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Abstract

We present a strategy for strengthening the atom-�eld interaction through a pseudo-Hermitian

Jaynes-Cummings Hamiltonian. Apart from the engineering of an e¤ective non-Hermitian Hamil-

tonian, our strategy also relies on the accomplishment of short-time measurements on canonically

conjugate variables. The resulting fast Rabi oscillations may be used for many quantum optics

purposes and specially to shorten the processing time of quantum information.
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I. INTRODUCTION

At the beginning of the 1990s we witnessed remarkable developments in platforms of

matter-�eld interactions [1, 2], allowing the manipulation of the interplay between the mat-

ter and �eld block buildings. Essentially, these were due the achieved intensity of the

matter-�eld coupling compared to the lifetimes of the involved electronic and �eld states.

Concomitantly, there has been a breakthrough in the �eld of quantum computation and com-

munication [3] triggered by the quantum algorithm for the factorization of integers presented

by P. Shor [15].

The symbiosis between the theoretical proposition of schemes for the implementation of

quantum logical operations and their practical realization through the advances achieved in

the area of mater-�eld interaction in the early 1990s, grounded the quantum information

theory, giving this subject the current status of an independent and most prominent research

area. In addition to experimentally established proofs-of-principles for quantum information

processing [1�3], the foundations on quantum mechanics [1, 2, 5] also bene�ted greatly from

the dialogue between theory and experimentation that spread from the physics of matter-

�eld interaction to nuclear magnetic resonance, cold atoms, and solid-state physics.

Apart from the computational gain a¤orded by quantum qubits and algorithms, it is

the goal of the present work to investigate, in the domain of matter-�eld interaction, the

possibility of further increasing this gain by strengthening the hitherto achieved matter-�eld

coupling. This strengthening should result in a shorter time for excitation exchange between

matter and �eld, and then for quantum information processing. To attain it, we turn to

another major advance that occurred in the late 1990s: The quantum mechanics of PT -
symmetric Hamiltonians [6, 7]. Similarly to what happened with quantum information, the

pseudo-Hermitian quantum mechanics is currently an independent research �eld bene�ting

from strong activity and interesting results [8].

We remark that the possibility of achieving faster than Hermitian quantum mechanics

was long envisioned in Ref. [9]. The challenge then posed is the quantum brachistochrone

problem: the search for a Hamiltonian who governs the evolution of a given initial state to

a given �nal state in the least time interval � . The authors concluded that for Hermitian

Hamiltonians � has a nonzero lowerbound, whereas for pseudo-Hermitian Hamiltonians it

can be made arbitrarily small. However, in contradiction to this remarkable conclusion, it
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was subsequently found [10] that an inconsistency in the method proposed in [9] actually

prevents it from achieving faster than Hermitian evolutions..The protocol we present here is

an alternative to achieve faster than Hermitian evolutions by strengthening the atom-�eld

coupling through pseudo-Hermitian interactions. Furthermore, strengthening the atom-�eld

coupling presents a wide range of practical applications in quantum optics [11].

II. THE EFFECTIVE PSEUDO-HERMITIAN HAMILTONIAN

Our scheme for enhancing the atom-�eld coupling begins with the construction of an

e¤ective non-Hermitian Hamiltonian Heff , from the fundamental Jaynes-Cummings (JC)

interaction (~ = 1)

H = �
�
a�+ + ay��

�
; (1)

where � is the well-known Rabi frequency, the �eld (!aya), of frequency !, is described

by the creation and the annihilation operators ayand a, and the two-level atom (!0�z=2),

with frequency !0 and excited and ground states e and g, is described by the pseudo-spin

operators �z = jei hej� jgi hgj, �+ = jei hgj and �� = jgi hej. The engineering of the e¤ective
interaction is one of the main challenges of our protocol, and we address it through the

method of the adiabatic elimination of fast variables. For now we start from the premise of

an e¤ective non-Hermitian Hamiltonian for the atom-�eld interaction:

Heff = �
�
�a�+ + �ay��

�
; (2)

where � and � are assumed to be real and positive dimensionless parameters de�ned in the

range [0; 1] for a second-order e¤ective interaction Heff .

