Probing Chern number by opacity and topological phase transition by a nonlocal Chern marker

E®(w,t) = Ey(X — iy) coswt,

jar(w,t) = 0a.2(W)E®* (W, t) = 001 0 (w) Eo(X + iy) coswt, (15)
where FEj is the strength of the field. The absorption power at each circular polarization
is then given by

Wil (w) = (§%(w.t) - B (w, 1)) = 02,1 () Ef,

W (w) = (% (w. 1) - E*(w, 1)) = 0c1,e2(w) (16)
where the time average gives (cos?wt); = 1/2. On the other hand, the incident
power of the light per unit cell area of each polarization is W; = ceqE2|%x + iy|?/2 =
ceoE2, so the difference in opacity for the two polarizations is O (w) — O%(w) =
(Wl (w) — W (w)] /W;, which can be used to extract the Chern number spectral
function and subsequently the Chern number by

Clw) = — Od(“’)_OCQ(“’)}, Cd:/ooodwcd(w), (17)
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where o = e?/4mcegh is the fine structure constant[29]. In other words, the Chern
number spectral function can be simply extracted from the opacity difference between
the two circular polarizations, similar to measurements in graphene[29, 30]. Moreover,
because the finite temperature Chern number C¢ is the frequency integrated spectral
function, Eq. (17) implies that the opacity difference under circularly polarized light
divided by frequency and then integrated over frequency must be a quantized integer
at zero temperature, thereby realizing a topology induced frequency sum rule for
noninteracting 2D materials [28]. This simple experimental protocol is easily accessible,
thereby permitting a direct verification of the concepts proposed in our work.

We remark that the proper definition of Chern number at finite temperature
has been contentious. Previous works based on linear response theory of DC Hall
conductance suggest to define the finite temperature Chern number as the momentum-
integration of the product of the Fermi distribution and the filled band Berry curvature
ob¢ = [ 571)‘2 >, 2 f(eX), which is what measured in transport experiments[39, 40].
In contrast, our formalism based on optical Hall conductivity in Eq. (11) leads to an
expression that contains the difference between the Fermi distributions of the filled bands
and that of the empty bands, and a matrix element involving both filled and empty bands
stemming from the optical absorption process. Thus our finite temperature formalism
differs from that of the DC Hall conductance, and is specifically formulated to describe

the opacity measurement of the Chern number at finite temperature.

2.83.  Linear response theory of finite temperature Chern marker

The finite temperature Chern number can further be written into real space using the

formalism in Sec. 2.1, yielding
2 d*k
¢ = 55 | G OO0, — (@ & )] [F(el) - 1(eE)]
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o<t
- N%z > TrfieSegSe = (x> )] [f(Ee) = f(Ee)], (18)

where |Ey) is a lattice eigenstate obtained from diagonalizing the lattice Hamiltonian
H|E,) = E/|FE,), and we denote its projector by S, = |E;)(E,|. Here [¢F) is the full
Bloch state satisfying (r|yk) = e (r|¢), and in deriving Eq. (18) we have used

/( h/)hbé W|-ZS£7

[ el e = s (5 (19)

At zero temperature, the Fermi distribution becomes a step function hence the indices
¢ — n and ¢/ — m are limited to the valence and conduction bands, respectively, so the
Chern number in Eq. (18) recovers the zero temperature results in Egs. (6) and (8).

However, from the discussion after Eq. (8), an extra projector analogous to P must
be added to Eq. (18) in order to obtain the right Chern marker. The issue is then
how should one consistently add a projector given that the thermal broadening at finite
temperature renders the filled and empty states projectors P and @ in Eq. (7) rather
ambiguous. For this purpose, we propose to first evaluate the matrix

X =" SiSo/ fu, (20)
o<
and the analogous Y given by replacing & — ¢, where fir = f(E;) — f(Er). Having
calculated these matrices, we define the finite temperature Chern marker by

C(r) = a%m XY -y XT] |r), (21)

i.e., it is the diagonal element of the operator i[X YT — Y XT] that serves as the finite
temperature generalization of the Chern operator defined after Eq. (8). The legitimacy
of Eq. (21) relies on the fact that it encapsulates proper thermal broadening and spatially
sums to the Chern number C¢ = Y C%r)/N in Eq. (18) since > |r)(r|] = I and
SeS; = Sidz. Essentially, our proposal is based on the assertion that the P#Q factor in
Eq. (8) is generalized to the X operator in Eq. (20) at finite temperature in order to be
consistent with our linear response theory of optical conductivity, i.e., the spatial sum
of the Chern marker is proportional to the global Hall conductance.
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Extending Eq. 20 to the frequency-dependent matrix
w) = 8i@Spy/fuwd(w + Ec/h— Ep/h), (22)

