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Abstract

Linear crossings of energy bands occur in a wide variety of materials. In this
paper we address the question of the quantization of the Berry winding char-
acterizing the topology of these crossings in dimension D = 2. Based on the
historical example of 2-bands crossing occuring in graphene, we propose to
relate these Berry windings to the topological Chern number within a D = 3
dimensional extension of these crossings. This dimensional embedding is ob-
tained through a choice of a gap-opening potential. We show that the presence
of an (emergent) PT symmetry, local in momentum and antiunitary, allows
the quantization of the Berry windings as multiples of π. We illustrate this
quantization mechanism on a variety of three-band crossings.
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1 Introduction

In recent decades, topology has allowed us to deepen our understanding of various band
structures. While initially applied to gapped phases [1], be they insulators or super-
conductors, topological tools have then been extended to various other band structures,
including those with band crossings. In the historical example of the two-dimensional (2D)
graphene [2], two bands cross linearly. This crossing can be characterized by a topological
number, i.e. a quantity robust to smooth deformations of the Hamiltonian which preserves
the crossing. In this case, the topological index is a Berry winding : the phase acquired by
an eigenstate smoothly wound around the band crossing point in momentum space, which
takes a value π in graphene. Such a Berry winding plays an important role in physical
quantities : it manifests itself in the spectrum of Landau levels and thus in the quantum
Hall effect in graphene, which is indeed characterized by an anomalous conductance quan-
tization [3]. Various topological indices have been proposed to characterize band crossing
points beyond those of graphene, such as 3D Dirac four-band crossings [4, 5] and Weyl
two-band crossings [6–8]. Symmetry-enforced topological invariants have been identified to
characterize these band crossings [9–13] .

In this paper, we develop an alternative description of such topological properties
irrespective of any crystalline symmetries, for two- and three-band crossings in dimension
D = 2. Our approach is based on a description of the local band crossing in momentum
space and is thus applicable both in solids and in continuous media. Our strategy consists
in first immersing the crossing into dimension D = 3 by introducing a gap opening mass
term, the mass playing the role of the third dimension. We then relate the Berry winding
of a given band along a closed path around the band crossing point in D = 2 to the
Chern number of the same band on a surface enclosing the band crossing point in D = 3.
This Chern number is the total Berry flux threading the surface. We then argue that the
Berry winding inherits a quantization from the Chern number, provided an antiunitary
PT symmetry emerges at low energy. We do not require a global PT symmetry, but only
an emergent symmetry that is local in reciprocal space.

This mechanism takes its origin in the canonical example of two-band crossing occurring
e.g. in graphene. In this case, the presence of the actual parity symmetry (P : (x, t) →
(−x, t)) and time-reversal symmetry (T : (x, t)→ (x,−t)) ensure that their combination
PT : (x, t)→ (−x,−t) preserves the stability of the band crossing at Dirac points. Since
the discovery of graphene, Dirac cones have been identified beyond the honeycomb lattice
case, e.g. on the surface of topological insulators [14], in organic semiconductors [15], in
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few-layer black phosphorus [16], or as accidental degeneracies in photonic crystals [17].
Dirac cones exist in systems other than crystals, e.g. in stratified fluids [18] or in photonic
systems with synthetic dimensions [19]. Contrary to studies explaining the existence of
Dirac cones based on crystal symmetries [11, 20], the PT symmetry is ubiquitous and can
exist locally in momentum space irrespective of the presence of a crystal.

We illustrate this emergent PT symmetry as a constraint on the quantization of Berry
windings on various examples of three-band crossings.

2 From a Berry winding in D = 2 to Chern number in D = 3
via a PT symmetry.

2.1 Berry winding around a 2-band crossing

We start the presentation with a discussion of a two-band crossing in 2D, described by the
generic massless Dirac Hamiltonian

H2D(k) = kxσx + kyσy (1)

where σx, σy represent the x and y Pauli matrices, and the momentum k = (kx, ky) is
relative to the band crossing point which occurs at k = 0. Such a Hamiltonian describes
k-locally1 e.g. the band structure close to one of the valleys in graphene, or along a critical
line between two distinct topological phases of the Haldane model [21] where the gap closes
at a single point in momentum space. The Hamiltonian (1) has an inversion symmetry P
represented by the operator σz, and a time-reversal symmetry represented by σyK. It is
thus also invariant under the PT symmetry, represented by the operator σxK, where K is
the complex conjugation operator.

The geometry of the eigenstates |ψ±〉 of the two bands ε± = ±|k| of model (1) is
captured by the associated Berry connections

A± = −i〈ψ±|∇k|ψ±〉 = ±1

2
∇kϕ (2)

where we have introduced the polar coordinates k = (k, ϕ). The Berry connections (2) play
a role analogous to a magnetic potential in momentum space. In particular, degeneracy
points act as sources of Berry flux in momentum space. Analogous to the Aharonov-Bohm
phase around an electromagnetic flux tube, the winding of the Berry connections along a
closed path C that encircles clockwise the degeneracy point (1) yields a phase

γ± =
1

π

ˆ
C

A±dk = ±1. (3)

We shall refer to this local topological property of the band crossing as the Berry winding
in the following. On a technical side, let us note that the above definition assumes that
the Bloch Hamiltonians are written in the unit-cell convention [12] or convention I [22].
Moreover, let us make a clear distinction here between the winding number of Eq. (3) and
the Berry phase acquired by the eigenstates when transported around the same closed
path C. This phase, which is that of the quantum-mechanical wave function and that may
be identified with the Wilson loop, see e.g. [23, 24], is indeed defined modulo 2π.2 On the
contrary, γ± encodes information about the topological winding of the phase field, which

1We remind the reader that we consider locality in reciprocal space here, whence the term “k-locality”.
2Strictly speaking, this phase can even take intermediate values and is not bound to be an integer [25,26].
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is in itself a physically relevant quantity. There, indeed, it makes a difference whether
the phase field winds once, three times or five times around a degeneracy point, even if
all values of γ± are odd here. As an example, the latter winding is identical with the
number of topologically protected zero-energy Landau levels that emerge at the degeneracy
points when the 2D system is exposed to a strong perpendicular magnetic field [27], the
paradigmatic example being bilayer graphene [28]. As for the Berry phase, it is relevant e.g.
in interference effects due to the wave nature of Dirac electrons, such as the suppression of
backward scattering for odd values of γ± or of forward scattering for even values of γ± in
tunnel experiments [29–31]. This Berry phase was recently shown to be also correlated
to the existence of a minimal conductivity of a 2D semi-metal [32]. If it is indeed the
Berry phase and not the Berry winding number that is a the origin of the finite minimal
conductivity, one can conjecture that the value of this minimal conductivity should not
change for higher odd Berry winding numbers.

In this paper, we address the question of the quantization of this Berry winding. Given
that (3) is a local property of 2D two-band crossings, we want to resort to local constraints
in momentum space, as opposed to crystalline symmetries. The general strategy we will
follow is to relate it to the first Chern number of eigenstates obtained upon dimensional
extension to D = 3 by introducing a mass term. The Berry winding in D = 2 will acquire
quantization from the topological Chern number in D = 3 provided an effective antiunitary
k-local PT symmetry emerges at low energy. We will illustrate this mechanism on the
simplest two-band crossing (1) in the following section.

2.2 Embedding a 2D Dirac point in 3D parameter space : from Berry
winding to Chern number

A generic mass opening potential that lifts the band crossing degeneracy of the Hamiltonian
(1) leads to the Hamiltonian

H3D = kxσx + kyσy +mσz . (4)

Such a mass term opens a gap in the dispersion relation ε±(k) = ±
√

k2 +m2, which
is generically parametrized by 3 parameters p = (kx, ky,m) in the Brillouin Zone ×
Mass space. The continuous variation of the mass parameter thus provides an additional
dimension. This Hamiltonian is formally equivalent to a 3D Weyl Hamiltonian.

