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Abstract

Optimal control theory is an effective tool to improve parameter estimation
of quantum systems. Different methods can be employed for the design of
the control protocol. They can be based either on Quantum Fischer Infor-
mation (QFI) maximization or selective control processes. We describe the
similarities, differences, and advantages of these two approaches. A detailed
comparative study is presented for estimating the parameters of a spin−1

2 sys-
tem coupled to a bosonic bath. We show that the control mechanisms are
generally equivalent, except when the decoherence is not negligible or when
the experimental setup is not adapted to the QFI. In this latter case, the
precision achieved with selective controls can be several orders of magnitude
better than that given by the QFI.
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1 Introduction

Quantum Metrology using quantum features for parameter estimation has recently at-
tracted increasing attention because it can outperform any classical resource-based mea-
surement scheme [1–8]. Despite impressive precision gains that can be achieved, ultimate
performance can only be attained if the various steps of the protocol are optimized [4,9,10].
Standard processes usually consider a free evolution of the system initially prepared in an
optimal initial state. However, in many examples, this approach is not sufficient and the
system dynamics must be modified by external control to achieve the highest precision for
given experimental constraints.

The control design is usually performed by Optimal Control Theory (OCT), which has
proven its effectiveness in many quantum applications [6, 11–14]. Different solutions have
been proposed so far, to define the optimal control problem. They schematically differ in
the quantity to be maximized (or minimized) at a fixed final time. Among others, we can
mention the maximization of Quantum Fisher Information (QFI) [10,15–29]

:::::::::::
[10, 15–30],

selective control protocols [31–39] and the fingerprinting method [40–43]. QFI is based on
a generalization of the Cramér-Rao bound to quantum systems [9,44,45]. For pure states,
the QFI is proportional to the variance of a specific observable, related to the partial
derivative of the Hamiltonian with respect to the parameter to estimate. By maximizing
this quantity, we ensure that a small perturbation of the parameter induces a significant
modification of the system dynamics, and therefore, this allows us to reduce the error
made during a measurement. For QFI, the information is local in the parameter space
and there is no explicit target quantum state in the definition of the control problem. This
is not the case with selective control processes which are non-local by nature. They can be
viewed as a simultaneous state-to-state control protocol for different copies of the system
characterized by different values of parameters [33, 34, 36, 46–50]. Selective control has
been used extensively in Nuclear Magnetic Resonance [51–55]. In this framework, the goal
is to find a control that allows us to reach (possibly as fast as possible) different target
states for each copy of the system, the target states being chosen specifically to minimize
measurement error. The fingerprinting method is more elaborated and combines ideas
coming from QFI and selective protocols [40–43]. There are no specific target states
but the goal is to maximize the distance between the time evolution of one or several
observables. In this case, the whole dynamic is taken into account, not just the final
system configuration [43]. In addition to the maximization of a given figure of merit, other
constraints can be included in the analysis of these problems, such as the minimization of
control time or energy [56–59].

Different control strategies can be obtained independently with these approaches, e.g.,
for parameter estimation of spin systems. A question that naturally arises is to know under
which conditions these control protocols are equivalent, and more generally the advantages,
similarities, and differences between the different techniques. To the best of our knowledge,
only the fingerprinting method has been briefly connected to Fisher information in [60,61],
but the relation between QFI and selective protocols remains unexplored. This paper
aims at taking a step in this direction. To simplify the analysis, we focus on the link
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between QFI and selective control protocols for the question of precision measurement.
The two techniques may look very different at first glance, but they are deeply related
and can be seen as complementary approaches to the same problem. In view of practical
applications, we discuss the advantages of the two methods, in terms of precision, ease of
implementation, and adaptability with respect to the experimental setup. The analysis
is illustrated with a detailed case study, a spin−1

2 particle coupled to a bosonic bath
at zero temperature. We derive in each case the optimal controls for the estimation of
spin frequency, environment damping rate, and scaling factor of the control. For the spin
frequency, we recover some of the solutions found independently in the literature [15,18],
but original solutions are also determined in the other cases. To complete the study, we
also explore how some of the optimized controls behave in a simulation of an experiment
in which the spin frequency is estimated using a maximum likelihood method [62–65].

