
------------------------------------------
Response to Anonymous Report 1
------------------------------------------

This work presents a detailed study of the vortex phase diagram of a conventional
type-II superconductor. Due to the sizes considered, the self-consistent nature of the
approach and physical quantities studied, it  provides a significant improvement on
previous results and identifies and characterizes different phases. Particular attention
is paid on the effects of magnetic flux and disorder on the changes in the vortex lattice
structure and the distortions on the vortices. The work is an interesting addition to the
understanding  of  a  disordered  superconductor  in  a  magnetic  field  and  should  be
published.

Our response: 
We thank the referee for his/her time and effort in reviewing our manuscript and for
his/her positive and constructive report.  

Questions/remarks:
1- Can  the  authors  estimate  for  which  size  do  the  results  improve  and  differ

significantly from previous results in the literature? 

Our response:
This estimation depends on what observable is computed and also on the magnitude
of the electron-phonon interaction, the disorder strength and the magnetic field. For
instance, if the goal is to determine the precise structure of the vortex lattice, it  is
necessary to be able to produce a sufficiently large number of vortices still within the
superconducting region. The weak coupling region |U|< 1.25 requires at least a system
size  N=50×50, because vortices are larger, which was beyond the state of the art
before  our  paper.  This  is  in  the  clean  or  almost  clean  case.  If  disorder  becomes
stronger, the lattice will be deformed which would require an even larger number of
vortices,  and therefore larger sizes  N=100×100 to characterize it.  In general,  the
previous results in the literature only allow to study the strong coupling limit U>> 1
for which disorder effects are largely small at least in range of disorder strength that
we are interested in. However, such strong coupling limit U>>1 is not really realistic
as in most conventional superconductors the coupling strength, in dimensionless unit,
is at most one.  Therefore, our results reach a region of parameters close to the one
that can be tested experimentally. 

What is more relevant to the improvement of this study: larger systems or the self-
consistency+ study of lattice deformation, etc?

Our response: 
As  we  mention  earlier,  larger  system  sizes  (50×50 or  larger)  are  a  necessary
condition to study the vortex lattice structure in the relatively weak-coupling limit



typical  of  metallic  superconductors  such  as  Nb,  Sn  or  Al.  At  the  same  time,  a
quantitative description of the effect of disorder, especially beyond the weak disorder
limit, does require the consideration of the self-consistence condition. For instance,
the spatial distribution of the order becomes broad even well in the metallic side of
the transition. The selfconsistent condition is fundamental to reproduce theoretically
this experimental result.  Therefore, both the description of the deformation of the
vortex core for sufficiently large disorder and the vortex lattice distribution for weaker
disorder necessitates the use of the self-consistent condition as well. 
In summary, it is safe to say that larger lattice sizes are a necessary condition for the
determination of the vortex lattice structure in the weak coupling limit while the self-
consistent condition, together with large sizes, are a requirement for the study of both
the  vortex  lattice  structure  and  the  reported  inhomogeneity  of  the  vortex  core  if
disorder is sufficiently strong. 

2-  The authors  only  consider  the  effect  of  the  vector  potential  and neglect  (as  is
standard practice) the effect of Zeeman term (coupling of the spins to the external
magnetic  field).  If  the  magnetic  fields  are  large,  the  spin  coupling  may  have  a
significant effect, unless, for instance, the g-factor is small. It would be worthwhile to
comment on the approximation of ignoring the Zeeman coupling.

Our response: 
Yes, we agree with the referee that the Zeeman term is important if the magnetic fields
are large. However, the large magnetic fields limit required for the Zeeman effect to
be relevant is beyond the scope of the paper, since we are interested in the study of
vortices in the still superconducting phase for which the magnetic field cannot be very
strong because otherwise superconductivity  will  break down. As mentioned in the
manuscript, it is increasingly difficult to identify the position and shape of vortices in
the superconducting region when the magnetic field increases.  Therefore, we expect
that the consideration of the Zeeman term would not change qualitatively the main
results of the paper.
Following the referee suggestion, in the updated version of the manuscript, we have
added a few lines in the first paragraph on page 8 explaining in more detail why the
Zeeman term was neglected in our analysis.  

3- How is the stiffness calculated explicitly in magnetic field? It would be useful if
some detail of the calculation is presented.

Our response: 
We thank the referee for this suggestion. The detailed calculation of the superfluid
stiffness  was already presented  in  our  previous  papers  [Physical  Review B 105.9
(2022): 094515. Physical  Review Letters 130.4 (2023):  047001.].  Since we are to
large extent following the same computation scheme for the superfluid stiffness in this
paper,  we do not  think  a  full  repetition  of  the  calculation  is  necessary.  However,
attending the referee request, we have added further details in the updated version



manuscript to facilitate the understanding of the stiffness calculation, see Appendix H.
The second paragraph of page 26 is also modified accordingly.