=<l

(and the analogous Y (w)), a generalized Chern marker spectral function can now be
extracted:

C(r.) = Re{ (r] [X @)V () — V(@)X (@)] |r>]. (23)

It is straightforward to see that C%(w) = Y. C%r,w)/N ( cf. Eq. (14)). Based on
Sec. 2.2 we immediately conclude that the Chern marker spectral function represents

the local opacity difference at the unit cell at r:

87; [Ocl(r,w) - (902(1",00)1 . Clr)= /OOO dw C(r, w). (24)

The local opacity sums to the global one O%(w) = Y O (r,w). As a result, C%(r,w)
in principle can be detected by performing the opacity measurement described after

Clr,w) =

yyes

Eq. (17) locally at r. However, at zero temperature, one should keep in mind that
C4(r,w) is nonzero only at frequencies larger than the band gap of the material w > A.
Typical semiconducting band gaps A ~ eV likely necessitate circularly polarized light
in the visible light range. As the wave lengths far exceed the lattice constant in this
range, it will hinder the detection of local opacity in the nanometer scale. Nevertheless,
we anticipate that C%(r,w) may be detected by thermal probes such as scanning thermal
microscopy[41, 42, 43, 44] that can detect the heating at the atomic scale caused by the
circularly polarized light. The detected local absorption power W (r, w) — W(r,w)
then leads to Eq. (24) as a heating rate of the unit cell at r

3. Lattice model of Chern insulator

We now illustrate the power of the concepts described in the previous sections by
exploring the concrete example of a prototypical 2D Chern insulator. The momentum
space Hamiltonian in the basis (cys, ckp)T is given by [45, 46]

H(k) = 2tsink,0" + 2tsin k,0?
+ (M + 4" — 2t' cos k, — 2t' cos k) 0. (25)

The internal degrees of freedom o = {s,p} are the orbitals. A straightforward Fourier
transform leads to the two band lattice Hamiltonian [47]

H = Z { icl Ciyap + zclrasczp clcivpp + CLbscz-p + h.c.}
+ Zt { Czscl+58 + Czpcz+5p + h.c. }

+ Z (M + 4t) {c Cis — cjpcip} , (26)
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where 6 = {a,b} represents the lattice constants in the two planar directions.
Throughout the paper, we set t = ¢’ = 1.0 and tune the mass term M to examine
different topological phases, and the behavior of this model at finite temperature
T. The model hosts topological phase transitions (TPT) at three critical points
M, = {-8,—4,0}, reflecting gap closures at different high symmetry points (HSPs)
in momentum space [48]. Since they all exhibit the same critical behavior [31, 32, 33],
we will focus on the M. = 0 critical point where the bulk gap closes at k = (0, 0).
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Figure 1. (a) The Chern number spectral function C%(w) for the Chern insulator in a
continuum, which is finite only at frequency larger than the bulk gap M, and moreover
scales like 1/w? such that it integrates to a finite value. The overall magnitude reduces
with temperature. (b) The frequency-integrated Chern number C? at zero and nonzero
temperatures as a function of the mass term M.

Analytical results for this model can be obtained by linearizing the Hamiltonian
near the HSP ky = (0,0), yielding E,, ,, = v/ M? + v2k? and a zero temperature Berry
curvature Q,, = v*M/2 (M?* + 02k The finite temperature Chern number spectral

function in Eq. (14) is given by

) = 5oz |1 (-5 - 1 (%)]M/ (27)

At T =0, C%w) — C(w) and is nonzero only if w > 2|M|/h, since it represents an
exciton absorption rate, as shown schematically in Fig. 1 (a). Moreover, the topological
invariant C = f;‘ow I dwC(w) = Sgn(M)/4mw. Essentially, this is the f-sum rule for
exciton absorption rates in circular dichroism applied to topological insulators [28].
When T' # 0, since the Fermi factor f (—%) —f (%) <1, C% < Sgn(M)/4r is smaller
than the quantized zero temperature Chern number, as illustrated in Fig. 1 (a). We

anticipate that these predicted features should be readily verifiable by the opacity
experiment proposed in Secs. 2.2.

