
preheating scenario (Ref. [29]), going beyond the linear regime that was first considered
in Refs. [29,30]. Given the above additional non-trivial hurdles, we hope that the referee
can be persuaded that the results in their present form are of sufficient interest for
SciPost. Lastly, we have added the two aforementioned references in our introduction.

. Since the authors advertise the use of the Jordan frame as a positive feature of their scheme, I would
have liked to see more substantive discussion of its benefits. While it’s convenient to avoid the need
to perform the conformal transformation to the Einstein frame, I might expect CosmoLattice (with
its symbolic capabilities) to be able to automate that process. As such, it would be valuable to know
if the Jordan frame offers other advantages—if, say, the equations are more numerically stable or less
computationally expensive. In addition, the authors should note that 3D, nonlinear simulations of
nonminimally coupled scalars in the Jordan frame were performed before: [c] considered a preheating
of a nonminimally coupled inflaton in the Jordan frame and solved the same equation as the authors’
Eqn. 21 (c.f. Eqn 12 in [c]).

[c] https://arxiv.org/abs/1905.13647

We fully agree with the referee on the relevance of a full comparison of the Einstein and
Jordan frame, and as matter of fact this is already in our pipeline for future work. A
proper comparison is part of the work we referred to in our response to point 1, which
will be a project (or even series of projects) of its (their) own, given all the aspects that
will be required to analyze. The advantages/disadvantages and similarities/discrepancies,
between models studied in the Jordan frame and in the Einstein frame, will constitute un-
doubtedly a very interesting project which will have the twofold purpose of comparing the
efficiency of techniques, and the physics itself. Such proper study falls therefore beyond
the scope of the current paper, where we simply content ourselves with demonstrating
the ability of our algorithm for solving the non-linear in-homogeneous dynamics.

We can, in any case, try to address the question of the referee, by making already a
few comments about the comparison between working directly in the Jordan frame vs
the Einstein frame. The first is that in the Einstein frame, one either has to deal with
a non-canonical kinetic term (which is not yet implemented in CosmoLattice, though
this is now work in progress at the time of writing) or to perform a derivative field
re-definition to canonically normalize it. In the latter case, to obtain the potential in
the Einstein frame, one must solve a differential equation for the new field in terms
of the old variable and then invert the solution, which adds computational complexity.
Additionally, it is not clear that the kinetic term is always diagonalizable when considering



multiple non-minimally coupled scalar fields. Therefore, CosmoLattice is not currently
at the point where the transformation to the Einstein frame can be automated in all
cases, which likely requires support for non-minimal kinetic terms. In any case, working
directly in the Jordan frame trivially avoids these potential issues, and once we implement
the required technical aspects to solve the dynamics in the Einstein frame, we’ll be
able to make explicit assessments on the comparison about stability, computational cost,
advantages/disadvantages, etc, between solving the dynamics in one frame versus the
other.

Finally, we also thank the referee for bringing [c] to our attention. Our more general Eqn.
21, which is valid for an arbitrary potential and time variable, reduces to their Eqn. 12 in
the case of a quartic potential and in conformal time. We have added a footnote on pg.
5 stating these points with a citation to [c]. In any case, we note that our Eqn. 21 simply
gives an expedient way to evolve the background. One could also integrate the second
Friedmann equation by direct substitution of the pressure and energy density, and the
result would be the same.

. Though utilizing the trace of the Einstein equations provides a slick means to specify the background
evolution, the dependence of py (Eqn. 18) on a” is only algebraic. The authors might note that
rearranging Eqns. 13 and 14 to isolate derivatives of the scale factor yields a result consistent with
Eqn 21.

Indeed, we agree that they are consistent, as such re-arrangement leads to an expression
proportional to p — 3p, which is the trace of the energy-momentum tensor.

. Figure 3, which presents some of the most important results of the simulations (and comparisons to
the linear analysis), is not discussed nor even referenced in the main text. This should be amended. 1
also have two questions regarding it:

(a) The N = 2 lines in the left panel curiously depict an apparent increase in spectral structure in the

nonlinear simulations compare to the linearized results. The typical first effect of nonlinearities
is to wash out any particular resonance structure that arises in the linear regime. On the other
hand, in the linear regime such oscillations in wavenumber could simply be phase offsets due to
evaluating the spectra at slightly different times. It would be interesting if the authors could
determine whether this discrepancy has a nontrivial cause.
The resulting lattice power spectrum compared to the linear one must be different
as for the linear analysis we do not include the backreaction of the NMC field in
the Friedmann equation. We see at N ~ 1.75 the energy densities of the inflaton and
the spectator fields become similar signaling the start of the back-reaction (see the
blue lines in Fig. (4)). At N = 2 differences in both the peak and also the UV tail of
the spectrum arise. The origin of the additional structure in the peak of the lattice
results arises from the Ricci scalar remaining positive once the backreaction occurs.
Subsequently the NMC just behaves as a free oscillator and is no longer driven.

