
Dear Editor,

thank you very much for sending us the reports of the two Referees. We are grateful to the Referees for
their careful, positive and constructive reports that helped us improving our manuscript. We have revised
the manuscript complying with the requests of both Referees, and we have replaced the arXiv manuscript
with the revised one. Our detailed point-by-point response to the Referees has been uploaded.

In view of the already positive reports of both Referees and of the substantial improvements that we have
implemented in response to their comments, we are confident that this revised version of our paper can be
accepted for publication on SciPost Physics.

Best regards,

The authors
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Reply to Referee #1

We are grateful to the Referee for her/his effort in assessing the manuscript, which helped us to improve its
content. We answer in the following to all the points they raised. We have also introduced all the changes
requested by the Referee in the revised version of the manuscript. Therefore, we hope that this new version
of our paper can be accepted for publication on SciPost Physics.

Report
Drawing the comparison to plasma orbit theory to describe the dynamics of vortices with
massive cores clearly meets the expectation of SciPost to ‘Provide a novel and synergetic link
between different research areas’ and for this reason I believe this article is suitable for pub-
lication following revision. It is also evident that there are clear avenues for future research
stemming from the results presented in this article, for example, what do the perturbed dy-
namics of a necklace of ‘pairs’ of massive vortices look like? How do the dynamics change
when the initial position of only a single vortex in the necklace is perturbed? As well as other
avenues for future work discussed by the authors in the article.

We thank the Referee for the positive and constructive report. We are glad to see that they appreciated
the novelty of the plasma orbit theory and the experimental applications. We are also grateful for the new
future perspectives suggested by the Referee that can be developed in future works.

Weaknesses
We hope that the changes brought to the work, as kindly suggested by the Referee, have fixed the weaknesses
of the original version. Here below we briefly comment and summarize the improvements for each weak point.

(1) While the results are interesting, the article is dense to read and it is difficult to follow
the derivations and results presented.

We improved the readability of the article, as explained in the Reply to Point (1) of the Requested changes.

(2) It appears that most of the theoretical machinery (massive point vortex models) and
some of the results have already been derived in previous work and the novelty of the
article lies in drawing the analogy to plasma orbit theory.

In the revised version we further clarified the novelties associated to the ring geometry, both in terms of
non-trivial topological properties and experimental realizations.

(3) The article would benefit from including a discussion of the results using physical intuition
(i.e. interaction between point vortices and image vortices, comparison to point vortex in
a channel or around a hard circular boundary) to explain and help the reader understand
why the results make sense.

The Referee can find a detailed answer in the Reply to Point (3) of the Requested changes.

(4) The language used around describing the results and the conditions for dynamics with
radial oscillations, ‘plasma orbit’ and epitrochoid curves could be improved. For example,
from the abstract, one could understand that the combination of radial oscillations on top
of the usual uniform precession trajectories are equilibrium dynamics of massive vortices.
However reading the article it becomes clear that these sorts of trajectories arise when
the initial position of the massive vortices are perturbed, and so (please correct me if I
am misunderstanding) would better be described as excited state trajectories of massive
vortices.

As explained in the Reply to Point (2) of the Requested changes, the combination of radial oscillations on
top of the usual uniform precession can be considered as an excited state trajectory since it has a larger total
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conserved energy compared to the simple uniform precession: in any case, these are stable excited states
since the trajectory is always bound between a maximum and a minimum radial coordinate. We modified
the abstract following the suggestion in Point (9), deleting the ambiguous term “regular motion”.
In our opinion, we managed to provide a neat explanation of the peculiar epitrochoidal curves described
within the plasma orbit theory : after being introduced at the end of Sec. 2, these are developed throughout
Sec. 3 with a mainly qualitative explanation (see for instance Fig. 5). More quantitative mathematical details
can then be found in Appendix C.3.

Requested changes

(1) Considering the points raised earlier, my main suggestion is that the authors try to
improve the readability of the article.