4- Since the authors are able to work with larger systems, it would be interesting, in
some future work, to consider gapless systems, such as d-wave superconductors.

Our response: 
We  thank  the  referee  for  this  interesting  suggestion.  It  is  technically  feasible  to
generalize  our  current  code  to  study  d-wave  or  p-wave  superconductors,  or  even
include the Zeeman term which makes the model more realistic. In fact, one of our
current projects is the study of vortices in p-wave disordered superconductors. 

------------------------------------------
Response to Anonymous Report 2
------------------------------------------

Strengths
1)  Methodology:  Authors  use  a  microscopic  model  to  investigate  the  interplay
between  disorder  and  vortex  formation.  For  strong  disorder  this  is  superior  to
'conventional' phenomenological approaches.
Considered system sizes are much larger than in previous investigations.

2) Careful and physically sound discussion on the various aspects of their findings.

3) Good introduction into the subject.

Weaknesses
1) At few places it is hard to correlate the discussion with the results shown in the
figures.

2) Figure labeling

Report
In this paper authors investigate the interplay of disorder and vortex formation on the
basis  of  an attractive Hubbard model  with on-site  disorder  which is  coupled to  a
magnetic  field  and  solved  within  a  Bogoliubov-de  Gennes  approach.  Different
regimes  in  the  field-disorder  phase  space  are  identified.  These  comprise  the
conventional Abrikosov lattice in the small disorder regime, the transition toward a
rectangular lattice at 'intermediate' fields, and the loss of translational invariance at



even higher fields. Also the superconducting properties as a function of the field are
studied  where  it  is  found  that  up  to  intermediate  disorder  strengths  the  critical
magnetic flux is enhanced. Moreover,  for large magnetic fluxes disorder can even
enhance the average superconducting order parameter.

This is an interesting paper which provides new insight into the actual and complex
problem which makes a step forward to understand the influence of disorder on the
vortex formation in superconductors. The paper is well written and meets the criteria
for publication in SciPost.
I therefore recommend publication of the manuscript in SciPost after the points in
"Requested changes" have been considered.

Our response: 
We thank the referee for his/her time and effort in reviewing our manuscript and for
his/her positive and constructive report. Some of the referee’s requested changes have
certainly  led to  a  better  manuscript.  Below is  a  detailed response to  the referee’s
comments and questions: 

Requested changes
1.) According to Abrikosov theory the 'size' of the vortex core is determined by the
coherence  length.  Despite  that  it  is  a  central  quantity  in  vortex  physics  the  term
'coherence length' appears only once in the caption to Fig. 1. In my opinion it should
be straightforward to evaluate the coherence length as a function of disorder (e.g.
from the current-current correlations) and then compare with the vortex profile shown
in Figs. 7-10.

Our response: 
We agree with the referee that the coherence length is a central quantity in vortex
physics, that it is straightforward to obtain it from the mentioned correlation function
and that, in principle, a comparison with the vortex profile could be a natural check of
our results. It is indeed a meaningful check but only for sufficiently weak disorder.
Our  results  indicate  that  as  disorder  increases,  the  vortex  profile  is  increasing
determined  by  the  details  of  the  random  potential  while  the  superconducting
coherence  length  is  less  sensitive  to  it.  For  instance,  the  vortex  core  becomes
asymmetric and it is located in regions where disorder fluctuations heavily suppress
the order parameter while the coherence length still reflects global properties of the
superconductor. Precisely because in our case there is no in general a direct relation
between the two observables we decided not to present explicit comparison. 

However,  after  the  referee’s  comment,  and  given  that  many  readers  may  not  be
familiars with all the details of the physics of disordered superconductors, we feel we
should be more explicit about this point in the manuscript.  For that purpose, in this
update,  we  have  included  an  explanation  why  the  two  quantities  are  in  general
different and therefore, the coherence length is not really suitable to characterize the



vortex profile.  