(b) The simulation results in the right panel exhibit a very broad and flat spectrum out to the UV, but
the results appear to be truncated. The authors should display the full spectra to enable evaluat-
ing the extent of validity of these simulations. Though I expect their main qualitative point—that
self-interactions quench resonance—to be insensitive to resolution effects, the authors should be
careful and upfront about assessing convergence (especially so that their submission can serve as
a guide for others to properly and effectively use their software).

We thank the referee for pointing out this coverage issue. It is true that because
of the quartic coupling re-scattering of modes leads to additional power in the UV
spectrum. We have re-run the simulation covering better the UV scales while main-
taining comparable IR coverage (see figure below). We indeed find that this resolves
much better the expected fall-off of the UV tail. However, the spectral peak ampli-
tude does not change and therefore neither does the expectation value of the field.



We emphasize that re-running the simulation for this case was only necessary due to
the effects of the quartic coupling (grey line of fig. 6 [top-right] has changed slightly
due to UV oscillations), all other results in the manuscript remain unchanged. We
have updated the lattice parameters used in the manuscript to reflect these changes.
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5. The authors should specify the physical size of the simulation volume and the timestep size used in all
simulations.

In all lattice simulations with A = 0 we have used N = 240 and kg = 4 x 1073 H; (except
for ¢ = 10 where kg = 2.5 x 1073H;) while the time-step has been chosen as H;it = 0.01.
For )\ = 107°, we used N = 512, kyg = 1 x 1072H;. This choice allows for good coverage of
the spectrum where tachyonic growth occurs for a number of e-folds after inflation ends.
We have updated the manuscript accordingly, see the paragraph underneath Eq. (57).

6. To validate the authors’ evolution scheme for FLRW expansion for this class of models, and since Runge-
Kutta methods typically incur numerical dissipation error (affecting the satisfaction of conservation
laws), the authors should report the performance of their numerical scheme in terms of the degree of
violation of the Friedmann constraint (i.e., Eqn. 13).

Below we show the energy conservation for all cases considered in our manuscript. As
described in the text we utilize Eq. (36) as a cross-check of the numerical convergence
while we have used Eq. (21) to evolve the scale factor.
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7. The vertical limits of the left panel of Figure 4 truncate the spikes in the Ricci scalar for large ¢ . If
these indeed take values too large to fit into the axes limits, the authors should quote the peak value
in the caption or main body (and, if available, the expected scaling with &). Likewise for the left panel



10.

of Figure 5.

For Fig. (4) LHS, the two peaks extend to values of R/H? = 20.8(49.1) for ¢ = 50(100),
respectively. While for Fig. (5) RHS the w peaks extends to w = —2(—5.1) for £ = 50 (100).
We have added these values to the figure captions in the manuscript.

It would be helpful if the captions of Figures 4 and 5 specified that the potential V' (¢) = 0.
Done!

Have the authors tested the adaptive time stepping routine they describe in Appendix C? To my
knowledge, though use of low-storage Runge-Kutta methods is fairly common, adaptive routines have
been little used in 3D simulations and it would be interesting to explore their utility for, e.g., the
authors’ model. Do the typical choices for timesteps yield, say, percent-level accuracy when compared
to results using adaptive stepping? Do the adaptive routines provide substantial savings in simulation
runtime? If possible, providing guidance for future users on best practice and potential pitfalls would
be valuable (especially for this submission as a SciPost Physics Codebases publication).

We did implement the adaptive routine described in Appendix C. We agree with the
referee of the interest of these adaptive routines and that a dedicated study of performance
is warranted. While some performance gain is expected across a range of different models
and parameter space (which we observed on some small test simulations of some simple
power-law inflationary model), the dynamics of the model in this work is so fast that the
overhead of the adaptive routine wins over the potential gain. As a result, we decided to
defer any such study to further, more appropriate works. We still decided to include it as
a comment in the appendix here as this is an interesting and straightforward application
of the low-storage algorithms presented. We added a sentence at the end of the relevant
paragraph to make the reader aware that a performance gain is not guaranteed: ”Note
that the efficiency of such an adaptive scheme varies from model to model and needs to
be studied on a case-by-case basis.”

At the top of page 17, I suspect the phrase ”one need to solve (almost) all of the k(i) coefficients” is
meant to say ”one needs to *store*”, and there appears to be a stray comma in equation C11.

Indeed, corrected!