We carefully considered the Referee’s suggestion and we made efforts to improve the readability of the text.
Most of the attention was devoted to the Introduction, in order to provide a clearer presentation of the
whole structure of the work, and to Sec. 2, with the main aim of bringing out the physical meaning from the
results of the analytical model. In the following, the Referee can find a more detailed list of the new parts
introduced in the revised version of the manuscript: we mention also those changes required by the Referee
that we think contributed to a more plain and comprehensible paper.
We revised the abstract, getting rid of the source of confusion explained by the Referee in Point (9). In
the final part of the Introduction we expanded the outline of the work putting more emphasis on the
crucial novelties that characterize the annular geometry and that motivate our work, especially in terms of
feasible experimental realizations. The general validity of the plasma orbit theory was highlighted and a
brief comment about the Appendices was added in order to further clarify the organization of the material.
Several changes were made in Sec. 2 to fulfill various points raised by the Referee, starting from a better
explanation of the notation (r, {rj}) as asked in Point (4). Sec. 2.1 was expanded with a discussion based
on physical intuition according to Point (3): we specified the infinite set of image vortices required by the
presence of two borders and we presented some interesting limits for the annular geometry. The physical
explanation for the changing sign in the angular velocity and a clarification on the radial displacement
[referring to Point (7)] were added in Sec. 2.2.
Considering both the Report and Point (2) of the Requested Changes by the Referee #2, we improved Sec. 4
with a comment about the immiscibility condition for the (experimentally relevant) case of trapped gases
and the inclusion of more simulation details in view of a total reproducibility of the results.
Finally, in the Appendices we implemented Point (10) raised by the Referee and we believe this is another
valuable step towards a better readability of the paper.

(2) Is it appropriate to understand the trajectories that deviate from circular orbits with
uniform angular velocity, such as radial oscillation on top of uniform precession as excited
state dynamics?

Yes, that’s correct. Indeed, the derivation of the effective potential in Eq. (25) of the manuscript, whose
details can be found in Ref. [1], naturally introduces an effective total energy that is a conserved quantity
during the vortex dynamics:

1

2
µ̃ṙ2 + Veff(r) = E = const. (R.1)

In the lowest energy configuration, E ≡ E0 = V min
eff , there is no radial motion (ṙ = 0) and the dynamics

corresponds to a uniform precession with constant angular velocity Ω at a fixed radius r0 related by the
minimum condition dVeff/dr|r0,θ̇0=Ω = 0. The procedure we followed in the manuscript consists in changing
the initial radial position (rin) and angular velocity in order to keep the angular momentum ℓ fixed, hence
the same Veff(r) (that depends on ℓ and µ). The total conserved energy of this new dynamical configuration
is easily evaluated at either one of the two classical turning points (where ṙ = 0), giving E = Veff(rin) > E0:
therefore, all trajectories that deviate from circular orbits with uniform angular velocity can be understood
as excited state dynamics since they are characterized by a higher (conserved) total energy.
Despite being technically correct, we preferred to avoid the terminology of “excited state dynamics” since
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the latter is not usual in classical mechanics.
We added a sentence below Eq. (28) of the revised version of the manuscript to better clarify this point.

(3) Where it makes sense, include a discussion of dynamics using physical intuition - i.e.
interaction between point vortices and image vortices, comparison to point vortex in a
channel or around a hard circular boundary. Relating to this, what is the reason behind
the angular velocity in figure 2(a) changing sign with the radius of the circular orbit?
Can you also explain the changing sign in angular velocities in later figures? i.e. 8(a)
and 9(b).

We thank the Referee for raising this interesting point because it gave us the opportunity to provide further
physical insight on the dynamics of massive vortices on a planar annulus. To unveil the relationship between
the geometry of the system and the interaction between physical and image vortices, we addressed three
particular limits for the ring geometry. This reasoning stimulated the detailed analysis that we present
below. In the revised version of the manuscript, instead, we limited ourselves to adding a simpler discussion
based on physical intuition.

The presence of two boundaries requires an infinite set of images, as it is known from electrostatics [2]. Given
a positive vortex at position r0 inside an annulus with radii R1 < R2, the image vortices are arranged with
alternating sign along the same radial direction at positions labelled by the integer m ∈ Z [3]:

positive: r
(m)
+ = r0

(
R2

R1

)2m

, negative: r
(m)
− =

R2
2

r0

(
R2

R1

)2m

(R.2)

Figure R.1: Schematic representation of the infinite set of image vortices required in the annular geometry.
The first pairs for m ∈ [−3, 2] are explicitly shown. The positive physical vortex is the red dot inside the
blue shaded area and it has a bigger size for sake of visibility. The color of the dots is associated to the
charge of each vortex that can be either +1 (red) or −1 (green). Only the closest image vortices are shown,
beyond both boundaries.