The numerical results of the Chern number /marker C¢ = C%(r) for the homogeneous
lattice model of Chern insulator in Eq. (25) are shown in Fig. 1 (b). One sees that though
the abrupt changes of the Chern number at the critical points are smeared out at nonzero
temperature, clear vestiges of these TPTs are still present and should be observable in
the experimentally accessible temperature range. To explain this smearing and examine
the critical behavior, in Fig. 2 we present the evolution of the Chern number/marker
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Figure 2. The Chern number spectral function C%(w) for the lattice model of Chern
insulator as a function of M = {—1,-0.2,0.2,0.4} across the critical point M. = 0,
plotted for both low (orange) and high (blue) temperatures, where the d-function
in Eq. (27) is simulated by a Lorentzian with width » = 0.1. In the topologically
nontrivial phase M = {—1, —0.2}, the spectral function is negative due to the negative
Chern number C? ~ —1, and the spectral weight gradually shifts to low frequency as
M — M.. In the topologically trivial phase M = {0.2,0.4} and at low temperature,
the positive and negative regions together yield C¢ ~ 0 (up to numerical precision).

spectral function C%(w) = C%(r,w) across the critical point M, at both low and high
temperatures. In the topologically nontrivial phase M < 0, the spectral function is
negative (consistent with C = —1) and the magnitude is largest near the band gap
w & 2| M|, reflecting that excitations of states in the vicinity of the band gap are the
most detrimental to the topological properties of the system. The role of temperature is
to reduce the overall magnitude of the spectral function and subsequently the frequency
integration, consistent with the smearing presented in Fig. 1 (b). On the other hand,
in the topologically trivial phase M > 0, the spectral weight has both positive and
negative components such that it integrates to a zero Chern number C? ~ 0 at low
temperature. Interestingly, the effect of temperature is to reduce the positive peak
at low frequency and make the overall frequency integration slightly negative, which
explains the smearing of the sharp jump of C? at the critical point by temperature as
shown in Fig. 1 (b). Comparing the M = —0.2 and M = 0.2 panels in Fig. 2, we see
that the spectral weight near the band gap flips sign as the system crosses the TPT at
M, = 0, in accordance with the flipping of Berry curvature at the HSP ko = (0,0), a
defining feature of TPTs [49, 31, 32, 33]. Interestingly, these features of C%(w) bear a
striking similarity with the Haldane-type Floquet topological insulator[22]. The latter
has been realized in cold atoms that has an extremely narrow band width ~ 107!2eV, in
which the zero temperature limit of limy_,o C?(w) hs been measured. This indicates that
these features may be generic indicating that these features may be generic for Chern
insulators realized in a variety of different energy scales.

Finally, combining the shape of C%(w) in Fig. 2 with the opacity measurement
proposed in Sec. 2.2 implies a remarkably simple way to infer the finite temperature
Chern number in 2D materials. Figure 2 suggests that if a 2D material always appears
more transparent under right circularly polarized light than the left (or vice versa) at any
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frequency, then the material must be topologically nontrivial, as C%(w) is always of the
same sign and hence it must frequency-integrate to a finite Chern number. Depending
on the frequency range of C%(w) in real materials, this should be directly visible to the
naked eye or through an infrared/UV lens, offering a very simple way to perceive the
topological order in the macroscopic scale. On the other hand, if the transparency of
the material under the two circular polarizations is strongly frequency dependent, then
a frequency integration of C%(w) is required to infer the Chern number.

4. Topological quantum criticality

The Chern marker is known to display interesting critical behavior near TPTs, such as
size-dependent smoothening of its discontinuity [50], Kibble-Zurek scaling in disordered
Chern insulators [51], and Hofstadter-butterfly-like features in quasicrystals [52].
with standard symmetry breaking critical points, where correlation functions of the
order parameter show divergent correlation lengths, here, using linear response theory,
we explore if there exist certain nonlocal correlators that will display such singular
behavior near TPTs. We identify two quantities: a Chern correlator and a nonlocal
Chern marker, which encode different physics pertaining to the topological quantum
criticality.

4.1. Chern correlator

Based on the linear response theory presented earlier, we define a Chern correlator
spectral function by splitting the second position operator = >, Z,» in Eq. (23) into
its component on each site r’; yielding

Clr.r'sw) = Re | 0l [X@¥)(@) - Y(@)xh)] I

AX]L Z Sgl%ﬂSg\/fgg/(S w + Eg/h Egl/h) (28)

o<t

which spatially sums to the Chern marker spectra function C%(r,w) = 3., C(r, 1/, w) in
Eq. (23). This splitting of the second position operator is justified by the observation
that in Eqgs. (11) and (18), the second position operator accounts for the global field.
Consequently, this Chern correlator spectral function é(r,r’ ,w) represents the local
current at site r caused by applying a field of frequency w at site r’, i.e., the nonlocal
current response. A frequency integration C(r,r’) = fooo dwC(r,1',w) further leads to a
Chern correlator

C(r,r') = Re L' (x| [X Y- YXH |r>} ,
L(w) =" SviwSi/fur (29)
o<’

This correlator sums to the Chern marker 3, C(r,r') = C%(r) and represents a measure
of the internal fluctuation of the Chern marker. Note that in a clean and infinite