This article is organized as follows. In Sec. 2 and 3, we introduce several basic notions
about QFI and selective control processes, and we present the formal relation between the
two approaches. Several state-of-the-art mathematical results are recalled. In Sec. 4, we
introduce and discuss the concept of optimal solution in both cases. In Sec. 5, we provide
a detailed comparative study with the example of a spin-1/2 particle. We conclude in
Sec. 6. Some mathematical proofs are gathered in the appendices.

2 Theoretical background: Quantum and Classical Fisher
informations

In this section, we present the basic ideas underlying the maximization of QFI and the
selectivity in a driven quantum system. We also provide several mathematical results
regarding the two control problems.

Let H be a finite-dimensional Hilbert space associated with the system to be measured.
The state of the system at time t is a density matrix given by

ρ(t) =
dimH−1∑
i=0

pi(t)|ψi(t)〉〈ψi(t)|. (1)

where |ψi(t)〉 ∈ H and pi is the probability to find the system in the state |ψi(t)〉. We
assume that the quantities pi and |ψi〉 depend on a parameter X ∈ R to estimate by
experimental means. The time evolution of ρ(t) from an initial state ρ0 is described by an
evolution (super) operator [66]:

ρX(t) = Û (X, t, u(t)) ρ(0) (2)

which can give rise to unitary or non-unitary dynamics, and u(t) is a control that allows us
to modify the system time evolution. The subscript X in ρX is used to explicitly specify
that the density matrix depends on the parameter X. A key point here is that the initial
state is assumed to be independent of the parameter X, and the dependence of ρX(t) on
X is only due to system dynamics.

Before the experiment, we have a prior estimate of the value of the unknown parameter
X, denoted X0, for which the uncertainty is large. The goal of the experiment is to obtain
more precise information about the system, that is, a better estimate of the value of X
with less uncertainty. The approach considered in this article is based on the maximum
likelihood method [62–65,67]. When applied to a quantum system, the likelihood function
gives a notion of distance between ρX and the measurement data. More precisely, the
larger the likelihood function, the higher the probability that ρX is the state of the system.
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Therefore, maximizing the likelihood function gives us the most probable value of X which
describes the measurement data. The method also makes it possible to determine the
uncertainty of the estimated parameter. This uncertainty is related to the distance between
two states that can give approximately the same experimental result. Heuristically, it is
clear that if ρX1 and ρX2 correspond almost to the same quantum state, then it will be
very difficult to discriminate between the two values X1 and X2. The goal of the control
process is, therefore, to increase the distance between ρX1 and ρX2 as much as possible in
a given control time. The procedure is schematically illustrated in Fig. 1.

This approach can be qualified as non-local since the difference |X2 − X1| can be
arbitrarily large. Another option is to consider a local derivation of the estimation protocol
around X0. In this case, a series expansion of the density matrix is performed as follows:

ρX = ρ(0) + ρ(1)δX + ρ(2)δX2 + O(δX3), (3)

with ρ(n) ≡ ∂nρX
∂Xn

∣∣∣∣
X=X0

. This idea allows us to derive a lower bound on the error made

on the estimate of X, given by the Cramér-Rao bound for quantum systems [68]. For an
unbiased estimator and a single measurement, the mean square error ∆X2 is given by:

∆X2 ≥ 1

F
(4)

where F is the Quantum Fisher Information (QFI) for a density matrix. As can be seen in
Eq. (4), the larger the QFI, the lower the uncertainty can be. The maximization of the QFI
at a fixed time using an external control is therefore a way to minimize the measurement
error [10,15,16,18–20].

We now focus on QFI and we derive several useful results for the computation of
optimal controls. The QFI F for a density matrix can be defined from different ap-
proaches [9,69]. A standard definition is to introduce the symmetric logarithmic derivative
operator L, given by the relation ∂XρX = 1

2(LρX + ρXL), and to express the QFI as [9]

F = Tr[ρXL
2]. (5)

An explicit calculation of the operator L enables us to relate Tr[ρXL
2] to the Bures

distance between two quantum states [70]. A link with selective control problems can be
established from the Bures metric, which is thus used to derive the QFI in this study.