We now present the standard derivation of the Chern number following an analogy with
the Dirac monopole of electromagnetics [33–37], and then show that this Chern number is
equal to the winding number γ± because of the PT symmetry of the 2D Hamiltonian.

In spherical coordinates p = (kx, ky,m) = p(sin θ cosϕ, sin θ sinϕ, cos θ), the normal-
ized eigenstates actually only depend on the angular direction from the degeneracy point,
such as

|ψN+ (k,m)〉 =

(
cos θ2

sin θ
2 eiϕ

)
, |ψN− (k,m)〉 =

(
sin θ

2 e−iϕ

− cos θ2

)
. (5)

Those eigenstates are well defined everywhere in parameter space except on the negative
m axis for θ = π, where they are multi-valued. Indeed, the Berry monopole at p = 0 acts
as an obstruction to smoothly define eigenstates in every direction around the degeneracy
point in 3D [34, 36]. The eigenstates can only be piece-wise defined to cover the whole
sphere in p-space. This is achieved by using a second gauge well-defined on the negative-m
axis, i.e. the South hemisphere SS

|ψS±〉 = e∓iϕ|ψN± 〉. (6)
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m < 0
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Figure 1: A 2D band crossing in momentum space (kx, ky) can be embedded in a D = 3
space with the additional dimensional provided by the amplitude m of a gap opening mass
term. When an antiunitary transformation of the 3D Hamiltonian relates the northern
(m > 0) and southern (m < 0) sides of the plane, the Berry winding along a closed loop C
in the (kx, ky) plane can be related to a Chern number, defined as the integral on a closed
surface SS ∪ SN encircling the crossing of the Berry flux, represented by the blue arrows.

Accordingly, the Berry connections of the band ε+ associated with the different gauge
choices |ψN+ 〉 and |ψS+〉 read

AN
+ = Im〈ψN+ |∇p|ψN+ 〉, (7a)

AS
+ = Im〈ψS+|∇p|ψS+〉. (7b)

On the equator plane m = 0, the two connections are well defined and are related by a
gauge transformation

AN
+ = AS

+ + ∇pϕ . (8)

The impossibility to find a single smooth global phase for the eigenstates everywhere
around the band crossing point is a topological property of these eigenstates |ψ+(p)〉
defined over R3\{0}, insensitive to any smooth deformation of these vectors. The presence
of this obstruction is encoded in the first Chern number ν±. This integer-valued topological
index can be expressed as the net flux of Berry curvature F± = ∇×A± emanating from
the degeneracy point through a closed surface S enclosing the origin in parameter space :

ν± =
1

2π

‹
S

F± · dS . (9)

The Berry curvature being insensitive of the gauge choice for |ψ±〉, a straightforward
calculation of the Chern number consists of splitting the closed surface surrounding the
Berry monopole into two hemispheres SN and SS over which the eigenstates can be
smoothly defined in the appropriate gauges (see Fig. 1). Then, using Stokes theorem,
the surface integral of the Berry curvature is reduced to two line integrals of the Berry
connections AN and AS encircling the degeneracy point in the equatorial plane (m = 0)
as

ν+ =
1

2π

(˛
∂SN

AN
+ · d` +

˛
∂SS

AS
+ · d`

)
=

1

2π

˛
C=∂SN

(AN
+ −AS

+) · d` (10)

where ∂SN and ∂SS denote the boundaries of the North and South hemispheres, respectively.
By inserting the relation (8) in Eq. (10), we obtain the expression of the Chern number of
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the band ε+

ν+ =
1

2π

ˆ 2π

0
dϕ = 1 . (11)

We have computed the Chern number associated to the two-band crossing point as
an integral of the Berry flux threading a surface enclosing the degeneracy point (at the
origin) in 3D p-space. In the course of the derivation, we have seen that this Chern number
reduces to the difference (11) between the integrals of the different Berry connections
(7a) and (7b) along the equator, i.e. on a closed loop encircling the origin in the m = 0
(θ = π/2) plane, see Fig. 1

So far, we have followed a well-known derivation of the Chern number [35,36]. In what
follows, we show how the PT -symmetry gives an extra constraint on Berry connections
allowing us to derive the Berry phase from the Chern number. Evaluating the connections
(7a,7b) on the m = 0 (θ = π/2) plane, we find

AN
+ (m = 0) = −AS

+(m = 0) =
1

2
∇ϕ = A2D

+ , (12)

where A2D
+ is the 2D Berry connection (2). We therefore have the following relation between

the Chern number (11) of the Berry monopole in 3D p-space and the Berry winding (3) of
the same degeneracy point in the 2D plane at m = 0:

ν+ =
1

2π

˛
∂SN

(AN
+ −AS

+) · d` =
1

2π

˛
∂SN

2A2D
+ · d` = γ+. (13)

Equation (13) is the central relation of our quantization mechanism. It relates the quanti-
zation of the Berry winding around the Dirac point in D = 2 (kx, ky)-momentum space to
the value of the corresponding Chern number in D = 3 (kx, ky,m)-parameter space. Let
us now explore the origin of this relation.

2.3 Effective antiunitary PT symmetry and Berry winding quantization

The correspondence (13) between a Chern number in (kx, ky,m) space and a quantized
Berry winding in (kx, ky) space follows from the relation (12) between the Berry connections
(7a) and (7b) at the equator. This relation is guaranteed by the existence of an antiunitary
symmetry of the Hamiltonian H3D

V −1H3D(kx, ky,m)V = H3D(kx, ky,−m). (14)

where V is an antiunitary operator, which, for (4), reads simply

V = σxK . (15)

This transformation relates eigenstates of same momentum k, but in different U(1) gauges
related to two opposite mass terms m, such as

|ψN+ (k,m)〉 =

(
cos θ2

sin θ
2 eiϕ

)
= V

(
sin θ

2 e−iϕ

cos θ2

)
= V |ψS+(k,−m)〉 . (16)

On the equator where θ = π/2, V thus acts as an effective PT symmetry for the Hamiltonian
H3D(m = 0) = H2D, as it is local in k and antiunitary. This PT symmetry relates now
the eigenstates of H2D expressed in different gauges as

|ψN+ (k,m = 0)〉 = V |ψS+(k,m = 0)〉 (17)
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which, in turns, yields a relation between the Berry connections in the North and South
gauges (7a) and (7b) at the equator

AN
+ (k,m = 0) = Im〈V ψS+(k,m = 0)|∇k|V ψS+(k,m = 0)〉

= Im
(
〈ψS+(k,m = 0)|∇k|ψS+(k,m = 0)〉

)∗
= −AS

+(k,m = 0) (18)

with ∗ the complex conjugation. This is precisely the relation (12) at the origin of the Berry
winding quantization. This unveils the role of a PT symmetry in 2D that is broken in 3D
by the mass term and that maps North and South eigenstates to ensure the quantization
of the Berry winding. Let us note that, in Ref. [12], a quantization condition similar to
(17) is deduced from space-time inversion (PT ) symmetry in the context of Topological
Crystalline Insulators. However, the PT symmetry is local in momentum space as opposed
to standard crystalline symmetries and therefore applies e.g. in the absence of lattice
structures. Here we show that an effective PT symmetry is a sufficient condition for the
quantization of the Berry winding, even in absence of standard crystalline symmetries. Our
approach applies to any material realisation of the given band crossing, in solids but also
in photonic systems where fine-tuning can be achieved [17], with synthetic dimensions [19]
and in continuous media [18,38].