In order to support this statement, and for the sake of completeness, we present below
an explicit  comparison. We follow a previous study [PHYSICAL REVIEW B 92,
064512  (2015)]  to  extract  the  coherence  length  \xi_D  from  fitting  the  intrinsic
superconducting response \Delta D_s(q_y) = D^{SC}_s(q_y) - D^{M}_s(q_y) = D_s
[1-(\xi_D  q_y)^2],  where  D^{SC}_s(q_y)  is  the  superconducting  component,  and
D^{M}_s(q_y) is  the transverse current response of the normal state.  \xi_D is  the
superconducting coherence length related to the current response. Here, we want first
to note that in this calculation we didn’t consider the vertex corrections, which can be
important in the strong disorder limit around q_y \sim 0. We are not sure whether the
concave shape in the strong disorder limit is due to absence of vertex corrections,
which includes different fluctuation channels. Considering all vertex corrections in
such large system is numerically demanding and not realistic with the computational
resource we have. However, we expect that even including the vertex correction, the
curvature does not change significantly. 
The results  are  illustrated in  Figure.R1.  \xi_D decreases  fast  with disorder.  In the
clean limit, when V=0, \xi_D=14, which is similar to the vortex size r_0 = 12.9. In the
weak disorder V=0.5, \xi_D=9.5, which is also consistent with the vortex size r_0 =
10.1.  Note  that  r_0  is  the  radius  of  the  vortices.  However,  when  the  disorder  is
stronger,  the SC coherence length \xi_D decreases significantly (\xi_D = 4 when
V=1), while the vortex size decreases slightly. Fig. 20 in the manuscript shows that
r_0=9.35 when V=1.5.  In this  range of  disorder,  \xi_D <<r_0.  When V>=1.5,  the
shape becomes concave around q_y \sim 0, which cannot be fitted with the parabolic
prediction. 
In Figure.R2, we have depicted D^{SC}_s(q_y) and D^{M}_s(q_y) under various
disorder. Both show decreasing curvature with increasing disorder.
In Figure.R3, we tried to just fit D^{SC}_s(q_y) with formula D^{SC}_s(q_y) = D_s
[1-(\xi_D q_y)^2] to obtain an approximate \xi_D in the strong disorder limit. The
curvature is dominated by D_s \xi_D^2, which is smaller for strong disorder V=2.25.
We hope that those results provide evidence that the SC coherence length \xi_D <2
when V>=1.5, which is much smaller than the corresponding vortex size.

Figure.R1:  The  intrinsic  superconducting  current  response  \Delta  D_s(q_y)  as  a
function of disorder. Left panel: Only shows the results for small q_y, which can be fit



to obtain the SC coherence length \xi_D. Right panel: \Delta D_s(q_y) with respect to
the stronger disorder. The system size is N=60\times 60. The results are averaged over
five samples when V>=1, but only one sample when V<=0.5. The other parameters
are |U|= 1, <n> = 0.875, the magnetic flux \phi/\phi_0 = 0. The results in Figure.R2
and Figure.R3 are the same configurations.

Figure.R2:  The  transverse  current  response  for  the  superconducting  system
D^{SC}_s(q_y)  (Left  panel)  and  the  normal  metal  system D^{M}_s(q_y)  (Right
panel)

Figure.R3:  The  transverse  current  response  for  the  superconducting  system
D^{SC}_s(q_y) and the corresponding fitted \xi_D. 

2.) For the clean system the vortex lattice is only shown for values of the flux up to \
phi/\phi_0=18. It would strengthen the discussion when authors would add to Fig. 3 a
row with V=0. In fact, Fig. 1 seems to indicate that there is also a transition to a
rectangular structure for V=0 whereas on page 14 (2nd row) it is claimed that this
structure  results  from  a  compromise  between  disorder  and  magnetic  flux.  The
question is therefore, whether for the clean case the lattice stays triangular up to high
fields.

Our response: 
Yes, we agree with the referee. However, in the clean limit, the vortex lattice breaks
down quickly. We can see from Fig. 19 in Appendix C in the updated manuscript that
superconductivity breaks down when the flux is 14. So, it is not possible to increase



the flux much more than we did in Fig.3 in the manuscript. However, following the
referee comment, we feel we didn’t explain sufficiently well in Fig. 1 that for V=0,
there is no such transition from triangular to rectangular. This has been corrected in
the updated manuscript.  

We cannot rule out that tuning the shape of the sample and the number and size of the
vortices  that  a rectangular  lattice is  observed.  However,  it  may require  some fine
tuning so it would not be a generic transition. 

By contrast, in the weak disorder limit, even for different system sizes and a wide
range of flux number, the transition is always observed, see Fig. 24 and Fig. 25. We
think this transition is robust in this case because it results from the combined effect
of disorder and the long-range magnetic interactions between vortices. 

In  the  clean  limit,  since  the  size  is  finite  and  the  system  is  symmetric,  only
configurations with a  certain number of vortices  respect  the symmetry.  Therefore,
when there are 8 or 10 vortices in a square lattice, it would be of course impossible to
form a perfect Abrikosov vortex lattice. When there are 12 vortices, a compressed
Abrikosov lattice is reproduced, see Appendix C in the updated manuscript. That’s
why we only consider the size N=100x100 in the main text in order to reproduce the
Abrikosov lattice.  We also add some results  with system size N=60xW, where W
varies. For our choice of parameters, the Abrikosov lattice is also well reproduced,
although  in  some  cases,  depending  on  the  value  of  W,  the  Abrikosov  lattice  is
compressed or stretched.

3.) Page 12, last paragraph: The quantity \xi_0 is introduced as the vortex separation
in the clean limit.  I  don't  understand this  definition because the vortex separation
should depend on the flux. Does \xi_0=12 refer to the same flux where the rectangular
lattice is observed? Please clarify!