Definition 1. (QFI) The Quantum Fisher Information for a full rank density matrix is
given by [69]:

F = lim
δX→0

4

(δX)2
D(ρX0 , ρX0+δX)2 (6)

where D(ρX0 , ρX0+δX)2 is the Bures distance, defined as:

D(ρ1, ρ2)2 = 2

(
1− Tr

[√√
ρ1ρ2
√
ρ1

])
. (7)

The Bures distance gives a simple geometric picture of QFI as the distance between
the states of two systems with infinitesimal variations of the parameter X. Note that this
definition is not strictly equivalent to Eq. (5) when the support of the density matrix is
modified by a variation of the parameter X, which may happen, e.g., when the state is
pure. This point has been discussed in [70–73]. In the case of a pure state, we have:

Definition 2. (QFI of a pure state) The Quantum Fisher Information for a pure state
ρ(t) = |ψ〉〈ψ|, with |ψ〉 = |ψ(0)〉+ δX|ψ(1)〉+O(δX2), is given by

F = 4

(
〈ψ(1)|ψ(1)〉 −

∣∣∣〈ψ(0)|ψ(1)〉
∣∣∣2) . (8)
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Measurement data

Without

Figure 1: Schematic description of the estimation process of a parameter X using the
likelihood method with and without optimal controls. For simplicity of representation,
the method is illustrated using only the probability distribution P , and not the quantum
state ρ, but the former is a function of the latter. As shown in panel A, the starting point
is a set of independent measurements, obtained after applying a control that prepares
the state of the system. From these data, the probability of occurrence for each event
can be estimated, as depicted in panel B. The estimated probability is ideally close to
”the true” probability law PX? , but there is a necessary small deviation due to the finite
number of measurements (the true probability being determined in the limit of an infinite
number of measurements). By maximizing the likelihood function and using a bootstrap
method [62, 63], we can estimate the parameter X ′0 which is the most probable value of
X that represents the experimental data (symbolized by colored diamonds). We can also
determine the interval of uncertainty, bounded byX1 andX2 (symbolized by colored discs),
as shown in panel C. On the right side of panel C, the points representing the different
probability laws are obtained for a system driven with a non-optimal control. The role of
the optimization process is to design a control protocol that increases the distance between
PX1 and PX2 , such that for equivalent measurements, with the same uncertainty on the
probability distribution, the uncertainty on the parameter X is smaller, as depicted in the
left side of panel C.
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This corresponds to 4 times the Fubini-Study metric [69], which is equal to the square
of the norm of |ψ⊥〉 = |ψ(1)〉 − 〈ψ(0)|ψ(1)〉|ψ(0)〉. This latter vector can be interpreted as
the part of |ψ(1)〉 transverse to |ψ(0)〉. We stress that the two definitions agree within the
appropriate limit as discussed in Appendix A.1.

QFI gives a theoretical minimum limit on measurement precision, but in practice,
this limit may not be reached. This is because QFI is related to a specific positive
operator-valued measure (POVM) [69], and the experimental setup may not be well suited
to this POVM. Additionally, the experiment may not offer an informationally complete
POVM [74] which means that the quantum state may not be determined completely by
state tomography. As a result, the sensitivity of the measurement could remain low, even
if the QFI is maximized. The relevant quantity in the likelihood estimation method is the
Classical Fisher Information (CFI) [69], which depends on the POVM of the experimen-
tal setup, and not on the optimal POVM associated with the QFI. A standard example
corresponds to the case where only the state populations in a given basis can be mea-
sured (see [75] for an example with Bose-Einstein condensates) whereas QFI may require
full tomography of the state, i.e. the measurement of both populations and phases.

Definition 3. (CFI) Let a POVM, that is a set {Πn}n=0,...,d, d ≥ dimH of Hermitian

and positive semi-definite operators that sum to identity. Let π(0)
n = Tr[ρ(0)Πn] and

π(1)
n = Tr[ρ(1)Πn]. The Classical Fisher Information, denoted FC , associated with the

quantum state is defined as:

FC =
∑

n|π(0)
n >0

(
π

(1)
n

)2

π
(0)
n

. (9)

One of the main properties of CFI is that FC ≤ F , since the QFI is the maximum of
the CFI over all possible POVMs [69]. Therefore, FC may potentially be zero while F is
maximized. In this paper, we mainly focus on the maximization of QFI [15, 18–20]. The
evolution of CFI is then obtained in a second step from the optimal controls derived for the
QFI maximization and the selectivity problem. The computation of QFI can be difficult
from Def. 1. Instead, we use another formulation, first derived in [76], and extended in [70].