For treating the non-Hermitian Hamiltonian we follow the procedure in Ref. [7], by

constructing an Hermitian counterpart of Heff through a nonunitary Dyson map �, i.e,

h = �Heff�
�1. (3)

The pseudo-Hermiticity relation �Heff = Hy
eff� ensures h = hy, and the metric operator

� = �y� ensures the unitarity of the time-evolution of the state vector of the non-Hermitian

Heff . In fact, through the map �, the pseudo-Hermitian Heff , governing the Schrödinger

equation i~@t j	(t)i = Heff j	(t)i, is transformed into its Hermitian counterpart h governing
the equation i~@t j (t)i = h j (t)i, where j	(t)i = ��1 j (t)i. In the metric de�ned by
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operator � = �y�, it is straightforward to verify the unitarity of the time-evolution of

j	(t)i, de�ned by h	(t) j	(t)i� � h	(t) j�j	(t)i = h (t) j (t)i. The computation of the
matrix elements of the observables O = ��1o� [7, 12] associated with Heff are accordingly

de�ned by D
	(t) jOj ~	(t)

E
�
� h	(t) j�Oj	(t)i = h (t) joj (t)i ; (4)

with o being the observables associated with the Hermitian h.

We next outline our protocol starting from the engineered Hamiltonian Heff to construct

its pseudo-Hermitian counterpart h through the ansatz for the nonunitary Dyson map

� = exp
h
�
�
aya+ 1=2

�
+ �a2 + �

�
ay
�2i
 1; (5)

where the parameters �, �, and � are assumed to be real and the identity operator 1 stands for

the atomic subspace. The operator � is a positive non-Hermitian operator for �2� 4�� > 0.
De�ning �� = � coth � � �, with � =

p
�2 � 4��, we obtain from Eq. (3) the Hamiltonian

h = �
sinh �

�

�
�
�
��a� 2�ay

�
�+ + �

�
2�a+ �+a

y���� : (6)

Assuming � = j�j ei'� and � = j�j ei'� with '� = �'�, a condition that must be imposed
when engineering the Hamiltonian 2, the Hermiticity of h demands the relations

� = sgn (j�j � j�j) ln�

2
p
1 + z2

; (7a)

� = sgn (j�j � j�j) z ln�

4
p
R
p
1 + z2

; (7b)

� = �sgn (j�j � j�j) z
p
R ln�

4
p
1 + z2

; (7c)

� = sgn (j�j � j�j) ln�
2
; (7d)

where we have de�ned the Hermiticity degree

R = (j�j = j�j)sgn(j�j�j�j) ;

such that 0 � R � 1 for j�j > j�j or j�j < j�j. The ratio R thus decreases monotonically

from unity as the Hamiltonian Heff moves away from Hermiticity. We have also de�ned the

quantity

� =
1 +R + (1�R)

p
1 + z2

1 +R� (1�R)
p
1 + z2

=
1

z2max � z2

�
1 +R

2
p
R
zmax +

p
1 + z2

�2
, (8)
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and the only free parameter of the map, the positive real

z =
p
�4��=�2 � zmax; (9)

which is bounded, for a given R, to the maximum zmax = min
h
2
p
R= (1�R) ; 1

i
� 1, since

z > zmax leads to the forbidden � < 0 as well as � < 0. For zmax = 1 we obtain Rmax �
0:17, showing that the enhancement of the atom-�eld coupling, prevented for R > Rmax,

demands Hamiltonians with a signi�cantly small degree of Hermiticity. By �xing R and z

we automatically obtain �, �, and � from Eq. (7), and de�ning � = 2z=zmax � 2, such that
0 < � � 2, we end up with the Hermitian counterpart of Heff :

h = G
�
a�+ + ay�� + �

�
ay�+ + a��

��
: (10)

where the e¤ective coupling strength is given by

G = ���� sinh �=�. (11)

The Rabi frequency G increases proportionally to �, diverging when � !1, what happens,
for a given R, when 1 + R � (1�R)

p
1 + z2 ! 0 or, equivalently, for z approaching the

upper physical limit zmax and � ! 2. As expected, the counter-rotating terms inevitably

contribute when the e¤ective Rabi frequency starts to increase, from the neighborhood of the

strong-coupling (G � ! � !0) through the deep-strong coupling regime (G� ! � !0). The

growth of the e¤ective coupling G relative to the Rabi frequency � implies in a shortened

period for the atomic inversion h�z(t)i or excitation exchange, proportional to 1=G instead

of 1=�.