Our response: 
We agree with the referee that the discussion about \xi_0 was confusing. \xi_0 here
means the vortex size, which is also close to the coherence length in the clean or weak
disorder limit. The vortex separation is represented by L_v. What we meant is that
when the vortex separation L_v is  close to  \xi_0,  which means that  vortices  start
overlap each other, the triangular-rectangular transition happens. We have rewritten
the corresponding paragraph and the caption of Fig.5(b) in order to convey this idea
more clearly. 

4.) page 17, 2nd paragraph: "It is expected that the profile of the order parameter
should match with the magnetic field inside the vortex.....". This statement and the
following is  misleading.  The  profile  of  the  order  parameter  is  determined  by the
coherence length whereas the decay of the magnetic field is ruled by the penetration



depth and the functional forms of both quantities do not necessarily coincide. Eq. 4 is
rather an Ansatz which allows to fit the order parameter profile but I would not relate
this to a functional form for the magnetic field.

Our response: 
We agree completely with the referee that the profile of the order parameter and the
decay of the magnetic field are two completely different things. The Ginzburg-Landau
theory predicts that the vortex profile is Δ(r)~ tanh(r) in the absence of disorder. In the
updated manuscript, we have changed the theoretical model accordingly and updated
the comparison with the numerical results in the updated manuscript. Although the
functional form is different, the agreement between the numerical and the theoretical
prediction is very good and similar to the one achieved with the previous expression.  

5.)  page  16:  The correct  limits  for  the  definition  of  the  superfluid  stiffness  are  \
omega=0 and the transverse momentum q->0. At the end of the same paragraph it is
stated that (for V=2.25) "the superfluid stiffness becomes zero for a much smaller
field  strength  \phi/\phi_0=16."  However,  Fig.  13a still  reveals  a  finite  stiffness  of
D_s=10^-3 - 10^-2 for this value of the flux.

Our response: 
Yes, we agree with the referee that for V=2.25 there is still a finite stiffness D_s \sim
10^-3 when \phi/\phi_0=16 in Fig.13. However, the method of computing D_s in our
case is not very accurate to predict the exact location of the phase transition though a
sharp drop by a small change of disorder or flux is a rather precise indication of the
critical region close to the transition. Moreover, we didn’t consider the quantum phase
fluctuations, which further suppresses the stiffness. As a consequence, the very small
value of D_s for \phi/\phi_0=16 and V=2.25 likely signals that the superfluid stiffness
is already zero.
Another source of uncertainty is that our mean field results are less reliable in this
region  of  strong  disorder  and  relatively  large  magnetic  field.  In  the  updated
manuscript, we add some details about the range of applicability of our method of
computing D_s in order to illustrate the limitations of the strong disorder (V = 2.25)
results which are likely at the transition or already in the insulating region. 

6.) Fig. 12: Why the correlation function is not periodic? Does the plotted r-range
correspond to half of the lattice size?

Our response: 
We thank the referee for raising this issue. Indeed, the correlation function was not
properly  defined  in  the  manuscript.  Since  the  disorder  is  not  periodic,  we  didn’t
consider  the  periodicity  when  we  calculate  the  correlation  function.  When  we
calculate the correlation function, only the sites with a specific distance r from the



chosen  site  are  considered.  We  then  do  average  over  all  sites  to  get  the  final
correlation function. We have provided a precise definition of the correlation function
in the updated manuscript so that it is clear now why the correlation function is not
periodic. 

Minor issues:

a) Eq. 1: Either the hamiltonian is defined for arbitrary hopping parameters, then one
should  replace  -t->  t_{ij}.  Or  one  introduces  nearest-neighbor  hopping  from  the
beginning. Then this should be indicated in the sum over "i" and "j".

Our response: 
We  thank  the  referee  for  this  suggestion.  We  only  consider  the  nearest-
neighbor hopping,  so  we  replaced  t_{ij}  with  t.   In  the  updated  manuscript,  we
clarified this issue in the very definition Hamiltonian and in the text around it as well.

b) Eq. 3: Replace t_{ij} -> t_{i,i+\delta} and put it under the sum.

Our response: 
We thank the  referee  for  spotting  this  typo.  It  has  been corrected  in  the  updated
manuscript. 

c) The results in Sec. IV are for 60x60 lattices. This is only specified at the end of
Sec. IV but should be already defined at the beginning.

Our response: 
We thank the referee for this suggestion. In the updated manuscript we state at the
beginning of the Sec. IV that all  results  are for 60\times60 lattices. Moreover,  we
explain explicitly the different parameters that we use in the paper and justify the
choice of parameters. 

d) In all figures which report the Fourier transform the range of momenta should be
indicated.  

Our response: 
We agree with the referee. We have improved the figures of the Fourier transform.