2.4 SU(2) rotation and Dirac strings

kx

m
ky

(a) (b) (c) (d)

Figure 2: The Berry connection describes a monopole of Berry flux at the origin in p
space together with a tube of flux corresponding to the so-called Dirac string in the case
of the Dirac monopole of electromagnetics. The orientation of the Dirac string is gauge
dependant. More precisely, its direction depends on the choice of basis representation for
the Hilbert space describing the crossing. Thus in the case of the 2 band crossing in d = 2,
the orientation of the Dirac string corresponds to a spin axis of quantization. Along this
axis, the orientation of the Dirac string is U(1) gauge dependent. Different choices are
discussed. a) For the so-called North gauge, the Dirac string points along the m < 0 axis,
and the eigenstates are smoothly defined for any m ≥ 0. b) For the so-called South gauge,
the situation is symmetric, with eigenstates smoothly defined for any m ≤ 0 and a Dirac
string pointing along the m > 0 axis. c) Arbitrary gauge, with a Dirac string located in the
m < 0 half space, and thus eigenstates smoothly defined for m ≥ 0. d) A pathological case
where the Dirac string is in the equatorial plane. This gauge choice leads to an obstruction
to the definition of smoothly defined eigenstates for the D = 2 model for m = 0. For this
gauge choice, the discontinuity of the eigenstates along the Dirac string contributes to the
Berry winding.
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The Berry connection (7a) describes a Berry monopole in 3D parameter space (kx, ky,m).
This monopole is associated with a half flux line, that is given by the half line in the
direction where the connection is ill-defined [39]. This half-line is reminiscent of the Dirac
string of magnetic monopoles [33], described by vector potentials that are ill-defined along
a semi-infinite line in space, around which the circulation of the vector potential yields a
finite magnetic flux. Consider, for example, the connection AN . It is ill-defined when θ = π,
which unveils a Dirac string along the semi-infinite line m < 0. Indeed, the circulation of
the connection around this line over a radius k sin θ at polar angle θ gives

˛
θ
AN

+dk =

˛
θ

sin2 θ

2
∇kϕ dk = sin2 θ

2

ˆ 2π

0
dϕ = 2π sin2 θ

2
. (19)

For a vanishing radius, i.e. when closing the angle, it gives:

lim
θ→0

˛
AN

+dk = 0 (m > 0), (20a)

lim
θ→π

˛
AN

+dk = 2π (m < 0) . (20b)

Hence, the choice of the gauge AN
+ generates a Dirac string with Berry flux of 2π along

−êz, that is the semi-axis m < 0. Under a U(1) gauge transformation, wavefunctions
in the North gauge transform into wavefunctions in the South gauge with the respective
connection AS being well defined everywhere but along the m > 0 semi-axis. AS then
generates a Dirac string with a Berry flux of 2π in the êz direction, that is along the
semi-axis m > 0. Generically, under a U(1) gauge transformation, the orientation of the
Dirac string is reversed in (kx, ky,m) space (see Figs. 2 (a) and (b)).

In both North and South gauges, the Dirac string lies along the m axis. This axis can
be rotated in (kx, ky,m) space by applying a SU(2) transformation to the Hamiltonian
e.g. R̂α = exp

(
−iα2σx

)
(Fig. 2 (c)). This amounts to a change of basis of the Hilbert

space describing the 2D band crossing in (kx, ky) space. Note that under such a unitary
transformation, the mass operator is generically modified. Thus, one can distinguish two
”gauge choices” that fix the Dirac string: the SU(2) rotations that act on the Hilbert space
basis, and that fixes the direction of the Dirac string; and the previously mentioned U(1)
gauge transformation on the eigenstates that fixes its orientation.

We illustrate below the pathological situation of the Dirac string lying in the m = 0
equatorial plane (Fig. 2 (d)). Let us apply a spin rotation of angle π/2 around the x-axis
on the massless 2D Dirac Hamiltonian. The SU(2) spin rotation operator reads

R̂π/2 = exp
(
−i
π

4
σx

)
=

1√
2

(1− iσx). (21)

The Hamiltonian transforms as

R̂π/2H
2DR̂−1π/2 = kxσx + kyσz. (22)

The rotated Hamiltonian is purely real, and so are the wavefunctions: a possible basis is

|ψ+〉 =

(
cos ϕ2
sin ϕ

2

)
; |ψ−〉 =

(
sin ϕ

2
− cos ϕ2

)
, (23)

where ϕ = arctan kx/ky. The Berry connections A± = 0 are trivial and one could naively
conclude that the Berry windings are trivial too, even though the system still has an
effective PT symmetry R̂π/2V R̂

−1
π/2 (that is proportional to K). However, this contradiction

is only apparent. Indeed, let us note that the wavefunctions are 4π periodic, while ϕ is
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2π periodic. The wavefunctions are multivaluated along the closed circuit surrounding
the crossing, and therefore the computation of the circuit integral in the expression of the
Berry phase (3) is awkward.3 This is a manifestation of a branch cut for the phase ϕ,
originating from the alignment of the Dirac string with the place m = 0, as sketched in
figure 2 (d). This branch cut contributes to the integral of the Berry connection along a
closed loop circling the origin k = 0, leaving the Berry winding unaffected γ± = ±1, as it
should. Notice that the role of the orientation of the Dirac string and the branch cut has
also been pointed out in Ref. [40], where the winding number has been augmented to a
winding vector.

2.5 n band crossings in D = 2 and emergent PT
2.5.1 Extending the PT symmetry from 2 to n band crossings

In the case of graphene, the operator (15) corresponds to the combination of real spatial
inversion and time-reversal symmetries, the latter for spinless particles, i.e. where σµ does
not describe a spin but an orbital degree of freedom. However, in general, it does not need
to be this particular combination : any antiunitary operator V and mass M satisfying the
relation (14) will lead to a quantization of Berry winding via a Chern number and emerging
PT symmetry. We now show how this mechanism of quantization of Berry winding can be
extended to a generic n band crossing in D = 2. The procedure consists of identifying a
proper antiunitary transformation V = UK and mass opening operator M that satisfies the
relation (14) in the D = 3 extension of the Hamiltonian H3D(k,m) = H2D(k)+mM . Here,
the unitary operator U generalizes the σx matrix and the mass M operator generalizes the
σz matrix from the previous section, where only two-band models were investigated.

We consider a generic linear crossing of n bands described in an appropriate basis by a
Hamiltonian in momentum space k

H2D(k) = kx Σ1 + ky Σ2, (24)

where Σ1 and Σ2 are n × n Hermitian matrices that generalize the matrices σx and σy
of the two-band case. Note that we consider [Σ1,Σ2] 6= 0. When this is not the case,
both matrices Σ1 and Σ2 can be diagonalized simultaneously, and the band degeneracy
occurs along a nodal line which we do not consider in the present article. We look for an
antiunitary operator V , which satisfies the relation

V −1Σ1V = Σ1 ; V −1Σ2V = Σ2. (25)

This operator generalizes that of the 2-band crossing of Eq. (15), and thus plays the role
of an effective PT symmetry, i.e. it is local in k and antiunitary. When such an operator
V exists, the 3D extension of the model amounts to consider the perturbation mM of the
Hamiltonian (24) where the operator

M = −i [Σ1,Σ2] (26)

opens a gap at the band crossing and therefore plays a role analogous to σz for the 2-band
crossing. Note that the choice of the prefactor of this operator, and thus the sign of the
mass m previously associated to North or South gauges, are arbitrary.

3As noted by Berry in his original paper [39] the calculation of the Berry phase becomes more explicit
when considering the surface integral on a surface whose boundary is the closed path. This example gives
an extra argument for our approach: the 3D embedding lifts possible ambiguities in the computation of the
Berry phase.
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Besides, this mass operator transforms under the PT operator V satisfying Eq.(25) as

V −1MV = i[V −1Σ1V, V
−1Σ2V ] = i[Σ1,Σ2] = −M. (27)

Hence the PT transformation is local in momentum k and exchanges m and −m. This is
expressed on the D = 3 extension H3D(k,m) = H2D(k) +mM of the Hamiltonian (24)
which satisfies the relation

V −1H(k,m)V = H(k,−m). (28)

This relation generalizes Eq. (14) and leads to a quantization of the Berry winding of a
generic n band crossing. Let us now discuss the application of the above procedure in a
few specific cases.