Theorem 1. Let ρX0 = ρ(0) be expressed in diagonal form, ρ(0) ≡
s−1∑
k=0

p
(0)
k |ψ

(0)
k 〉〈ψ

(0)
k |,

where s is the dimension of the support of ρ(0), p
(0)
k ∈]0, 1] with

s−1∑
k=0

p
(0)
k = 1 and {|ψ(0)

k 〉},

k = 0, · · · , dim H − 1, an orthonormal basis of H. The Quantum Fisher Information is
given by:

F = 4
∑
k

∑
m|p(0)m >0

p
(0)
m

(p
(0)
m + p

(0)
k )2

∣∣∣〈ψ(0)
k |ρ

(1)|ψ(0)
m 〉
∣∣∣2 . (10)

For a pure state, F can be simplified into

F = 4

dimH−1∑
k>0

∣∣∣〈ψ(0)
k |ψ

(1)
0 〉
∣∣∣2 . (11)

where ρ = |ψ(0)
0 〉〈ψ

(0)
0 |+ δX(|ψ(0)

0 〉〈ψ
(1)
0 |+ |ψ

(1)
0 〉〈ψ

(0)
0 |) +O(δX2).

Note that the ensemble of |ψ(0)
n 〉 is both a set of unperturbed quantum state and a

basis of the Hilbert space.
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Theorem 2. The QFI of a pure state (8) can be written as

F = 4

dimH−1∑
k>0

∣∣∣〈ψ(0)
0 |A(t)|ψ(0)

k 〉
∣∣∣2 (12)

the operator A(t) being defined as:

A(t) =

[∫ t

0
dt′ U (0)†(t′)

∂H(t′)

∂X
U (0)(t′)

]
X=X0

, (13)

where H is the Hamiltonian of the system, U (0)(t) the unperturbed evolution operator and

|ψ(0)
0 〉 the initial state of the unperturbed system.

The proof is given in Appendix A.2. Note that Eq. (12) and (11) are equivalent since

|ψ(1)
0 〉 = A(t)|ψ(0)

0 〉. Calculating the QFI explicitly can be tricky, and it may be easier to
work with a tight upper bound [15]. This latter is used in this study to check the optimal
character of the result and to describe the control protocol.

Theorem 3. (Tight bound of the QFI). For a pure state, we have

F ≤
(∫ t

0
dt1 [λmax(t1)− λmin(t1)]

)2

. (14)

with λmax(t) and λmin(t) the maximum and minimum eigenvalues of ∂XH(t) at time t.

A heuristic justification of this result was given in [15], and we provide a rigorous proof
in Appendix A.3. The bound can be reached for a pure state which can be expressed as
a linear combination with equal weights of the eigenstates associated with the maximum
and minimum eigenvalues of ∂XH(t) at time t. Note that this state may not be generated
by the dynamics if the physical system is not fully controllable [15].

Theorems 2 and 3 are useful for the design of control maximizing the QFI for a closed
quantum system described by a pure state. If this is not the case, we have to consider
Eq. (10), which can be difficult to handle in practice. An approximated expression of the
QFI for mixed states is therefore interesting. We give below an original approximation of
the QFI for a mixed state when it is close to a pure state.

Theorem 4. (Approximated expression for the QFI of mixed states)

Let ρ(t) = U(t,X)

(
|ψ0〉〈ψ0|+ ε

dimH−1∑
k=0

p
(1)
k (t)|ψk〉〈ψk|

)
U †(t,X) + O(ε2) a density

matrix for which ε and p
(1)
k do not depend on the parameter X to estimate. The QFI

associated with this density matrix is given by:

F = 4
∑
n>0

|〈ψ0|A(t)|ψn〉|2(1− ε(p(1)
0 + 3p(1)

n )) +O(ε2). (15)

where A(t) is defined by Eq. (13).

The proof is given in Appendix A.4. This theorem is used in Sec. 4 to analyze the
optimal strategy that allows us to maximize the QFI, and in Sec. 5.4 to compute the
evolution of the QFI for specific examples. In the case of a two-level system where the
eigenvalues of ∂XH are such that λmin = −λmax, the result of Thm. 4 can be simplified
by assuming that |ψ0〉 is a linear combination of the two eigenvectors of ∂XH with equal
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weights. In this case, it is straightforward to show that 4
∑
n>0

|〈ψ0|A(t)|ψn〉|2 has only one

non-zero term, which leads to the maximum bound of Thm. 3. The QFI of the perturbed

state is therefore F = F|ε=0(1− ε(p(1)
0 +3p(1)

n ))+O(ε2). We deduce from this formula that
the relaxation process reduces the QFI, but this effect can be limited by a modulation of

the coefficients p
(1)
0 and p

(1)
1 .