A pictorial representation of the first images beyond both the borders (corresponding to m ∈ [−3, 2]) can
be found in Fig. R.1, where the physical vortex inside the annular region is highlighted with a larger size.
The different colors represent the charge of each vortex, which can be either +1 (red) or -1 (green).
We discuss three particular limits:
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• R1 ≪ R2, with n1 = 0: the annulus reduces to a disk of radius R2.

From Eq. (R.2) it is easy to see that both r
(m)
+ , r

(m)
− → ∞ for m > 0, while r

(m)
+ , r

(m)
− → 0 for m < 0.

As shown in Fig. R.2(a), all the pairs of image vortices with m ̸= 0 annihilate (at the origin or at
infinity), the only two finite contributions remaining are the ones corresponding to m = 0, i.e. the
positive physical vortex at r0 and the negative image vortex at position r′0 = R2

2/r0. This is exactly the
well known case of a vortex inside a circular trap [1], where a single image vortex of opposite charge
is required. Notice that it was already derived in Ref. [4] that in the limit R1 → 0 one recovers the
results for a disk with radius R2.

Figure R.2: Two limits for the position of the inner boundary R1. (a) When R1 ≪ R2 and n1 = 0, the
annulus reduces to a disk of radius R2 and all the image vortices annihilate except the first one beyond the
outer boundary: this has negative charge and is located at r′0 = (R2/r0)

2r0, as expected for the case of a
hard circular boundary. (b) In the limit R1 → ∞, with R2 = R1 +D, the curvature becomes irrelevant and
the annulus approaches a rectilinear channel of width D.

• R1 → ∞, with R2 −R1 = D
Let us consider a very large inner radius, keeping a constant width D of the annulus. As R1 increases,
the curvature of the annulus becomes irrelevant and the system is expected to reduce to an infinitely
long but transversely confined channel, or slab, with width D: this geometry is shown in Fig. R.2(b).
To better understand this limit, let us denote with h the distance of the physical vortex from the inner
border, such that:

r0 = R1

(
1 +

h

R1

)
, R2 = R1

(
1 +

D

R1

)
(R.3)

Substituting inside Eq. (R.2) and retaining up to linear terms in h/R1 and D/R1, one gets the following
positions for the infinite set of vortices:

r
(m)
+ ≃ R1 + h+ 2mD, r

(m)
− ≃ R1 − h+ 2(1 +m)D = r

(m)
+ + 2(D − h) (R.4)

A given vortex at r
(m)
+ is at distance 2(D− h) from the anti-vortex on the right, r

(m)
− , and at distance

2h from the anti-vortex on the left, r
(m−1)
− . Moving to a Cartesian reference frame where the y-axis is

parallel to the left boundary and the x-axis passing through the vortex, the positions of the positive
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and negative vortices are:

x
(m)
+ = h+ 2Dm, x

(m)
− = 2D − h+ 2Dm, y

(m)
+ = y

(m)
− = 0 (R.5)

These positions (and the 2D periodicity) are compatible with the results presented in Ref. [5]: in
particular, we refer to their expression for the complex potential in Eq. (4) and to their schematic
representation of the channel geometry in Fig. 1(a) that is compatible with our Fig. R.2(b).

We recall that the interaction between vortices on a planar geometry is given by a 2D Coulomb-like force
scaling with the inverse of the distance. Among the infinite image vortices, as shown in Fig. R.2(b), the
first one (with opposite sign) beyond each of the two borders provides the most relevant contribution
to the interaction. Following the electromagnetic analogy carefully explained in the text, for each of
the two vortex and anti-vortex pair we can identify an electric field along the x-direction pointing from
the physical vortex (positive charge) to the image one (negative charge): the total effective electric field
is the sum of these two contributions. Together with the effective magnetic field B ∝ −ẑ, the electric
field is responsible for a uniform translation of the vortex along the y-direction with drift velocity
vd ∝ E × B. When 0 < h < D/2, the electric field is E ∝ −x̂ and the vortex moves downwards
(vD ∝ −ŷ). When D/2 < h < D, instead, E ∝ +x̂ and the vortex moves upwards (vD ∝ +ŷ). Finally,
when the vortex is at the centre of the channel (h = D/2) one has a linear chain of infinite equidistant
charges with alternating sign. The physical vortex inside the slab doesn’t feel any net effect from the
presence of the image ones, because they perfectly cancel in pairs: as a consequence, it doesn’t move.
All these last comments perfectly fit the analytical expression for the vortex velocity in Eq. (16) of
Ref. [5] that correctly accounts for the contribution of all the other infinite image vortices.

