
------------------------------------------
Response to Anonymous Report 2
------------------------------------------

Strengths
1) Methodology: Authors use a microscopic model to investigate the interplay between disorder and
vortex formation. For strong disorder this is superior to 'conventional' phenomenological 
approaches.
Considered system sizes are much larger than in previous investigations.

2) Careful and physically sound discussion on the various aspects of their findings.

3) Good introduction into the subject.

Weaknesses
1) At few places it is hard to correlate the discussion with the results shown in the figures.

2) Figure labeling

Report
In this paper authors investigate the interplay of disorder and vortex formation on the basis of an 
attractive Hubbard model with on-site disorder which is coupled to a magnetic field and solved 
within a Bogoliubov-de Gennes approach. Different regimes in the field-disorder phase space are 
identified. These comprise the conventional Abrikosov lattice in the small disorder regime, the 
transition toward a rectangular lattice at 'intermediate' fields, and the loss of translational invariance 
at even higher fields. Also the superconducting properties as a function of the field are studied 
where it is found that up to intermediate disorder strengths the critical magnetic flux is enhanced. 
Moreover, for large magnetic fluxes disorder can even enhance the average superconducting order 
parameter.

This is an interesting paper which provides new insight into the actual and complex problem which 
makes a step forward to understand the influence of disorder on the vortex formation in 
superconductors. The paper is well written and meets the criteria for publication in SciPost.
I therefore recommend publication of the manuscript in SciPost after the points in "Requested 
changes" have been considered.

Our response: 
We thank the referee for his/her time and effort in reviewing our manuscript and for his/her positive 
and constructive report. Some of the referee’s requested changes have certainly led to a better 
manuscript. Below is a detailed response to the referee’s comments and questions: 

Requested changes
1.) According to Abrikosov theory the 'size' of the vortex core is determined by the coherence 
length. Despite that it is a central quantity in vortex physics the term 'coherence length' appears only
once in the caption to Fig. 1. In my opinion it should be straightforward to evaluate the coherence 
length as a function of disorder (e.g. from the current-current correlations) and then compare with 
the vortex profile shown in Figs. 7-10.

Our response: 
We agree with the referee that the coherence length is a central quantity in vortex physics, that it is 
straightforward to obtain it from the mentioned correlation function and that, in principle, a 



comparison with the vortex profile could be a natural check of our results. It is indeed a meaningful 
check but only for sufficiently weak disorder.  Our results indicate that as disorder increases, the 
vortex profile is increasing determined by the details of the random potential while the 
superconducting coherence length is less sensitive to it. For instance, the vortex core becomes 
asymmetric and it is located in regions where disorder fluctuations heavily suppress the order 
parameter while the coherence length still reflects global properties of the superconductor. Precisely
because in our case there is no in general a direct relation between the two observables we decided 
not to present explicit comparison. 

However, after the referee’s comment, and given that many readers may not be familiars with all the
details of the physics of disordered superconductors, we feel we should be more explicit about this 
point in the manuscript.  For that purpose, in this update, we have included an explanation why the 
two quantities are in general different and therefore, the coherence length is not really suitable to 
characterize the vortex profile.  

In order to support this statement, and for the sake of completeness, we present below an explicit 
comparison. We follow a previous study [PHYSICAL REVIEW B 92, 064512 (2015)] to extract the
coherence length \xi_D from fitting the intrinsic superconducting response \Delta D_s(q_y) = 
D^{SC}_s(q_y) - D^{M}_s(q_y) = D_s [1-(\xi_D q_y)^2], where D^{SC}_s(q_y) is the 
superconducting component, and D^{M}_s(q_y) is the transverse current response of the normal 
state. \xi_D is the superconducting coherence length related to the current response. Here, we want 
first to note that in this calculation we didn’t consider the vertex corrections, which can be 
important in the strong disorder limit around q_y \sim 0. We are not sure whether the concave shape
in the strong disorder limit is due to absence of vertex corrections, which includes different 
fluctuation channels. Considering all vertex corrections in such large system is numerically 
demanding and not realistic with the computational resource we have. However, we expect that 
even including the vertex correction, the curvature does not change significantly. 
The results are illustrated in Figure.R1. \xi_D decreases fast with disorder. In the clean limit, when 
V=0, \xi_D=14, which is similar to the vortex size r_0 = 12.9. In the weak disorder V=0.5, \
xi_D=9.5, which is also consistent with the vortex size r_0 = 10.1. Note that r_0 is the radius of the 
vortices. However, when the disorder is stronger, the SC coherence length \xi_D decreases 
significantly (\xi_D = 4 when V=1), while the vortex size decreases slightly. Fig. 20 in the 
manuscript shows that r_0=9.35 when V=1.5. In this range of disorder, \xi_D <<r_0. When V>=1.5,
the shape becomes concave around q_y \sim 0, which cannot be fitted with the parabolic prediction.
In Figure.R2, we have depicted D^{SC}_s(q_y) and D^{M}_s(q_y) under various disorder. Both 
show decreasing curvature with increasing disorder.
In Figure.R3, we tried to just fit D^{SC}_s(q_y) with formula D^{SC}_s(q_y) = D_s [1-(\xi_D 
q_y)^2] to obtain an approximate \xi_D in the strong disorder limit. The curvature is dominated by 
D_s \xi_D^2, which is smaller for strong disorder V=2.25. We hope that those results provide 
evidence that the SC coherence length \xi_D <2 when V>=1.5, which is much smaller than the 
corresponding vortex size.