In Fig. 1 we plot G=� against z for distinct values of R = �=�, assuming � = 10�1 > �.

The choice of � and � smaller than unity is due to the fact that e¤ective Hamiltonians are

generally second-order approximations of the original interactions. The solid line follows for

R ! 1:0, with the respective Hermitian Hamiltonian being a second-order approximation

of the original Jaynes-Cummings interaction with a constant coupling G = ��, such that

G=� = 10�1. The dashed line, starting from G=� = 4:1 � 10�2, follows for Rmax ' 0:17.

We also consider the dashed-dotted and the dotted lines for R = 0:1 and 0:05, which start

from G=� = 3:2 � 10�2 and 2:2 � 10�2, respectively. Therefore, when z is su¢ ciently far
from zmax, the e¤ective coupling G is around two orders of magnitude smaller than the

original Rabi frequency �, increasing slowly before reaching the vicinity of zmax (=1, 1:0,
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0:7, 0:47 for R = 1:0; 0:17; 0:1; 0:05; respectively) when it presents an abrupt growth through

the strong and deep-strong coupling regimes. The atom-�eld interaction energy thus grows

proportionally to G, leading us to conclude that the energy required for engineering Heff

must grow as we move away from Hermiticity, decreasing R. In other words, the engineerring

of Heff for R . 0:17, must demand the action of strong ampli�cation �elds to sustain the
strength of the atom-�eld coupling G. In short, Fig. 1 shows that we can control the atom-

�eld coupling strength by controlling the Hermiticity degree R, at the expense of providing

enough energy to engineer the e¤ective interaction Heff .

III. A COST-BENEFIT ANALYSIS: SENSITIVE ISSUES OF OUR SCHEME

We next analyze the cost of this extraordinary gain in the atom-�eld interaction energy,

starting with carrying out the necessary measurements on the observables related to the

pseudo-Hermitian system Heff . These observables are computed from those related to the

Hermitian system h through the expression O = ��1o�. Considering, for example, the

quadratures of the radiation �eld, given by x1 =
�
a+ ay

�
=2 and x2 =

�
a� ay

�
=2i for the

Hermitian system, we obtain for Heff the transformed observables

X1 = ��1x1� = Ax1 + Bx2, (12a)

X2 = ��1x2� = Ax2 + Bx1, (12b)

with coe¢ cients A =(� coth � + � � �) sinh �=� and B =(�� � � �) sinh �=�, both diverg-

ing as z ! zmax. Therefore, the knowledge of X1 and X2 follows from the simultaneous

measurements of the canonically conjugated variables x1 and x2, whose accomplishment is

discussed in Refs. [16, 17].

Regarding achieving faster than Hermitian quantum mechanics, we note that the e¤ective

coupling strength G de�nes a typical time 1=G to carry out an elementary logical operation.

The minimum energy required for this operation, over a given error tolerance ", is estimated

to be Emin � ~G=" [13]. The higher the Rabi frequencies, the higher the energies required
for this fast than Hermitian quantum operation, as higher as the lower the error tolerances.

We mention here a recently presented result [14], where it is demonstrated that the

construction of coherent many-body Rabi oscillations, through the coherent interaction of

an atomic sample with a �eld mode, allows increasing the Rabi frequency g by the factor
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p
N , where N is the number of atoms in the sample. In this case, the typical time to

carry out an elementary logical operation decreases from 1=g to 1=
p
Ng. Therefore, in

addition to the gain in computational time that results from the quantum nature of the

operation, i.e., from the use of qubits as information carriers [15], we have here the gain

that results from the collective nature of the radiation-matter interaction. In the present

proposal, the gain in computational time comes from strengthening the Rabi frequency

through pseudo-Hermiticity instead of taking advantage of collective e¤ects in the coherent

interaction between atomic samples and cavity �elds.