2.5.2 PT symmetry for a generic spin band crossing

Consider a spin-S free fermion. Up to a unitary spin rotation, its Hamiltonian reads

H2D(k) = kx Sx + ky Sy. (29)

Its spectrum is then a superposition of Dirac-like cones, and a flat band for integer S. In
this case, the generic mass operator M defined in (26) identifies with Sz, such that the
natural D = 3 extension of the Hamiltonian reads

H3D(p) = kxSx + kySy +mSz = |p| Sp̂ (30)

where p̂ = p/|p| of spherical coordinates θ, φ and Sp̂ = p̂.S. In the basis of eigenstates of
Sz, both Sx = (S+ + S−)/2 and Sz are real while Sy = (S+ − S−)/(2i) is purely imaginary,
where we used the raising and lowering operators S±. The action of a PT transformation
V = UK on H3D(p) translates into

V H3D(k,m)V −1 = H3D(k,−m)→ UH3D(kx, ky,m)U−1 = H3D(kx,−ky,−m). (31)

Thus the unitary transformation U acting on the spin model (30) corresponds to a π spin
rotation around the x axis

U = e−iπSx . (32)

For the particular case of spins S = 1
2 , using Sx = σx/2 we recover the transformation (15)

with U = σx.

2.5.3 Real and imaginary Hamiltonians

Of particular interest is the case of a real Hamiltonian, corresponding to two purely real
Hermitian generators Σ1 and Σ2. This generalizes the situation represented in Fig. 2 (d)
: while the eigenstates can be chosen real and the Berry connection vanishes, the Berry
winding is still finite and is solely determined by a discontinuity of the eigenstates around
the band crossing point which is a manifestation of the Dirac string located in the plane
m = 0. In this situation the mass operator M in (26) is purely imaginary, and the PT
operator is simply given by the complex conjugation V = K, i.e. U = I. Notice that this
argument remains valid also in the case where Σ1 and Σ2 are not purely real but are related
to real operators by a global unitary transformation U , U−1Σ1/2U , in which case V = UK.

The opposite case of a purely imaginary Hamiltonian, corresponding to imaginary
Hermitian matrices Σ1 and Σ2 is also of interest. More precisely, we consider Σ1 =

Σ
m1,m′1
y ,Σ2 = Σ

m2,m′2
y matrices, where Σm,m′

y generalizes the σy Pauli matrix and has
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only two non-zero elements in line m and column m′ (and line m′ and column m, see
appendix B). Their commutator vanishes unless both matrices share at least a common
line of non-zero entries. Let us consider without loss of generality that the common line of
non-zero entries is m1 = m2. In this case, the corresponding mass matrix M (26) is also a

Σy matrix, M = iΣ
m′1,m

′
2

y . These three matrices form an SU(2) subalgebra embedded in
SU(n), as one may easily show with the help of the asymmetry (63) and the commutation
relations (62) of the Σ-matrices [see Eqs. (63) and (62) of Appendix B] Most saliently, one
may construct explicitly a PT symmetry operator V = UK whose unitary SU(n) matrix is
simply given by the diagonal matrix U = Diag(1 − 2δm,m1) which satisfies the relations
(25), see Appendix B.

3 Berry winding in three-band models via examples

E E

kx
ky kx

ky

m = 0 m ≠ 0
Figure 3: Three-fold band crossing point with a linear dispersion relation occurring in the
band structure of the Lieb, H3 and T3 models. A non zero mass term m 6= 0 lifts the
degeneracy in all models.

We have seen with the simple example of the two-band crossing how a general topological
characterization of a 2D band crossing can be obtained. Considering a gap opening term,
we consider the 2D crossing as a critical phase separating gapped phases and characterize
the 2D quantized Berry winding as a 2D projection of a 3D Chern number. This projection
is associated to the presence of an antiunitary transformation between the ”northern” and
”southern” sides of the 2D plane containing the crossing, see Fig. 1. Let us now follow
our investigation by considering 2D semi-metallic phases beyond two band crossings, the
simplest examples of which being a three-band crossing. Following the reasoning of the
previous section, we study local Hamiltonians describing the crossings and investigate
whether they can be characterized by a quantized Berry winding that is obtained from the
2D projection of a 3D Chern number.

The 2D three-band crossings we consider correspond to the modified dice lattice, so-
called α-T3 model [41], the three-band hexagonal, so-called H3 model [32], and the Lieb
lattice model [42]. The motivation for this choice is the following: all three models have
the same spectrum shown in Fig. 3 but have fundamentally different topological properties
as we show below. While the H3 model has a hidden spin S = 1/2 SU(2) symmetry and is
thus characterized by the same topological properties as our simple two-band Hamiltonian
(1), the Lieb lattice yields a low-energy spin S = 1 SU(2)-symmetric model. Both models
therefore have a k-local PT symmetry. This needs to be contrasted with the α-T3 model,

11
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which interpolates in the low-energy limit between the H3 and the Lieb models and that
has no emergent PT symmetry, except for the parameter sets that correspond precisely to
the H3 and Lieb models.

3.1 The hexagonal three-band H3 model

u1

u2

t1

t2

A1

A2

B

(a)

u1 u2

t 1

t 2

A2

A1

B

(b)

u1 u2

t
2t 1

A2

A1

B

(c)

Figure 4: Schematic representation of the tight-binding models : (a) The Lieb lattice
model, (b) The α-T3 model, (c) The three band hexagonal (H3) model, corresponding to a
honeycomb lattice with two decoupled states on one sublattice. In all three cases bonds
between sites correspond to nearest neighbour hoppings, between Ai and B only. The ui
are Bravais lattice unit vectors.

First we consider a 3-band extension of the tight-binding model of graphene, simply
obtained by adding a second atomic orbital on one of the two sublattices of the hexagonal
lattice, see Fig. 4c. This H3 model possesses 3-band crossings at points K and K′ of the
2D Brillouin Zone. The addition of an extra orbital on only one of the two sublattices
breaks various crystalline symmetries of the honeycomb lattice. In particular, both parity
P and intravalley mirror symmetry are lost. Yet, we show that an PT symmetry emerges
at low energy, leading to quantized Berry windings. This emphasizes the role of emergent
symmetries that are local in momentum in the quantization of Berry windings. Furthermore,
we relate the topological properties of the H3 model to those of an effective S = 1/2 spin
of 2 bands with a spectator band. Indeed, the Σ1 and Σ2 matrices describing the crossing
complemented by a mass operator M form a SU(2)-like subgroup of SU(3). In a nutshell,
we show that the H3 model has the unique feature of having none of the crystal symmetries
of graphene but the same k-local topological properties.

Around the K crossing point, the low-energy Bloch Hamiltonian describing the band
crossing of the H3 model takes the form

HH3
2D (k) =

 0 0 cosβ (kx − iky)
0 0 sinβ (kx − iky)

cosβ (kx + iky) sinβ (kx + iky) 0

 , (33)

in the (A1, B,A2) basis, with tanβ = t1/t2 where t1 and t2 are the two amplitudes of
nearest neighbor couplings, see Fig. 4c. The spectrum consists in two linearly dispersing
bands ε± = ±k and a flat band ε0 = 0, as shown in Fig. 3. The eigenstates of this H3

model are characterized by quantized Berry windings similar to graphene : γ± = −1 and
γ0 = 0. This quantization is enforced by the presence of a PT symmetry of the model, in
spite of the lack of parity. This emergent PT symmetry does not hold at the microscopic

12
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level, but only in the low energy limit around the band crossing point. It corresponds to
the operator :

V =

 sin2 β − cosβ sinβ cosβ
− cosβ sinβ cos2 β sinβ

cosβ sinβ 0

K. (34)

This symmetry can be inferred from the representation of the low-energy H3 Hamiltonian
model as a 2-band crossing Dirac Hamiltonian with a disconnected flat band

H ′(k) = W−1H(k)W =

 0 0 0
0 0 k−
0 k+ 0

 with W =

 − sinβ cosβ 0
cosβ sinβ 0

0 0 1

 . (35)

and k± = kx ± iky. In this representation, the PT symmetry is a simple transformation

V ′ = U−12 V U2 =

 1 0 0
0 0 1
0 1 0

K. (36)

Let us show how this PT symmetry relates the quantization of the Berry windings
to the Chern number of bands in a D = 3 dimensional extension of the model. For this
purpose, we choose the following mass operator

M = −i[Σ1,Σ2] = 2

 cos2 β cosβ sinβ 0
cosβ sinβ sin2 β 0

0 0 −1

 ,

corresponding, in the representation (35), to a standard σz mass operator :

M ′ = W−1MW = 2

 0 0 0
0 1 0
0 0 −1

 . (37)

Hence, in the representation (35), the relevant operators in the effective two-level systems
identify with those discussed in section 2 :

H ′,Σ′1/2,M
′, V ′K ∼

(
c1 0
0 c2σµ

)
, (38)

where σµ are the Pauli matrices and c1 and c2 are scalars4. Therefore the H3 model has an
underlying SU(2) symmetry that allows us to relate its topological properties to those of
two-band models such as graphene.