3 Selective controls and their relation to Quantum Fischer
Information

We introduce the notion of selective controls and we show to which extent this concept is
connected to QFI. The underlying idea of selective control is to act differently on several
systems characterized by different values of X. For our case, the density matrix ρX is
modified at the end of the control process only if X = X0, and ideally, it is left unchanged
otherwise. Due to the continuity of the density matrix with respect to X, and the dis-
continuous target states to be considered in the control problem, perturbation theory is
not well suited to solve this issue. Instead, we adopt an alternative starting point by
discretizing the parameter space [33,34,46,48,49].

Definition 4. (Selectivity problem) Let C = {X0, X1, ..., XNs−1} be a set of Ns values
of the parameter X. A time-dependent density matrix ρn is associated with each element
Xn of C. All these density matrices are simultaneously controlled with u(t), t ∈ [0, tf ].
The goal of the control problem is to bring the systems with the same control u(t) from
ρn(0) = ρini, ∀ 0 ≥ n ≥ Ns − 1 to ρn(tf ) = ρtarget,n where {ρtarget,n}n∈Ns is a set of target
states associated with each Xn.

Many different control scenarios for the selectivity problem can be considered, but a
standard one is to choose ρtarget,0 = ρtarget and ρtarget,n = ρini for n 6= 0 [33,34]. The ideal
selective process which gives ρX(tf ) = ρtarget if X = X0 and ρX(tf ) = ρini otherwise is
reached when the discretization grid approaches a continuum (i.e., the distance between
nearby Xn becomes infinitesimally small, and NS →∞).

We now focus on a selectivity problem with Ns = 2 systems, and C = {X0, X0 + δX},
with δX > 0 kept fixed and finite. The QFI can be approached by a finite difference
approximation, denoted Ffd and given at time tf by

Ffd(tf ) =
4

(δX)2
D(ρX0(tf ), ρX0+δX(tf ))2, (16)

where the equality with the QFI is obtained when δX → 0. Ffd(tf ) is maximized at time

tf when Tr
[√√

ρtargetρini
√
ρtarget

]
= 0, or equivalently, when D2 = 2 (see Eq. (6)). We

deduce that maxFfd(tf ) = 8/δX2, which also gives us the maximum value of F up to a
term of order δX. We assume that there exists ρtarget satisfying this property, and we
denote tmin the minimum time to reach this state. For a closed quantum system, we have
in many cases tmin ∼ 1/δX for δX small enough. We refer to [33,34] for examples on spin
systems, but this property can be easily understood if δX plays the role of an energy in
the system Hamiltonian. In this case, the characteristic time of the associated process is
typically of order 1/δX. When δX is not energy-like, this may not be the case, see [15]
for a counter-example. For simplicity, we assume below that tmin ∼ 1/δX and we have

F ' 8

δX2
= 8αt2min, (17)
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Figure 2: Schematic illustration of the difference between time-optimal selectivity problem
and optimization of the QFI in the case when the target states are taken to maximize the
CFI. The plane (S, S⊥) represents the space of density matrices. The axis S depicts the
subspace of density matrices which can be determined by the POVM associated with a
given experimental setup, and S⊥ is the subspace of density matrices that return the
same measurement results. The initial state of the system is given by the point ρini.
The trajectories of two systems associated with different values of X are given by yellow
and blue-dashed lines, depending on whether the control is optimized for the selectivity
problem or the QFI. The final distance is chosen equal for the two problems, but the
duration of each process can be different. In the case of QFI, we observe that the sensitivity
of the measurement can be very low if the two states are in S⊥, while for the selectivity
problem, we have a very good precision since the two states are in S.

with α a constant specific to the system. When δX → 0, we obtain tmin →∞ and F →∞.
We shall stress that both α and tmin depend on the target state, and thus the choice of
this latter has a consequence on the control duration. The global maximum is obtained
when ρtarget is chosen so that the corresponding minimum time is the smallest among all
possible minimum times associated with all the target states that verify D2 = 2.

