
Answer to Report 2

We thank the referee Marin Bukov for the positive comments on our manuscript, and for
the list of suggestions and questions, which we address in what follows.

The authors state: “Moreover, the final annealed state ψT — resulting from
the exact QA time evolution (with τ ≫ 1) and thus expected to yield a large
overlap with classical solutions — is often a low-entanglement state”: is this
true also when the ground state of Hz is largely degenerate? This is the case,
e.g., in frustrated models; when a superposition of a large number of degenerate
states is considered, the resulting state may happen to be a quantum spin liquid
— a class of topological states that possess high entanglement.

This is indeed a crucial aspect: for a classical optimization problem Ĥz with a large
number of classical solutions (ground-state configurations), the exact QA evolution could
in principle converge to a highly entagled state with non-vanishing overlap with a large
subset (or possibly, all) of the classical solutions. In this case, an MPS simulation with
small bond dimension χ would not accurately describe the actual quantum evolution.

In the general case of a classical Ĥz with a largely-degenerate ground state, the study
of the entanglement properties of the annealed state — e.g. by varying annealing hyperpa-
rameters — represents an interesting direction of future research. For what concerns the
class of problems addressed in our paper, we verified numerically that the final annealed
state has low entanglement, see Appendix E. More specifically, in Fig. 22, we plot the
half system entanglement entropy of the final annealed state SN/2(1), for dQA with and
without Trotterization via ED, compared with MPS results (which refer, as always, to the
Trotterized case).

In particular, the upper right plot refers to the case of a perceptron with N = 18 and
Nξ = 3 (α ≃ 0.17), thus having (on average) a large number of classical solutions (deep
in the SAT regime). Nevertheless, the “true” QA without Trotterization (compare with
Fig. 21) converges to low entanglement states for all values of δt.

On a side note, a large increase in SN/2(1) in the regime of large δt ∼ O(1) is observed
for dQA with Trotterization, this behavior being linked to large Trotter errors, as discussed
in the manuscript, which MPS simulations can partially overcome.

Fig 7b: the P = 1000 data point at dt = 1.7 (orange square) seems to be an
outlier; did the variational algorithm get stuck in a local minimum, or what is
the reason for this behavior?

Thanks for pointing out this issue. In this Figure, we are performing an average over
five different training sets, and the plot is in log-scale for the residual energy density (y-
axis). As a consequence, even if for a single training set the energy density jumps to large
values, this will result in an outlier point, as it happened in this case. In our opinion,
for such large values of δt, we enter in an “instability region”, where our MPS techniques
may no longer provide better results compared to ED. This is more evident for even larger
values of δt > 2, where our MPS simulations do not converge to high-quality final states,
with a complete degradation in performance. This fact might either be linked to a similar
degradation in performance of a digitized Quantum Annealing without Trotterization (see
Section 3.3) for such values of δt, or simply to technical limitations of our MPS methods.



Fig 8: what happens deeper in the UNSAT regime? Note that if exact GS
cannot be reached the algorithm may still be useful in practice since in many
practical cases one requires finding a single “good” solution.

Thanks to your suggestion, we perform a numerical experiment running our MPS al-
gorithm for the perceptron model with parameters N = 21, P = 1000, δt = 1.0 and
Nξ = 25 (α ≃ 1.2 > αc ≃ 0.83), thus being in the UNSAT phase. As a benchmark, we
also compute the optimal classical configuration by enumeration. We run the simulation
for three random realizations of the training set {ξξξµ}, finding an average final energy
density ε(1) ≈ 1.1 · 10−4. We conclude that our algorithm is effective also in the UNSAT
regime: our MPS simulations yield a final annealed wavefunction with a large overlap
with “good” solutions, i.e. close to the global minimum of the energy.

The authors benchmark their algorithms against system sizes within the scope
of ED. This is meaningful, if one wants to compare against quantum annealing.
However, for N ∼100 there are developed tools to easily find the GS of any
two-body Hz, see e.g., http://spinglass.uni-bonn.de/ . If possible, it would be
nice to demonstrate one instance of a system size in the Hopfield model where
the proposed algorithm outperforms maxcut (even if it doesn’t find the exact
GS, or it’s not feasible to verify that the GS has been reached). This would
require system sizes of N > 120 sites or so I guess.

Thanks to your advice, we perform a numerical experiment running our MPS al-
gorithm for the Hopfield model, with parameters N = 150, Nξ = 15, P = 100 and
δt = 0.5. We consider a single random training set {ξξξµ} and we run the online solver
http://spinglass.uni-bonn.de/ with the same couplings Jij . With the MPS QA approach,

we get ε̃(1) = ⟨ψ(1)|Ĥz|ψ(1)⟩ /N ≃ −1.11, whereas the classical solver yields ≃ −1.16.
Thus, this implementation of QA seems to be not enough to outperform state-of-the-art
classical methods. However, let us point out that one could significantly improve our re-
sult by a) running a simulation with more Trotter steps (for instance P = 1000), although
this would require large computational time, and b) performing a QAOA optimization.
Furthermore, it might be necessary to push the simulation to even larger system sizes, to
try to outperform classical methods.

Related to the above, how much can one hope to push the system size in prac-
tice with present-day state-of-the-art classical resources? The variational opti-
mization poses some restriction on the system size N due to the extra iteration
loops.

We performed MPS simulations with a Python code, running on a single node of a cluster
(8 cores). We reached systems of size N ≈ 100. We believe that a further optimization
of the code, involving for instance multi-node parallelization, can eventually boost the
performances allowing the simulation of systems up to N ≈ 1000.

“The rest of the manuscript is organized as follows”: I would make this a
separate paragraph so it can be easily noticed.

Thanks, fixed.



Algorithm 1: refer to the corresponding Eqn numbers to easily locate the defi-
nition of the used quantities (e.g., Ũk,p, etc.).

Done, with a minor modification for improved clarity.

A good analysis of the computational scaling of the algorithm is provided;
maybe add a separate table with the cost of the different parts of Algo 1, so
the scaling can be easily located.

In the new version of the manuscript, we included a table with the computational cost
of each step of our Algorithm.

Results section: it will be helpful to explicitly label each figure caption so that
the model being studied is immediately visible.

Thanks, we did so in all figure captions, also in the Appendices.

“Suffering sensible noise”: do the authors mean sensitivity to noise?

Yes, we rephrased the concept in better words.

“For the models in exam” → for the models we examine.

Thanks, fixed.