A. The construction of the e¤ective non-Hermitian Hamiltonian

An additional cost for strengthening the atom-�eld coupling regards the engineering of

the non-Hermitian Hamiltonian Heff , which must demand a large supply of energy, as large

as that made available by the atom-�eld interaction G. Consequently, the usual method of

engineering Hamiltonians by the adiabatic elimination of fast variables [18], which requires

the amplitudes of the ampli�cation �elds to be much smaller than their detunings with the

pumped system, should not apply to these cases, as discussed below.

Let us consider the atom-�eld interactions sketched in Fig. 2, where the ground (jgi) and
excited (jei) states are coupled through Raman transitions to N auxiliary adjacent states

j1i,...,jNi, labeled by the frequencies ~!`. In Fig. 2 we only show the adjacent levels j1i, j2i
and j3i. A quantum mode ! and N classical �elds !` (` = 1; :::; N) are considered for this

purpose. The mode is set to drive the transition jgi $ j1i with strength � and detuning
� = ~!1�!, while the `-th classical �eld is set to drive the transition jei $ j`i with strength

` and detuning �` = (�1)�`1 (!e + !` � ~!`), setting the energy of the ground state jgi to
zero. The Hamiltonian describing the process is given by H = H0 + V , with

H0 = !aya+ !e�ee +
P

`~!`�``; (13)

V = �a�1g +
P

`
`�`ee
�i!`t +H:c:; (14)

where ay (a) is the creation (annihilation) operator for the mode and �uv = jui hvj represents
pseudo-spin operators, with u; v = e,g,`. Under the conditions � �

p
�n j�j, �n being the

average excitation of the mode, and �` � j
`j, which imposes severe limitation on the
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amplitude of the pumping �elds, the Hamiltonian in the interaction picture

H(t) = �a�1ge
i�t +

P
`
`�`ee

�(�1)�`1 i�`t +H:c:; (15)

is composed only by highly oscillating terms, enabling, to a good approximation, an e¤ective

interaction [18, 19]

Heff � �iH(t)
Z t

0

H(t)d� � �j�j
2

�
aya�gg �

��
1
�1

ay�gee
i(�1��)t

� �
�1
�

a�ege
�i(�1��)t +

P
`(�1)�`1

j
`j2
�`

�ee.

After a unitary transformation using U(t) = e�i��eet, with � =
P

`(�1)�`1j
`j2=�` = �1 �
� > 0, we �nally obtain, for � � �nj�j=�, the non-Hermitian e¤ective interaction

Heff � j�j�
�
a�+ +Ray��

�
; (16)

with � = j
1j =� and � = j
1j =�1. The non-Hermiticity thus follows from the gap �1�
� = � which evidently increases with the number of pumping �elds; and that is why

we left this number arbitrary in our scheme. However, as already pointed out, even with

an arbitrary number of pumping �elds, our adiabatic elimination scheme is not e¢ cient

for the construction of far-from-Hermitian interactions, with R � 0:17, since the pumping

amplitudes must be limited by their detunings with the cavity mode.

We stress that although we started from a Hermitian Hamiltonian, the non-Hermiticity

results from a second-order approximation in which H(t) does not in general commute
with

R t
0
H(�)d� . In short, for the regime of parameters we have considered, the originally

Hermitian Hamiltonian H reduces to the non-Hermitian second-order approximation Heff .

Indeed we verify that the norm of H is no longer conserved under the parameters leading to

Heff , indicating that it actually becomes a non-Hermitian operator. In Fig. 3 we consider

the evolution of H to plot Tr �(t) against �t, �(t) being the evolved atom-�eld density

operator. We start with the �eld in the vacuum and the atom in the excited state, assuming

the parameters given in the caption. The straight, dashed and dot lines refer to R = 1, 0:9,

and 0:5, respectively, indicating that the norm decreases monotonically for R = 0:9 and 0:5.

The small deviation from the unit observed for R = 1, follows from numerical errors.