Figure R.3: When the vortex gets close to the inner (a) or outer (b) boundary, the dominant effect is the
interaction with the closest image with opposite sign. This results in opposite signs for the angular velocity
of the uniform precession.

• r0 ≃ R1, or r0 ≃ R2: the vortex gets close to one of the edges.
Fig. R.3 shows the two situations where the physical vortex inside the annular region approaches the
inner (a) or outer boundary (b). One can see that the first image vortex (with opposite sign) beyond
the border gets closer, thus providing the most relevant contribution to the interaction. We can identify
an effective electric field along the radial direction pointing from the physical vortex (positive charge)
to the image one (negative charge). Together with the effective magnetic field B ∝ −ẑ, the electric
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field is responsible for the uniform precession of the vortex with tangential velocity vθ ∝ E×B. Using
polar coordinates (r̂, θ̂), the reason why the angular velocity in Fig. 2(a) changes sign appears now
clear:

– close to the inner boundary R1, as in Fig. R.3(a), E ∝ −r̂ so that vθ ∝ −θ̂ and the vortex
performs a clockwise rotation (negative angular velocity);

– close to the outer boundary R2, as in Fig. R.3(b), E ∝ r̂ and vθ ∝ θ̂ is compatible with a
counterclockwise rotation (positive angular velocity).

We added a summarized version of the discussion of these three limiting cases at the end of Sec. 2.1 of the
revised version of the manuscript, as well as an explanation for the changing sign of the angular velocity just
below Eq. (24) in Sec. 2.2. The changing sign of angular velocities in later Figs. 8(a) and 9(b) is motivated by
the same physical discussion that has just been developed, so we think that no more comments are required
in the work.
An additional comment for the limit R1 → 0 can be found at the end of Appendix D.

(4) The notation (r, {rj}) is confusing. Please explain this in the text.

This notation is defined in Sec. 2.1 of the manuscript, where we introduce the trial wave functions ψa and
ψb of the two components. The reason behind our choice is to highlight that the trial wave functions are
defined over the 2D space r ∈ R2 and they also carry a parametric dependence on the coordinates of the Nv

vortices inside the condensate (here {rj} is a short-hand notation for {rj}j=1,...,Nv ). The spatial variables r
are integrated out by the time-dependent variational Lagrangian method, so that the resulting Lagrangian
is a function of the coordinates of the vortices only. We added a comment at the beginning of Sec. 2.1 to
better clarify this point.

(5) Assumption of a cut-off at the vortex core - does it break at some point with increasing
mass?

The assumption of a cut-off at the vortex core is mentioned in Sec. 2 of the main text, between Eqs. (8) and
(9), but it only explicitly enters Appendix B.2 where the potential energy functional ∆Ea is derived. We
consider the model of a circular vortex core of radius ac that allows to cure UV divergences in the integrals
required by the time-dependent variational Lagrangian method. Notice that we changed the notation for
the core radius from a to ac in order to avoid any confusion with the first component of the mixture, always
labelled as species a. The dependence of the final result in Eq. (63) of the paper on the cut-off ac is reduced
to an additive constant that is irrelevant for the equations of motion: the assumption of a cut-off at the
vortex core does not have any physical relevance in the vortex dynamics that we studied in this paper. For
this reason we did not comment about it in the main text of our work.
For the sake of completeness, we note that the presence of a finite core mass generally enhances the core-size:
an interesting analysis about how the characteristic size of the vortex core gets modified by the mass can be
found in Sec. VI of Ref. [6].

(6) How would the dynamics change if only the initial position of the massive core was shifted
but the vortex was not? Would similar dynamics occur?

One of the main assumptions of our point-vortex model is that the centre of the vortex core (i.e., the phase
singularity of the wave function ψa) and the mass (i.e., the centre of the Gaussian wave function ψb) are
described by the same coordinates. From a physical point of view, the more immiscible is the mixture
(gab >

√
gagb), the more valid is the assumption: the massive b-component is “locked” inside the cores of

species a and the relative degrees of freedom can be safely neglected. We would like to point out that this
assumption can be relaxed and the possible relative motion between a vortex and its massive core will be
described in [A. Bellettini, A. Richaud, and V. Penna], which is going to be published soon.