The spectrum of the model HH3
3D (k,m) = HH3

2D (k) + mM reads ε0 = 0, ε± =
±
√
k2 + 4m2. The eigenstates of this model are conveniently discussed by introducing the

vector p = (kx, ky, 2m) in spherical coordinates (p, θ, ϕ), see appendix C. Let us focus
on the eigenstates of the band ε+ band. For this band, we choose two gauges, N and S,
smoothly defined respectively for positive and negative masses m. The associated Berry
connections are, see appendix C :

AN
+ = − sin2 θ

2
∇pϕ ; AS

+ = cos2
θ

2
∇pϕ. (39)

4If the constant c1 were non-zero in the Hamiltonian, it would allow us to shift the energy of the
decoupled single band and provide it with an additional dispersion.
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The Berry connection in the northern gauge describes a Berry monopole at p = 0 together
with a Dirac string of flux 2πêz along the k = 0,m < 0 semi-axis. The same monopole
with the symmetric string (along the k = 0,m > 0 semi-axis) is described by the Berry
connection in the southern gauge. On the equator, both connections are smoothly defined
and related by a gauge transformation AN

+ = AS
+ −∇kϕ leading to a Chern number

ν+ =
1

2π

˛
∂SN

(
AN

+ −AS
+

)
· d` = −1 ; γ+ = ν+. (40)

The presence of the emergent PT symmetry (34) enforces a quantization of the 2D Berry
winding γ+ = ν+ deduced from the Chern number. Besides the above procedure allows
one to reveal the underlying spin-1/2 structure and topological properties of the H3 model,
identical to that of graphene, in spite of the difference in crystalline symmetries and parity
between both models. This stresses the importance of an effective emergent PT symmetry
in the Berry winding quantization even though symmetries P or T are absent at the
microscopic level.

3.2 Spin-1 and microscopic PT symmetry on the Lieb lattice

The Lieb lattice model [42] is a bipartite lattice model on a square lattice, with three sites
per unit cell, as shown on Fig. 4a. The three bands cross linearly at k = 0 in the Brillouin
Zone, and the low-energy Hamiltonian near the crossing point takes the form

HLieb
2D (k) =

 0 0 −ikx
0 0 iky

ikx −iky 0

 = kx Σ1 + ky Σ2 (41)

with a spectrum ε0 = 0, ε± = ±k shown in Fig. 3. Eigenstates of the Lieb model possess
an effective spin-1. In the following, we apply the general procedure of section 2.5 for
such a local spin-1 band structure. The mass operator M together with the Σi matrices
indeed form a spin algebra. Non trivial Chern numbers ν = 0,±2, distinct from those of
the previous spin-1/2 case, are identified for the 3 bands with a finite mass. The presence
of a local PT symmetry leads to a topological quantization of the Berry winding around
the band crossing.

Similarly to graphene, the nearest neighbor tight-binding model on the 2D Lieb lattice
is invariant under both parity P and time-reversal symmetry T . The combination of both
is thus also a symmetry of the 2D Hamiltonian and corresponds to the required operator
V :

V =

 1 0 0
0 1 0
0 0 −1

K. (42)

Following the lines of reasoning of section (2.5), we define a mass operator M = −i[Σ1,Σ2]
leading to the 3D extension of (41) :

HLieb
3D (k,m) = kxΣ1 + kyΣ2 +mM =

 0 im −ikx
−im 0 iky
ikx −iky 0

 . (43)

The spectrum is ε0 = 0, ε± = ±
√
k2 +m2. In this case, the matrices Σ1, Σ2 and M = Σ3

are a purely imaginary representation of the spin S = 1 algebra,

[Σ1,Σ2] = iΣ3, [Σ2,Σ3] = iΣ1, and [Σ3,Σ1] = iΣ2. (44)

14



SciPost Physics Submission

Besides the spin structure, the matrices Σ1,Σ2,M correspond exactly to the case of purely
imaginary matrices discussed in section 2.5. Therefore, we illustrate with the Lieb-lattice
model the general procedure discussed in this section 2.5. Similarly to the H3 model, we
obtain a low-energy SU(2) symmetry, as it is shown by the commutation relations (44).
However, in the present case, we are confronted with a purely imaginary representation
of SU(2), which requires being embedded in a higher-dimensional space (here in terms of
3× 3 matrices) and thus a larger spin (here S = 1).

First we consider two smooth gauge choices for eigenstates around the band crossing,
corresponding to a covering of the sphere in p = (kx, ky,m) space by two hemispheres SN
and SS . Using polar coordinates, we obtain that away from the m-axis the two conventions
are related by the unitary transformation |ψN± 〉 = e±2iϕ |ψS±〉 and the Berry connections
read

AN
+ = (1− cos θ)∇pϕ ; AS

+ = −(1 + cos θ)∇pϕ. (45)

The obstruction to define a smooth gauge everywhere manifests itself through a Dirac
string located along the negative m axis for the N gauge, and carrying a flux 4πêz, as
illustrated in Fig. 2 (see also Appendix D). The presence of this half tube of flux can be
detected by computing the Berry flux threading a disk of radius k sin θ centered on the m
axis in the limit of a vanishing polar angle θ.

The presence of the (real) PT symmetry implies that on the equator where m = 0 (or
θ = π/2), the Berry connections verify AN

± = −AS
± = ±∇kϕ leading to a quantization

relation of the 2D Berry winding

γN± =
1

π

˛
m=0

AN
±dk =

1

2π

˛
m=0

(
AN
± −AS

±
)
dk = ν± (46)

with the 3D Chern number

ν± =
1

2π

˛ (
AN
± −AS

±
)
dk = ±2, (47)

see appendix D for a detailed derivation. Note that here a Berry winding of 2 is distinct from
a Berry winding of 0, in contrast with a Wilson loop characterization (see the discussion in
Appendix A).

Thus, we have illustrated our procedure on a particular lattice model that displays a
3-band crossing point with a quantized Berry winding. The reason of that quantization
is fully understood here from the low-energy description that displays a spin-1 structure,
which guarantees an emergent PT -symmetry relating the topological nature of the Chern
number to the quantization of the Berry winding. It is worth noticing that the crystalline
symmetries, which were shown to play, in general, a key role in the quantization of the
Berry winding [11,20], do not intervene in this approach. To stress this point, we exhibit
a continuous fluid model, that therefore does not lie on any crystalline symmetry, but
nonetheless formally owns the same spin-1 algebraic structure, and thus a PT -symmetry
that implies the quantization of the Berry windings. This model, known has the f - plane
shallow water model, describes a thin layer of fluid in rotation. Around a state of rest, the
frequency modes of such fluids are eigenvalues of

HSW =

 0 −if kx
if 0 ky
kx ky 0

 = kxSx + kySy + fSz (48)

that is, ω0 = 0, ω± = ±
√
k2 + f2, where kx and ky are the wavenumbers in the x and y

directions, and f , called the Coriolis parameter, is proportional to the angular velocity.
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This parameter plays the role of the mass term in our framework. In (48), the 3 × 3
matrix is written in the basis (vx, vy, h) where vx and vy are the in-plane components of
a perturbation in velocity and h is a perturbation in the thickness of the fluid. Since
the Si matrices that enter the decomposition of this model satisfy [Si, Sj ] = iεijkSk, the
f -plane shallow water model owns a spin-1 structure that guarantees the Berry winding of
its eigenstates to be quantized, similarly to the Lieb model, as ν± = ±2. Actually, other
classical continuous models, e.g. in active fluids, plasmas and gyrotropic media [43–45],
exhibit the same spin-1 structure and are therefore guaranteed to have quantized Berry
windings as well.