Figure.R1: The intrinsic superconducting current response \Delta D_s(q_y) as a function of 
disorder. Left panel: Only shows the results for small q_y, which can be fit to obtain the SC 
coherence length \xi_D. Right panel: \Delta D_s(q_y) with respect to the stronger disorder. The 
system size is N=60\times 60. The results are averaged over five samples when V>=1, but only one 
sample when V<=0.5. The other parameters are |U|= 1, <n> = 0.875, the magnetic flux \phi/\phi_0 =
0. The results in Figure.R2 and Figure.R3 are the same configurations.

Figure.R2: The transverse current response for the superconducting system D^{SC}_s(q_y) (Left 
panel) and the normal metal system D^{M}_s(q_y) (Right panel)

Figure.R3: The transverse current response for the superconducting system D^{SC}_s(q_y) and the 
corresponding fitted \xi_D. 

2.) For the clean system the vortex lattice is only shown for values of the flux up to \phi/\phi_0=18. 
It would strengthen the discussion when authors would add to Fig. 3 a row with V=0. In fact, Fig. 1 
seems to indicate that there is also a transition to a rectangular structure for V=0 whereas on page 
14 (2nd row) it is claimed that this structure results from a compromise between disorder and 
magnetic flux. The question is therefore, whether for the clean case the lattice stays triangular up to 
high fields.

Our response: 
Yes, we agree with the referee. However, in the clean limit, the vortex lattice breaks down quickly. 
We can see from Fig. 19 in Appendix C in the updated manuscript that superconductivity breaks 
down when the flux is 14. So, it is not possible to increase the flux much more than we did in Fig.3 
in the manuscript. However, following the referee comment, we feel we didn’t explain sufficiently 
well in Fig. 1 that for V=0, there is no such transition from triangular to rectangular. This has been 
corrected in the updated manuscript.  

We cannot rule out that tuning the shape of the sample and the number and size of the vortices that a
rectangular lattice is observed. However, it may require some fine tuning so it would not be a 
generic transition. 



By contrast, in the weak disorder limit, even for different system sizes and a wide range of flux 
number, the transition is always observed, see Fig. 24 and Fig. 25. We think this transition is robust 
in this case because it results from the combined effect of disorder and the long-range magnetic 
interactions between vortices. 

In the clean limit, since the size is finite and the system is symmetric, only configurations with a 
certain number of vortices respect the symmetry. Therefore, when there are 8 or 10 vortices in a 
square lattice, it would be of course impossible to form a perfect Abrikosov vortex lattice. When 
there are 12 vortices, a compressed Abrikosov lattice is reproduced, see Appendix C in the updated 
manuscript. That’s why we only consider the size N=100x100 in the main text in order to reproduce
the Abrikosov lattice. We also add some results with system size N=60xW, where W varies. For our 
choice of parameters, the Abrikosov lattice is also well reproduced, although in some cases, 
depending on the value of W, the Abrikosov lattice is compressed or stretched.

3.) Page 12, last paragraph: The quantity \xi_0 is introduced as the vortex separation in the clean 
limit. I don't understand this definition because the vortex separation should depend on the flux. 
Does \xi_0=12 refer to the same flux where the rectangular lattice is observed? Please clarify!