(7) How do you define a small displacement and what is the appropriate length-scale to
compare to? Vortex core size? The displacement seems quite large in some cases.
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The initial displacement δ has to be compared to the radius of the uniform circular orbit r0. The condition
of small displacement, then, is given by δ ≪ r0.
The vortex core size is instead taken to be zero in the point-vortex model, and as such it may not provide
an appropriate length scale for comparing with δ.
In the final paragraph of Sec. 2 of the new draft we specified that the displacement has to be small compared
to the radius of the uniform precession.

(8) In figure 3(a) there is no blue shaded region (which is referred to in the text). I assume
you mean the brownish region to the right of the blue line.

We thank the Referee for bringing this detail to our attention. We substituted blue with light brown both
in the caption of Fig. 3(a) and in the part of the text where we referred to that region.

(9) On first reading the paper, I found this sentence ambiguous:
‘This regular motion’ becomes unstable beyond a critical vortex mass.
By ‘this regular motion’ are the authors referring to the radial oscillations around the
annulus?

With the term regular motion we were referring to the one made of small radial oscillations on top of a
uniform precession. We improved this sentence in the abstract using oscillatory motion and mentioning
the effect of the instability, i.e. the expulsion of the vortices at the edges. This should have clarified the
ambiguity.

(10) For ease of readability please include the final equation derived in appendices also in the
appendix in addition to referring back to the body of the article.

Following the Referee’s suggestion, we modified the Appendices by including those final equations that were
previously only referred back to the body of the article. The location of these changes in the revised ver-
sion of the manuscript are: Appendix B.2, end of the first paragraph of Appendix C, Appendix C.2 and
Appendix D.1.
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Reply to Referee #2

We are grateful to the Referee for her/his effort in assessing the manuscript, which helped us to improve its
content. We answer in the following to all the points they raised. We have also introduced all the changes
requested by the Referee in the revised version of the manuscript. Therefore, we hope that this new version
of our paper can be accepted for publication on SciPost Physics.

Report
The paper is of high scientific quality, and there is no doubt that this work comprehensively
uncovers the physics of the orbits of vortices with an in-filling component, within the poten-
tial considered. Looking to the journal’s acceptance criteria, of the 6 mandatory requirements
there is work required to aid the reader in understanding the work presented (point 1) and
more simulation details should be added such that the reader could reproduce the results
(point 5). Regarding the expected criteria, the work does provide a novel and synergetic link
between different research areas, by linking the observations to plasma orbit theory. Ulti-
mately, I believe the work should be accepted after revisions. Crucially, a paragraph in the
introduction needs to properly motivate how this system differs from that covered in Refs.
[20,21,30], and what novelty does the inclusion of this inner ring boundary bring. Would the
results for the plasma orbit theory worked just as well for the disk condensate case?

We thank the Referee for the positive and constructive report: the quality of our work indeed benefited from
his/her specific requests and suggestions.
Point 1 of the journal’s acceptance criteria says that the paper must “be written in a clear and intelligible
way, free of unnecessary jargon, ambiguities and misrepresentations”: thanks to the various remarks raised
by the two Referees, we think we have now fully achieved the task [we refer to the Reply to Point (1) of the
Requested changes by Referee #1].
As far as point 5 is concerned, according to which the paper must “provide (directly in appendices, or via
links to external repositories) all reproducibility-enabling resources: explicit details of experimental proto-
cols, datasets and processing methods, or processed data and code snippets used to produce figures, etc.”,
more simulations details have been added in Sec. 4 of the revised version of the manuscript.
The novelties brought by the inclusion of the inner ring boundary can be mainly identified with the persistent
current which may circulate on it (with quantized circulation controlled by the integer n1) and the infinite set
of image vortices. Moreover, as pointed out in the Conclusions, the annular geometry is interesting due to its
topological equivalence with a cylinder of finite length and the possibility of implementing the hydrodynamic
analog of the Laughlin pumping. We added a few comments in the last paragraph of the Introduction to
motivate how our system differs from the circular trap already studied in previous works and to clarify that
the results for the plasma orbit theory are general and valid for an arbitrary planar geometry.

Weaknesses
We hope that the changes brought to the work, as kindly suggested by the Referee, have fixed the weaknesses
of the original version. Here below we briefly comment and summarize the improvements for each weak point.

(1) The paper is an extension of Refs. [20,21,30], in a ring rather than a disk, and the
appearance of epitrochoidal orbits is expected.