3.3 A model without any effective PT symmetry: the α-T3 model

Let us now study a model that interpolates between a spin-1 and a spin-1/2 band structure,
the α-T3 model. This model is a natural extension of graphene which consists of adding
an extra atomic site located in the centre of each hexagon of the honeycomb lattice, as
shown in Fig. 4b. This extra site is coupled via nearest neighbor coupling of amplitude
t2 to only one (B) of the two sublattices of the honeycomb lattice, and the coupling
between nearest neighbor sites of the honeycomb lattice has an amplitude t1. This bipartite
structure preserves the chiral symmetry and constrains the spectrum to be symmetric
around E = 0. The 3 sites per unit cell lead to a flat band at ε0 = 0 with two finite energy
bands ε+(k) = −ε−(k) which cross linearly at the K and K′ points of the honeycomb
lattice’s Brillouin Zone. Around the K point, the crossing is described by the Hamiltonian

HT3
2D(k) = kx Σ1 + ky Σ2 (49)

=

 0 0 cosβ (kx − iky)
0 0 sinβ (kx + iky)

cosβ (kx + iky) sinβ (kx − iky) 0

 , (50)

where tanβ = t1/t2 gives the relative strength of nearest-neighbour hoppings, and is usually
denoted by α. When β = 0 or ±π/2, one of the Ai sublattices becomes disconnected from
the rest of the lattice. In this particular case the model corresponds to an effective spin-1/2
with a spectator flat band, i.e. we retrieve the H3 model in this limit. In the symmetric
case β = ±π/4, i.e. when t1 = ±t2, the matrices Σ1, Σ2 and M = −i[Σ1,Σ2] form a spin-1
algebra, and in this limiting case the model identifies with the Lieb model. Therefore the
α-T3 model can be interpreted as a smooth interpolation between S = 1/2 and S = 1
structures.

In this model, the Berry windings of the different bands around the band crossing point
are not quantized and vary continuously with the parameter β [41] :

γ± = − cos 2β, γ0 = 2 cos 2β. (51)

Let us now relate these values of the Berry winding to the mechanism of quantization
discussed in Sec. 2.5. In the α-T3 model, inversion symmetry is broken when the hoppings
are unequal t1 6= t2, i.e. for β 6= π/4. Hence the lattice of the α-T3 model does not
possess a microscopic PT symmetry. Besides, we show below that its Hamiltonian (51)
around a band crossing lacks any emergent PT symmetry. Indeed, the unitary part U of
such an antiunitary transformation V = UK must satisfy

Σ1U = UΣ1, Σ2U = −UΣ2. (52)

Solving this linear algebra equations, we find solutions only for the above symmetric cases:
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U(β = 0) =

0 0 1
0 λ 0
1 0 0

 ;U(β = ±π
4

) =

0 1 0
1 0 0
0 0 1

 ;U(β = ±π
2

) =

λ 0 0
0 0 1
0 1 0

 . (53)

For β 6= 0,±π/4,±π/2, no effective PT symmetry exists, and the scenario of Sec.2.5 of
topological quantization of the Berry windings does not hold, in agreement with the values
(51) which are quantized only for β = 0,±π/4,±π/2.

Note that, however, the absence of the effective PT does not prevent the Chern numbers
of the extended 3D model to be non zero. To illustrate this point, we consider a simpler
mass term than in (26), allowing for a simple analytical analysis of the Chern number,
corresponding to the 3D extension of the α-T3 model as

HT3
3D(k,m) = HT3

2D(k) +mM (54)

=

 m 0 cosβ (kx − iky)
0 −m sinβ (kx + iky)

cosβ (kx + iky) sinβ (kx − iky) − cos 2β m

 , (55)

The spectrum displays a flat band ε0 = −m cos 2β and two linearly dispersive bands
ε± = ±

√
k2 +m2. The eigenstates of the positive energy band ε+ are associated with a

Chern number ν+ = 2 for any surface enclosing the band crossing point, and irrespective
of the value of β. This can be calculated by considering N and S gauge choices, valid
respectively for m > 0 and m < 0: wavefunctions in the two gauges are related through the
transformation |ψN+ 〉 = exp(2iϕ) |ψS+〉 in polar coordinate, leading to the relation between
the corresponding Berry connections AN

+ = AS
+ + 2∇kϕ. Detailed expressions for the

connections can be found in appendix E. The Chern number is deduced from the relation

ν+ =
1

2π

˛
m=0

(AN
+ −AS

+) dk =
1

2π

˛
m=0

2∇kϕ dk = 2. (56)

For β = π/4, a spin-1 algebra is recovered corresponding to a ν = 2 Chern number for the
ε+ band. The Chern number of the gapped bands being a topological property of these
bands, it remains unchanged as β varies away from π/4 given that no gap closes. When
β = 0 or π/2, a topological transition occurs : a gap closes with the flat band touching one
of the dispersive bands and the Hamiltonian then describes an effective spin-1/2 structure.

As in the 2-band crossing case, this non zero Chern number manifests an obstruction to
smoothly define eigenstates in (k,m) space. This leads to the presence of a Dirac string or
half flux tube originating from the Berry monopole for any choice of gauge (see Fig. 2). We
show the existence of this Dirac string by calculating for e.g. the N gauge valid for m > 0
the flux threading a disk of radius k sin θ centered on the m axis, in the limit θ → 0, π, see
Appendix E :

lim
θ→0

˛
AN

+dk = 0, ; lim
θ→π

˛
AN

+dk =
8π sin2 β

1− cos 2β
. (57)

As opposed to the previous models, for β 6= 0,±π/4,±π/2 the flux is not quantized in units
of 2π. This non-quantization reflects the non quantization of the 2D Berry windings (51).

The above results illustrate that a given model, here the α-T3 model, can possess
non-vanishing Chern numbers when a gap is opened, but unquantized 2D Berry windings if
no emergent PT symmetry is present at low energy. This corresponds to a situation where
the singularity line of each gauge choice, generalizing the Dirac strings, are associated with
unquantized and gauge-dependent Berry fluxes.
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The above discussion of the α-T3 model extends to the critical HgCdTe material. For
a critical Cd concentration, a linear crossing occurs between three doubly degenerate bands
in Hg1−xCdxTe [46]. This critical semi-metallic phase provides a 3D extension of the α-T3

model for a specific value of the parameter tanβ = α = 1√
3

[47]. Although the 3D phase is

trivial with Chern number ν = 0, it projects onto a 2D crossing with non zero, although
non quantized, Berry windings, see Appendix E.2.

4 Conclusions and perspectives

In this article, we have discussed a sufficient condition for the Berry winding of eigenstates
around a D = 2 band crossing to be quantized. This condition is based on the existence of a
k-local PT symmetry around the band crossing, which allows the Berry winding to inherit
a topological robustness from the Chern number of the bands when a gap is opened. As a
consequence, the topological nature of the quantized Berry winding encodes a robustness
of the eigenstates with respect to PT preserving perturbations. This condition generalizes
those based on specific crystal symmetries and applies even for energy crossings beyond
the realm of solids. We have illustrated this interplay between a PT symmetry, quantized
Berry windings and Chern number on several 3-band crossing occuring in D = 2 lattice
models, the H3, Lieb lattice and α-T3 models. While the SU(2)-structure of H3 and the
Lieb models, for spins S = 1/2 and S = 1, respectively, in the low-energy limit allows for
the emergence of a k-local PT symmetry, this is generally not the case in the α-T3 model.
Indeed, the latter interpolates between the H3 and the Lieb models, and no such symmetry
exists except at the two limits.