Our response: 
We agree with the referee that the discussion about \xi_0 was confusing. \xi_0 here means the 
vortex size, which is also close to the coherence length in the clean or weak disorder limit. The 
vortex separation is represented by L_v. What we meant is that when the vortex separation L_v is 
close to \xi_0, which means that vortices start overlap each other, the triangular-rectangular 
transition happens. We have rewritten the corresponding paragraph and the caption of Fig.5(b) in 
order to convey this idea more clearly. 

4.) page 17, 2nd paragraph: "It is expected that the profile of the order parameter should match with
the magnetic field inside the vortex.....". This statement and the following is misleading. The profile
of the order parameter is determined by the coherence length whereas the decay of the magnetic 
field is ruled by the penetration depth and the functional forms of both quantities do not necessarily 
coincide. Eq. 4 is rather an Ansatz which allows to fit the order parameter profile but I would not 
relate this to a functional form for the magnetic field.

Our response: 
We agree completely with the referee that the profile of the order parameter and the decay of the 
magnetic field are two completely different things. The Ginzburg-Landau theory predicts that the 
vortex profile is Δ(r)~ tanh(r) in the absence of disorder. In the updated manuscript, we have 
changed the theoretical model accordingly and updated the comparison with the numerical results in
the updated manuscript. Although the functional form is different, the agreement between the 
numerical and the theoretical prediction is very good and similar to the one achieved with the 
previous expression.  

5.) page 16: The correct limits for the definition of the superfluid stiffness are \omega=0 and the 
transverse momentum q->0. At the end of the same paragraph it is stated that (for V=2.25) "the 
superfluid stiffness becomes zero for a much smaller field strength \phi/\phi_0=16." However, Fig. 
13a still reveals a finite stiffness of D_s=10^-3 - 10^-2 for this value of the flux.

Our response: 



Yes, we agree with the referee that for V=2.25 there is still a finite stiffness D_s \sim 10^-3 when \
phi/\phi_0=16 in Fig.13. However, the method of computing D_s in our case is not very accurate to 
predict the exact location of the phase transition though a sharp drop by a small change of disorder 
or flux is a rather precise indication of the critical region close to the transition. Moreover, we didn’t
consider the quantum phase fluctuations, which further suppresses the stiffness. As a consequence, 
the very small value of D_s for \phi/\phi_0=16 and V=2.25 likely signals that the superfluid 
stiffness is already zero.
Another source of uncertainty is that our mean field results are less reliable in this region of strong 
disorder and relatively large magnetic field. In the updated manuscript, we add some details about 
the range of applicability of our method of computing D_s in order to illustrate the limitations of the
strong disorder (V = 2.25) results which are likely at the transition or already in the insulating 
region. 

6.) Fig. 12: Why the correlation function is not periodic? Does the plotted r-range correspond to half
of the lattice size?

Our response: 
We thank the referee for raising this issue. Indeed, the correlation function was not properly defined
in the manuscript. Since the disorder is not periodic, we didn’t consider the periodicity when we 
calculate the correlation function. When we calculate the correlation function, only the sites with a 
specific distance r from the chosen site are considered. We then do average over all sites to get the 
final correlation function. We have provided a precise definition of the correlation function in the 
updated manuscript so that it is clear now why the correlation function is not periodic. 

Minor issues:

a) Eq. 1: Either the hamiltonian is defined for arbitrary hopping parameters, then one should replace
-t-> t_{ij}. Or one introduces nearest-neighbor hopping from the beginning. Then this should be 
indicated in the sum over "i" and "j".

Our response: 
We thank the referee for this suggestion. We only consider the nearest- neighbor hopping, so we 
replaced t_{ij} with t.   In the updated manuscript, we clarified this issue in the very definition 
Hamiltonian and in the text around it as well.

b) Eq. 3: Replace t_{ij} -> t_{i,i+\delta} and put it under the sum.

Our response: 
We thank the referee for spotting this typo. It has been corrected in the updated manuscript. 

c) The results in Sec. IV are for 60x60 lattices. This is only specified at the end of Sec. IV but 
should be already defined at the beginning.

Our response: 
We thank the referee for this suggestion. In the updated manuscript we state at the beginning of the 
Sec. IV that all results are for 60\times60 lattices. Moreover, we explain explicitly the different 
parameters that we use in the paper and justify the choice of parameters. 



d) In all figures which report the Fourier transform the range of momenta should be indicated.  

Our response: 
We agree with the referee. We have improved the figures of the Fourier transform.