In Fig. 4 we plot the mean excitation


aya
�
(t) against j�j t computed from the full

Hamiltonian (15) (dotted line) and the e¤ective one (16) (solid line), starting again with the
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�eld in the vacuum, the atom in the excited state and considering the parameters given in the

caption. Here we do not consider the metric � = �y� to compute the mean value


aya
�
(t) for

the non-Hermitian Heff , i.e., we do not follow the prescription in Eq. (4), since we only seek

to compare the dynamics generated by both Hamiltonians, without worrying about norm

conservation. In Figs. 4 (a and b) we consider R = 0:95 and 0:9, respectively, to observe

that for R = 0:95 the e¤ective interaction is a good approximation of the full Hamiltonian

for j�j t up to around 35. However, when we go to R = 0:9, the curves show discrepancies
already for j�j t � 15. In both cases the discrepancies are more pronounced in phases than
in amplitudes, and increase as we move further away from Hermiticity, decreasing R.

While the engineering enabling H ! Heff follows from the adiabatic elimination method

and the map Heff ! h follows from the pseudo-Hermiticity relation, both the adiabatic

elimination and the pseudo-Hermiticity must be put together through the energy balance

between H and h. The impossibility of such a balance leads us to conclude that another

engineering scheme must be developed in which the amplitudes of the pumping �elds are

not limited by their detunings with the mode.

IV. CONCLUSION

The method here proposed for strengthening the Rabi coupling through pseudo-Hermitian

Hamiltonians is similar to those for reaching in�nite squeezing degree at �nite times [20], for

the enhancement of Casimir�s photon creation [21], and for the strengthening of the Dicke

superradiance intensity [22]. All these achievements rely on the engineering of interactions

which are far from Hermiticity, a challenge that remains to be accomplished. We stress

that the non-Hermitian Hamiltonian (2) as well as those introduced in Ref. [20�22], must

necessarily be engineered as e¤ective Hamiltonians, since they result in (or leads to) energy

gain, which must be provided by high amplitude ampli�cation �elds.

It is crucial to underline that the Dyson map � in Eq. (5), used to ensure the pseudo-

Hermiticity relation (and therefore the conservation of the norm in a new metric � = �y�),

basically implies new observables O = ��1o� [7, 12] and consequently in the implementation

of procedures for measuring canonically conjugated variables [16, 17]. Therefore, we stress

that the present protocol is perfectly feasible once the engineering of the non-Hermitian

Hamiltonian (2) is implemented, which is the really sensitive point for its pratical realization.
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We have also discussed the energy cost for the remarkable gain in the atom-�eld coupling,

which must be supported by the construction of the non-Hermitian Hamiltonian and by

carrying out the measurements of canonically conjugated variables. We �nally observe that,

apart from the prospects for the implementation of the present method in platforms of

radiation-matter interaction, we cannot but speculate on the impacts that the possible

adaptation of the present method would bring to the �eld of high-energy experimental

physics.
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Figure Captions

Fig. 1 Plot of G=� against z for R = 1:0, 0:17, 0:1 and 0:05, as indicated by solid, dashed,

dashed-dotted and dotted lines, respectively, assuming � = 10�1 > �.

Fig. 2 Atomic con�guration to engineer the non-Hermitian Jaynes-Cummings interaction.

Fig. 3 Plot of Tr �(t) against �t, for R = 1:0, 0:9, and 0:5 as indicated by straight, dashed

and dot lines, respectively. We have considered � = 0:1 and �2 = �3 = 5 � 103� for all
values of R. However, for R = 1 we �xed (in units of �) � = 0:1, j
1j = 9:2, j
2j = j
3j = 48
and � = �1 = 92. for R = 0:9 we �xed � = 0:09, j
1j = 6:6, j
2j = j
3j = 141:2, � = 66:4
and �1 = 73:8. Finally, for R = 0:5 we �xed � = 0:05, j
1j = 10, j
2j = j
3j = 501:3,

� = 100 and �1 = 200.

Fig. 4 Plot of


aya
�
(t) against j�j t computed from the full Hamiltonian (15) (dotted

line) and the e¤ective one (16) (solid line), for R = 0:95, and 0:9, considering � = 0:1 and

�2 = �3 = 5�103� for all values of R. For R = 0:95 we �xed (in units of �) � = 9:5�10�2,
j
1j = 9:3, j
2j = j
3j = 120, � = 92:6 and �1 = 97:5. For R = 0:9 we �xed � = 9� 10�2,
j
1j = 6:6, j
2j = j
3j = 141:2, � = 66:4 and �1 = 73:8.
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