As pointed out in the main text, the connection between 2D winding number and the
presence of a quantized monopole in the 3D embedding space is associated with a Dirac
string along which the Berry connection is not defined. The orientation of the Dirac string
and thus the definition of the k-local PT symmetry are nevertheless gauged-dependent.
Future studies may involve the evolution of this approach beyond strict k-locality, e.g. in
the vicinity of a merging point where two band-contact points unite. It has been shown
that the nature of such a merging transition depends on the winding number of the Dirac
points [40,48–50]. It would be interesting to check whether the different merging transitions
could be classified within a PT symmetry that could be defined in the neighbourhood
of the merging point in k-space that contains both band-contact points. Such future
study would thus deal with “second-generation continuum models” beyond the linear-band
approximation [51] and patches in reciprocal space. This is, however, beyond the scope of
the present paper which discusses a strictly k-local PT symmetry.
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A Berry windings versus Wilson loop flow

The Wilson loop operator is the path-ordered exponential of the integral of the Berry
connection A = −i〈ψ|∇k|ψ〉 along a loop

W [`] = exp

(
−i

˛
`
A(k)dk

)
. (58)

When the loop is non contractible, it corresponds to a Zak phase [24]. The Berry winding
along loop ` is by definition

γ` =
1

π

˛
`
A(k)dk. (59)

The relation between Berry winding and Wilson loop

i logW [`] = πγ` mod 2π (60)

thus depends on the choice for the determination of the complex logarithm.
In the case of the 3D extension of the Lieb lattice, we have seen that γ = 0 6= γ = 2

for the Berry windings. In this model, a 2 Berry winding is related to a Chern number
|ν| = 2. With this result we emphasize that Berry windings and Wilson loops encode
different topological properties, relative to different classes of perturbations.

B PT symmetry for an imaginary Hamiltonian

We focus on the situation discussed in section 2.5 where Σ1,Σ2 and M matrices are purely
imaginary. From n ≥ 3 on, the basis of Hermitian n × n matrices used to construct an
n-band Bloch Hamiltonian contains at least three, indeed n(n − 1)/2 purely imaginary
matrices, and the commutation prescription to generate a mass term (44) yields an SU(2)
subgroup embedded in SU(n).

Let us consider an n×n generalization of Pauli σy matrices, where the subset of purely
imaginary matrices contains Σ1 and Σ2, which have only two non-zero elements in line
m1/2 and column m′1/2, and naturally its complex conjugate in line m′1/2 and column m1/2.
Their commutator vanishes unless both matrices share at least a common row of non-zero
entries. In order to see this point, let us consider two imaginary Hermitian matrices Σm1,m′1

and Σm2,m′2 , where the notation indicates that all entries are zero apart from the element
in line m1/2 and column m′1/2, which is i, and that in line m′1/2 and column m1/2, which is
−i. In components, these matrices can be generically written as

Σ
m0,m′0
m,m′ = i

(
δm,m0δm′,m′0 − δm,m′0δm′,m0

)
. (61)

The components of the commutator (times the imaginary i in order to obtain a purely
imaginary Hermitian operator) are readily calculated and read

i
[
Σm1,m′1 ,Σm2,m′2

]
m,m′

= i
[
δm1,m2(δm,m′1δm′,m′2 − δm,m′2δm′,m1)

+δm′1,m′2(δm,m1δm′,m2 − δm,m2δm′,m1)

−δm1,m′2
(δm,m′1δm′,m2 − δm,m2δm′,m′1)

−δm′1,m2
(δm,m1δm′,m′2 − δm,m′2δm′,m1)

]
. (62)
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Notice first that the commutator only gives a non-zero operator when the original matrices
Σm1,m′1 and Σm2,m′2 share at least a common row of non-zero entries. Furthermore, there
is a redundancy in the description because by definition

Σm0,m′0 = −Σm′0,m0 (63)

so that one can omit the last two lines with a negative sign in Eq. (62). Let us consider
without loss of generality that the common line of non-zero entries is m1 = m2. The
commutator then yields another matrix Σm′1,m

′
2 ,[

Σm′1,m1 ,Σm1,m′2
]

= iΣm′1,m
′
2 = iM, (64)

which is nothing other than the mass operator, by construction. Moreover, one notices
that these three matrices form an SU(2) subalgebra embedded in SU(n), as one may easily
show with the help of the anti-symmetry (63) and the commutation relations (62) of the
Σ-matrices.

Most saliently, one may also construct explicitly a PT symmetry operator V = UK
whose unitary SU(n) matrix is simply given by the diagonal matrix

Um,m′ = δm,m′(1− 2δm,m1), (65)

of elements 1 apart from the m1-th line and column, where the element is −1. For m1 6= m′1,
case that is excluded because we consider Hermitian matrices, one has

(UΣm1,m′1)m,m′ = −i(δm,m1δm′,m′1 + δm,m′1δm′,m1) = −(Σm1,m′1U)m,m′ , (66)

that means that U anticommutes with both Σm1,m′1 and Σm1,m′2 , and since the latter are
purely imaginary, we have

V −1Σm1,m′V = Σm1,m′ , (67)

as required by the PT symmetry. Furthermore, U commutes with the mass operator
Σm′1,m

′
2 because the lines m′1 6= m1 and m′2 6= m1 remain invariant by multiplication with

U , which only acts as the one-matrix here. Consequently, V anticommutes with the mass
operator, as required.

C Topological properties of the H3 model

The 3D H3 Hamiltonian reads:

H = kxΣ1 + kyΣ2 +mM =

 2m cos2 β 2m sinβ cosβ cosβk−
2m cosβ sinβ 2m sin2 β sinβk−

cosβk+ sinβk+ −2m

 . (68)

Its spectrum is ε0 = 0, ε± = ±
√
k2x + k2y + 4m2. Note that the velocity along the m axis dif-

fers by a factor 2 from the Lieb model. This is due to the difference of commutation relations
between spin-1 operators for the Lieb model and spin-1/2 operators for the H3 model. Let
us introduce the spherical coordinates p = (kx, ky, 2m) = p(sin θ cosϕ, sin θ sinϕ, cos θ).

We find that the eigenstates are independent of the amplitude p =
√
k2x + k2y + 4m2 and

read
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|ψ0〉 =

 − sinβ
cosβ

0

 , |ψ+〉 =

 cosβ sin θ
2

sinβ sin θ
2

cos θ2eiϕ

 , |ψ−〉 =

 cosβ cos θ2
sinβ cos θ2
− sin θ

2eiϕ

 . (69)

The wavefunction |ψ+〉 (69) is smoothly defined except at θ = 0 where it is singular:
it corresponds to a South gauge choice |ψS+〉. The North gauge can be deduced by the
transformation |ψN+ 〉 = e−iϕ |ψS+〉. The corresponding Berry connections are given by Eq.
(39).