Nevertheless, the solution may not be unique, and in the case when the target state
may not be reached exactly, we have no guarantee that the solution to the two problems
is equivalent. In Sec. 5, we explore, by means of an example, under which conditions the
two approaches lead to the same control mechanism. As already discussed, experimentally
it may be more relevant to consider CFI rather than QFI. The selectivity problem can be
connected to the maximization of CFI if ρini and ρtarget are taken such that a maximum of
sensitivity is achieved in the measurement basis. In this case, selective controls may not
lead to the maximum QFI. This point is illustrated in Fig. 2, and it is discussed in Sec. 5
with a case study.

9
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4 Methodology for optimal control design

Optimality criteria are rigorously defined within the framework of optimal control the-
ory [56–58,77]. The main idea is to define a cost function (or figure of merit) that encodes
quantitatively the objective(s) of the control process. This function is then minimized (or
maximized) with respect to the control parameter. In this study, we consider two types
of cost functions to minimize:

C = −F(tf ) (18)

for the maximization of QFI, and

C =
1

Ns

Ns∑
n=1

D(ρtarget,n, ρn(tf ))2 + tf (19)

for the design of a time-optimal selective control. In the case of QFI, the cost function aims
at reaching the largest value of QFI at time tf . For the selectivity problem, the cost has
a double objective since the Ns systems must reach their respective target states as fast
as possible (hence the term tf in Eq. (19)). The minimum time constraint is motivated
by the fact that if the distance between the target states is maximum then there is a
minimum time for such a transformation (see Sec. 3), and for well-chosen target states,
this corresponds to the solution of QFI maximization.

Different methods can be used for this purpose. Gradient-based algorithms such as
GRAPE (Gradient Ascent Pulse Engineering) [78] are particularly efficient, but other
methods based on the Pontryagin Maximum Principle (PMP), such as shooting algorithms,
are another option [18,49,57]. The technical aspects of the design of time-optimal selective
controls with the PMP have been considered in [33,34], and we refer the interested reader
to these articles for details.

We now focus on the control strategy to use for maximizing QFI. We first consider pure
states and then we extend the discussion to mixed states. From Thm. 2 and 3 , we observe

that the upper bound can be reached if in Eq. (12), 〈ψ(0)
0 (t)|∂XH(t)|ψ(0)

k (t)〉 is maximized

at any time t. If the vectors |ψk(0)〉 are eigenvectors of ∂XH then 〈ψ(0)
0 (t)|∂XH(t)|ψ(0)

k (t)〉
is maximized when |ψ(0)

0 〉 is a superposition of the eigenvectors associated with the smallest
and highest eigenvalues, and hence, we recover the bound of Thm. 3. When the system
is sufficiently controllable, the optimal trajectory can be determined from the following
procedure:

1. Generate with a specific control, a state which maximizes 〈ψ(0)
0 (t1)|∂XH(t)|ψ(0)

k (t1)〉,
where t1 is the control duration of this first control process. The choice of the state
may be non-unique.

2. Use a control to stabilize the system, i.e., such that for all t ≥ t1, 〈ψ(0)
0 (t)|∂XH(t)|ψ(0)

k (t)〉
remains on its maximum value.

Note that this control strategy has already been discussed in [15, 18, 19]. We push the
analysis further by expanding the QFI into a sum of contributions associated with each
part of the control process. Using Thm. 2, we have:

C = −4

dimH−1∑
k>0

∣∣∣∣∫ tf

0
dt1〈ψ(0)

0 (t1)|∂H(t1)

∂X
|ψ(0)
k (t1)〉

∣∣∣∣2

= −4

dimH−1∑
k>0

∣∣∣〈ψ(0)
0 (0)|A(0, t1) +A(t1, tf )|ψ(0)

k (0)〉
∣∣∣2 , (20)
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whereA(ta, tb) corresponds to the integral between ta and tb of U (0)†∂XHU
(0). The integral

is split into two parts, to separate the initialization and stabilization processes. The cost
C can be written as follows:

C = −F1(0, t1)−F2(t1, tf )−F12(0, t1, tf ) (21)

where F1(0, t1) is the QFI associated with the initialization process, F2(t1, tf ) the one
corresponding to the stabilization protocol, and

F12(0, t1, t2) = 8
∑
n>0

<
[
〈ψ(0)

0 (0)|A(0, t1)|ψ(0)
k (0)〉〈ψ(0)