We better unveiled the analogies and differences between the ring and disk geometries by introducing com-
ments and discussions at the end of the Introduction and of Sec. 2 [see the Reply to Point (1) of the Requested
changes by Referee #1 for a more detailed list of these changes]. On the one hand, we put emphasis on the
new physics introduced by the inner ring: the need for an infinite set of image vortices, the possibility of a
finite persistent current n1 and the same non-trivial topology of a cylindrical surface of finite length. On the
other hand, we thoroughly demonstrated how the results for a disk can be recovered in the limit R1 → 0.

(2) Involving three methods in one paper means that there’s a lot of notation to understand
and digest.
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We made a great effort to improve the readability of the work by shedding light on the physical motivations
of the various results and presenting only the mathematics strictly required. We also think the Appendices
provide all the necessary information for the reader who wanted to rederive the analytical results.

(3) Some overlapping notation (“a” and “b” are used multiple times in different contexts)

We thank the Referee for this comment: after a careful reading of the manuscript, we found two cases of
overlapping notation where a and b have a different meaning than the label of the two species the mix-
ture is made of. In the derivation of the potential energy functional in Appendix B.2 we had used a as
the cut-off representing the radius of the circular vortex core: it is now renamed ac in the new version
of the work. The second possible case of overlapping notation could be found in Appendix C.3 where a
and b denote the radii of the two circles whose motion describes epitrochoidal trajectories. We decided not
to introduce any change there since there is no mention to the two species that could give rise to ambiguities.

Requested changes

(1) How appropriate is the quasi-2D model for the parameters chosen? With the thickness
taken, dz, do you satisfy the condition µ << ℏℏℏωz?

The relation between the effective thickness (dz) and the trapping frequency along the z direction (ωz) [7, 8]
allows to write the harmonic energy as:

ℏωz =
2πℏ2

md2z
(R.6)

Consider the a-component, which is spread over the whole annular region. Its wave function ψa satisfies the
stationary GP equation [

−ℏ2∇2

2ma
+ Vext(r) +

ga
dz

|ψa(r)|2
]
ψa(r) = µaψa(r) (R.7)

where the external box-like potential Veff(r) is equal to zero inside the annular region R1 < r < R2. The
a-condensate can be treated within the Thomas-Fermi approximation, therefore one can neglect the kinetic
energy contribution and get the number density:

na(r) =
dz
ga

(µa − Vext(r)) (R.8)

Due to the shape of the potential, the density is different from zero only inside the annular region R1 < r < R2

and the chemical potential is obtained as:

Naµa =

∫
ann

d2r
ga
dz
n2a(r) → µa =

gaNa

π (R2
2 −R2

1) dz
(R.9)

Expressing the interaction constant in terms of the s-wave scattering length aa, ga = 4πℏ2aa/ma, the ratio
between Eqs. (R.9) and (R.6) reads:

µa

ℏωz
=

2Naaadz
π (R2

2 −R2
1)

(R.10)

If we denote with R the length scale representing the spatial extension of the condensate (for the ring
geometry we can identify R = R2 −R1), the two contributions to the total energy can be estimated as:

Ekin =

〈
−ℏ2∇2

2ma

〉
≃ ℏ2

2maR
2 , Eint =

〈
ga
2dz

|ψa|2
〉

≃ ga
2dz

Na

R
2 (R.11)

In the Thomas-Fermi regime, the kinetic energy associated with the density variation becomes negligible
compared to the interaction energy. In terms of the microscopic parameters of the model, the validity
condition of the Thomas-Fermi approximation is the following:

Eint

Ekin
=
magaNa

ℏ2dz
∝ Naaa

dz
≫ 1 (R.12)
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For the numerical GPE simulations presented in the text, we used the following parameters for species a

Na = 5× 104, aa = 2.75× 10−3 µm, dz = 2µm, R1 = 5.0µm, R2 = 50.0µm (R.13)

from which we obtain
µa

ℏωz
≃ 0.07 ≪ 1

Naaa
dz

≃ 69 ≫ 1 (R.14)

These estimates confirm that both the quasi -2D model and the Thomas-Fermi approximation for the a-
condensate are appropriate: we wrote it explicitly in Sec. 4 when discussing about the parameters chosen
for the numerical simulations.

(2) The immiscibility condition stated is only exactly true when the atom numbers between
the components are equal. Though you are clearly in the immiscible regime, the text
should be modified and a citation to the work of K. L. Lee et al., Phys Rev A 94, 013602
(2016) should be added.