A simple computation leads to

ν+ =
1

2π

˛
∂UN

(
AN

+ −AS
+

)
· d` = −1. (70)

This is expected since the 2D Berry winding γ+ is quantized and the existence of a PT
symmetry implies

ν+ = γ+. (71)

D Topological properties of the Lieb model

The 2D and 3D Hamiltonians of the Lieb model are given respectively by Eqs. (41) and
(43). In this Appendix we calculate their eigenstates in different gauge choices and derive
the existence of the associated Dirac string. The eigenstates basis reads, in spherical
coordinates (p, θ, ϕ) in p = (k,m) space :

ψ0 =

 sin θ sinϕ
sin θ cosϕ

cos θ

 , ε0 = 0 (72a)

ψ± =
1√
2

 cos θ sinϕ± i cosϕ
cos θ cosϕ∓ i sinϕ

− sin θ

 , ε± = ±h. (72b)

The eigenstates only depend on p̂ = p/p allowing us to focus on the unit sphere around
the crossing in the 3D p space. Notice that the wavefunction ψ± (72b) for the upper and
lower band is singular along the m-axis (θ = 0, π), where ϕ is ill-defined. For the ε+ band
at the North Pole we get

lim
θ→0

ψ+ =
1√
2

 ie−iϕ

e−iϕ

0

 . (73)

Thus, the eigenstates we have considered (72b) define the South gauge ψS+. Wavefunctions
in the North gauge are defined by ψN+ = eiϕψS+. From equation (72b) we deduce the Berry
connections (45) for the upper band in the different gauges. The Chern number along a
sphere S encircling the nodal point is readily computed,

ν+ =
1

2π

‹
S

F+dS =
1

2π

(¨
SN

F+dS +

¨
SS

F+dS

)
(74)

=
1

2π

˛
θ=π/2

(AN
+ −AS

+)d` (75)

= ±2. (76)
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Let us now show the existence of a Dirac string in the North gauge for the upper
band. The derivation is identical in any gauge or band. For a given value of the angle θ,
consider the flux threading a disk of radius k sin θ centered on the m axis. It is given by
the circulation of the Berry connection along the circle

˛
AN

+dp =

ˆ 2π

0
dϕ(1− cos θ) = 2π(1− cos θ). (77)

When θ → π, the circle contracts to a point but the flux goes to the finite value 4π. Hence
the Berry connection AN

+ (45) describes a Berry monopole and a Dirac string carrying the
flux 4π along the m < 0 semi-axis. This is consistent with the value of the Chern number
ν = 2.

E α-T3 model

E.1 Topological properties

Using the spherical coordinates (p, θ, ϕ) in p = (k,m) space, the eigenstates of the
Hamiltonian (55) are found to depend only on θ, ϕ for any parameter β:

ψ± =
1√

2(1± cos θ cos 2β)

 (1± cos θ) cosβ e−iϕ

(1∓ cos θ) sinβ eiϕ

± sin θ

 , ε± = ±
√
k2 +m2, (78a)

ψ0 =
1√

1− cos2 θ cos2 2β

 − sin θ sinβ e−iϕ

sin θ cosβ eiϕ

cos θ sin 2β

 , ε0 = −m cos 2β, (78b)

Let us now focus on the upper band for illustration: the wavefunction (78a) has singularities
at the North pole θ = 0 and the South Pole θ = π. We can regularize it at the North (resp.
South) pole through ψN+ = eiϕψ+ (resp. ψS+ = e−iϕψ+) The wavefunction ψN+ (ψS+) has a
unique vortex at the South (North) pole and is smoothly defined elsewhere. The associated
Berry connections for the ε+ band read

AN
+ =

sin2 θ + 2(1− cos θ)2 sin2 β

2(1 + cos θ cos 2β)
∇pϕ, (79)

AS
+ = −sin2 θ + 2(1 + cos θ)2 cos2 β

2(1 + cos θ cos 2β)
∇pϕ. (80)

As in the magnetic monopole case, these connections describe a source of Berry flux at
the origin together with a half flux tube on the m < 0 (resp. m > 0) semi-axis, see Fig. 2.
These half flux are determined by considering the winding of the connection around a circle
of radius k sin θ at polar angle θ:

˛
θ
AN

+dp =

ˆ 2π

0

sin2 θ + 2(1− cos θ)2 sin2 β

2(1 + cos θ cos 2β)
dϕ

= π
(sin2 θ + 2(1− cos θ)2 sin2 β)

(1 + cos θ cos 2β)
. (81)

Equation (81) contains the flux from the Berry monopole located at the origin through
the surface of the disk and a possible contribution from the half-flux tube. The first
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contribution increases with the solid angle of the surface. In the limit θ → 0 (North pole)
or θ → π (South pole) we get an extra contribution:

lim
θ→0

˛
AN

+dk = 0, lim
θ→π

˛
AN

+dk =
8π sin2 β

1− cos 2β
, (82)

which corresponds to the Berry flux carried by the Dirac half string. Similarly, we find that
the South connection AS

+ describes a half-flux tube located on the positive m semi-axis

lim
θ→0

˛
AS

+dp = − 8π cos2 β

1 + cos 2β
, lim
θ→π

˛
AN

+dp = 0. (83)

For β = π/4 the difference AN
+−AS

+, corresponding to the gauge transformation ψ → e2iϕψ,
describes an infinite solenoid of flux 4πêz = 2πνêz, where ν is the Chern number associated
to the upper band. When β 6= π/4, the flux is not quantized in units of 2π. This
non-quantization reflects the non quantization of the 2D Berry windings (51).

Finally, the Chern number of the ε+ gapped band reads:

ν+ =
1

2π

‹
S

F+dS =
1

2π

(¨
SN

F+dS +

¨
SS

F+dS

)
=

1

2π

˛
m=0

(AN
+ −AS

+)dk

= 2. (84)

Note that the Chern number is independent of β, a manifestation of its topological nature
and the absence of gap closing for β 6= 0,±π/2.

E.2 A realisation of the α-T3 model in critical HgCdTe

The three-band crossing in critical HgCdTe can be described by the linear k ·p Hamiltonian
of the Kane model [46]. It describes the band structure of Zinc-blende semiconductors at
the Γ point. The conduction band has orbital degeneracy 1 and is s-type (|us〉) whereas
the valence band is p-type (|ux〉, |uy〉, |uz〉). From the atomic-like states of the valence
band one forms the following basis of eigenfunctions of the total angular momentum
projection on the z-axis: the band is split into two subspaces of total angular momentum
J = 1/2 and J = 3/2, the first manifold being set far down under the topmost valence
band because of spin-orbit coupling: E(J = 1/2)� E(J = 3/2), E(|us〉). In the new basis
(|us, ↑〉, |u3/2,+3/2〉, |u3/2,−1/2〉, |us, ↓〉, |u3/2,−3/2〉, |u3/2,+1/2〉) the low-energy Hamiltonian
reads

H(k) =



0
√
3
2 k− 0 0 0 0√

3
2 k+ 0 −k−

2 −m 0 0

0 −k+
2 0 0 −m 0

0 −m 0 0 k−
2 0

0 0 −m k+
2 0 −

√
3
2 k−

0 0 0 0 −
√
3
2 k+ 0


, (85)
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where we used the notation k± = kx ± iky for compactness. The spectrum is given by
ε = 0,±k, each energy level being doubly degenerate. An eigenstate basis is given by:

ψ±A =
1√
2



√
3
2 e
−iϕ sin θ
±1

−1
2e
iϕ sin θ
− cos θ

0
0

 , ψ±B =
1√
2



0
0

cos θ
−1

2e
−iϕ sin θ
∓1√

3
2 e

iϕ sin θ

 , ε± = ±k, (86a)

ψ0
A =



1
2e
−3iϕ sin θ

0√
3
2 e
−iϕ sin θ

0
0

− cos θ

 , ψ0
B =



cos θ
0
0√

3
2 e

iϕ sin θ
0

1
2e

3iϕ sin θ

 , ε0 = 0, (86b)

where we have used spherical coordinates around the degeneracy point (k, θ, ϕ). Note that
these wavefunctions do not exhibit any vortex or phase winding: in particular their phase
is well defined at the poles. Hence, the Chern number must be zero for any band around
the crossing. This absence of topological protection can be expected since the crossing is
achieved by fine tuning of the Cd concentration [46].

Nevertheless, at the equator m = 0 (θ = π/2) the bands exhibit a non-zero Berry
winding. Indeed at the equator the Hamiltonian (85) becomes block diagonal, where each
block A/B corresponds to one valley of the α-T3 model for tanβ = α = 1√

3
[41,47]. The

corresponding windings are

γ±ξ = −ξ 1

2
, γ0ξ = −ξ 3, (87)

where ξ = ±1 for the A/B sector.
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