0 (0)|A(t1, tf )|ψ(0)
k (0)〉

]
(22)

a cross-term between the two parts of the process.
Since the stabilization procedure maximizes the increase of QFI at any time, C is

bounded from below by Cmin = −F2(0, tf ). This minimum is reached in the limit when
the initialization process is infinitely short, i.e. when the time t1 goes to 0. Therefore, the
optimal strategy is given by a time-optimal state-to-state transfer from the initial state to
the state maximizing the QFI. If there are several equivalent time optimal solutions, we
select the one(s) that maximizes F1 + F12. Finally, we discuss the case of open quantum
systems with the QFI given by the approximated expression of Thm. 4. The environment
is responsible for a QFI change of the order of ε. Depending on the coefficients p(1)

n , QFI
can be modulated by using the environment as a resource. A specific choice of states or
control could allow us to reduce the detrimental relaxation effect. This point is not trivial
and system dependent. It is discussed in Sec. 5 for the case study of a spin-1

2 particle.

5 Example of a spin system coupled to a bosonic bath

As a concrete example, we study the estimation of the values of the Hamiltonian parame-
ters of a spin-1

2 system coupled to a bosonic reservoir at zero temperature. We first define
the model system. We then compute the optimal controls of the selectivity problem and
the ones maximizing the QFI. We then show to which extent the system parameters can
be estimated. A comparison between the different controls is performed using the Bures
distance, the QFI, and the CFI. Finally, we explore how two of the optimized controls be-
have in a simulated experiment in which the spin frequency is found using the maximum
likelihood method. We also discuss the local/non-local properties of the methods.

5.1 The model system

We consider a spin-1
2 system whose Hilbert space is H = C2. In the case of a weak Jaynes-

Cummings interaction and a Lorentzian spectral density for the bath at zero temperature,
and under a Markovian approximation, the state of the spin is described by a density
matrix ρS whose dynamics are governed by the Lindblad equation (in ~ units) [66]:

dρS
dt

= −i [H(t), ρS(t)] + γ Dσ+ [ρS(t)]. (23)

with

H(t) = −∆

2
σz −

α

4
ω(t)

(
e−iφ(t)σ+ + eiφ(t)σ−

)
, (24)

Dσ+ [ρS(t)] = σ+ρS(t)σ− −
1

2
(σ−σ+ρS(t) + ρS(t)σ−σ+) (25)

11
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where σz, σx = σ− + σ+, σy = i(σ− − σ+) are Pauli matrices, ∆ is the detuning (also
called offset) of the spin frequency with respect to a reference frequency ωS , ω(t) ∈ [0, ω0]
and φ(t) ∈]−π, π] are two bounded controls, α is a scaling factor for the amplitude of the
control, and γ gives the relaxation rate of the spin energy into the bath. We are interested
in the estimation of the parameters ∆, α, and γ which are assumed to be constant. For
this case study, we choose the exact values to be ∆0 = 0.2 ω0, α0 = 1, and γ0 = 0.05 ω0,
which are compatible with magnetic resonance experiments [33, 46, 49]. The ratio ∆/γ is
also compatible with ultra-cold spin systems, since the offset is usually in the MHz range,
and the relaxation rate is in the kHz range [79].

For this example, the POVM is given by the two projectors associated with the eigen-
states of σz. The states are denoted by | ↑〉 and | ↓〉 (associated respectively with the
eigenvalues +1 and −1 of σz). Note that this choice is motivated by the aim of providing
simple comparisons between the different approaches. The initial state of the system is
the steady state of the relaxation operator, ρini = | ↑〉〈↑ |.

As underlined in Sec. 4, the control protocols can be found using numerical opti-
mization methods. For this case study, we already have a precise characterization of the
time-optimal synthesis [33, 80, 81] in terms of piecewise constant pulses. It is therefore
natural to solve this control problem by using this control family in which the control
amplitude, its phase, and the duration of a time step are the parameters to find. In the
free relaxation case, the time minimum selective solution for the spin frequency is the con-
catenation of three different constant controls. On this basis, we limit here our search to
a family with five time-steps, which leads to a good compromise between computational
time and control efficiency. The values of the 15 parameters to estimate in a bounded
domain can be obtained with a standard global optimization algorithm, such as the sim-
ulated annealing algorithm of Mathematica [82]. In the minimization of the cost (18),
the final time is fixed, while it is free for the figure of merit (19). In this latter case,
the optimization is performed for different values of the final time tf , in order to find the
solution minimizing simultaneously the cost and the control duration. In a specific case
(estimation of the relaxation rate), we have checked the optimality of the results with a
shooting algorithm based on the PMP [49].