The stability condition for a homogeneous gas of two components is discussed, for example, in Sec. 12.1.1 of
Ref. [9]. The miscible regime is described by Eq. (12.14) that, with our notation, can be cast into:

ga > 0, gb > 0, gagb > g2ab (R.15)

In our two-component mixture, the confining potential is composed of hard-walls and the majority component
is in the Thomas-Fermi regime, therefore the species a is effectively uniform apart from those regions around
the vortices. Nevertheless, the latter constitute preformed potential wells for the component-b bosons which
can thus localize therein for values of gab not necessarily larger than the well-known critical quantity

√
gagb.

As a consequence, the requirement gab >
√
gagb is a sufficient condition for the stability of massive vortices

in a binary Bose mixture. We have better clarified this last point in the text.
Nonetheless, we agree with the Referee that a discussion of the immiscibility condition for trapped gases is
missing: we added a comment in the revised version of the manuscript, introducing a citation to the proposed
work.

(3) I think the equations and model may be a little easier to follow by simply deleting all
terms with n1 (the persistent current). In this work, you always consider n1 = 0, and the
91 (!) equations are already tough enough as it is.

We recognize that our work is quite technical and, as a consequence, we made a great effort to improve its
general readability. A lot of time was devoted, during the writing of the first version of the manuscript, to
the choice of which equations to present: we are aware of their huge number, but we do believe we have found
the right compromise that allows the reader to understand the various passages without neither skipping
important details, nor getting stuck in the mathematics. On the contrary, we do not believe that the deletion
of all the terms n1 could actually make the model sensibly easier to follow. We would like to explain to the
Referee the two main reasons behind our point:

- n1 represents the persistent current along the inner boundary, a peculiar feature of the ring geometry
that is related to its topology and that marks one of the main differences with other planar geometries
already studied (like the circular trap). It is true that we have always taken n1 = 0 in the graphs we
showed, but we consider important to leave the explicit dependence of the equations on n1, in order to
guarantee that our discussion remains as general as possible;

- n1 appears inside 6 equations of the main text and 12 equations of the Appendices: in our opinion, no
major improvements would be introduced by deleting it.

(4) In the conclusions it is stated that the GP was extensively tested against the point-vortex
model, I think in order for this statement to hold true a comparable GP simulation should
also be done to match the onset of vortex expulsion from the condensate.

11



We actually performed numerical GP simulations for the vortex expulsion from the condensate, but we
decided not to present them in the work due to issues related to the size of the vortex core. To better clarify
this point, we show in Fig. R.4 the results of one of these simulations where we fixed the mass ratio to the
critical value µ = µc,2. More specifically, the initial conditions match the ones for a uniform precession with

radius r0 = 30µm and angular velocity θ̇0 = 1.47 rad/s: with such a r0 one gets µc,2 ≃ 0.25, hence Nb ≃ 7500
(since Na ≃ 5 × 104). The comparison between the numerical trajectory (blue curve) and the analytical
prediction from the point-vortex model (orange curve) is presented in Fig. R.4(a): the two solutions display
a remarkable agreement up to a certain point where the numerical one seems to bounce back towards the
annular region. The size of the vortex core is the reason for this behaviour, as it can be understood by
looking at the density profile of the a-component in Fig. R.4(b): in this situation, indeed, the mass ratio is
five times bigger compared to the one analyzed in Fig. 7 of the paper. Thus the numerical solution matches
the analytical prediction as long as the vortex core does not touch the outer edge of the annulus: when this
happens, the finite core size is such that the real vortex is effectively in touch with its own (closest) image,
thus violating one of the crucial assumptions of the point-vortex model. We mentioned this at the end of
Sec. 4.

Figure R.4: Numerical simulation of the expulsion of the vortex from the outer boundary when the mass
ratio equals the critical value µ = µc,2 ≃ 0.25. With the same model parameters as for Fig. 6 in the paper,
this corresponds to Nb ≃ 7500. (a) Comparison between the trajectory obtained with the two-component
GP numerical evolution (blue) and the analytical prediction of the massive point-vortex model (orange).
(b) Density of the a-component as the vortex hits the outer boundary during the real-time evolution. Blue
(yellow) color corresponds to zero (high) values of the density. The (large) finite size of the vortex core is
responsible for the deviation of the numerical trajectory from the analytical one.
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