5.2 Estimation of the offset frequency ∆

The estimation of the parameter ∆ is performed in two steps. First, we find the optimal
control strategy without relaxation (i.e., γ = 0), and then, we discuss how the strategy can
be adapted to limit the effect of the environment when γ 6= 0. In the numerical simulations,
we use the following values for the other parameters, ∆0 = 0.2 ω0 and α0 = 1.

The optimal procedure that maximizes F in a free-relaxation case has already been
investigated in [15]. We briefly recall this solution below. For a pure state, the QFI
associated with the estimation of ∆ is

F =
dimH−1∑
k>0

∣∣∣∣∫ tf

0
dt1〈ψ(0)

0 (0)|U (0)
S

†
(t1) σz U

(0)
S (t1)|ψ(0)

k (0)〉
∣∣∣∣2 . (26)

Following the procedure described in Sec. 4, the goal is to stabilize the system on a
specific state, which maximizes the growth rate of Eq. (26). Using Thm. 3, it is straight-
forward to find this state which corresponds to a state superposition of | ↑〉 and | ↓〉
with equal population. This state is located on the equator of the Bloch sphere (i.e.

|ψ(0)
0 〉 = 1√

2
(| ↑〉+ eiθ| ↓〉) with θ ∈ [0, 2π)). For ∆ small enough (i.e. ∆ ≤ 0.5ω0) [46, 47],

the time optimal solution to reach the equator is given by a control of maximum amplitude
with ω(t) = ω0, φ(t) is an arbitrary constant and the pulse duration can be expressed as

12
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tpulse = 4 arcsin

(√
ω2

0 + 4∆2
0/(ω0

√
2)

)
/
√
ω2

0 + 4∆2
0. Once the optimal state is reached,

the growth rate of F must be stabilized. This is obtained when the term U
(0)
S

†
(t1)σzU

(0)
S (t1)

in Eq. (26) does not depend on time, i.e. ω(t1) = 0 for all times t1 since this condition
reduces the Hamiltonian to H = −∆σz/2. It is then straightforward to see that the dif-
ferent evolution operators commute with σz and they cancel each other. Another option
consists in using φ(t1) = Ωt1 with Ω � ∆. This produces an effective Hamiltonian with
a coupling constant α/Ω which is negligible when Ω → ∞ (see [35] for recent discussions
on this effect).

We compare this optimal strategy with the one of the selectivity problem where
C = {−∆0,∆0}. The target states associated with these offsets are respectively given
by ρtarget,−∆0 = | ↑〉〈↑ | = ρini, and ρtarget,∆0 = | ↓〉〈↓ |. Without relaxation, the time opti-
mal solution has been derived in [33]. The control is the concatenation of three constant
pulses. The optimal solution is plotted in Fig. 3 (note that this control is not unique).
The control mechanism can be described as follows. The first pulse transfers the initial
state (north pole of the Bloch sphere) to the equator of the Bloch sphere. Then, the sec-
ond part, with a zero amplitude, induces a free evolution of the spins along the equator.
Due to the detuning difference, they rotate in opposite directions. The duration of this
process is chosen so that with the application of the third pulse, the spin with ∆ = ∆0

reaches the south pole while the other spin goes in the opposite direction and returns to
the north pole. Note that the optimal control mechanism used for this selectivity problem
is the same as the optimal control procedure for the QFI maximization, except for the last
control part.

In Fig. 3, we compare the different controls by plotting the Bures distance (between
the states associated with −∆0 and ∆0), the QFI and the CFI as a function of time.
As expected, the two controls lead to similar evolutions until the very end of the control
process. In the two cases, the Bures distance can reach the maximum value of 2. This
value is achieved first by the optimal control of the QFI. This is because the two spins
can have orthogonal states when they are both on the equator of the Bloch sphere. This
configuration is easier to achieve from the initial state since we have to supply a smaller
amount of energy to the system. Concerning the QFI, we notice that the two control
strategies are quite close to the upper bound, the difference being mainly due to the non-
zero duration of the control used to generate a state on the Bloch sphere

:::
we

::::::
recall

::::
that

:::
the

::::::::
equator

:::
is

::::
the

:::
set

:::
of

::::::
states

::::::::::::
maximizing

::::
the

:::::::::
increase

::
of

::::::
QFI). The optimal selective

control has a slightly lower final QFI value because the spin state must leave the equator
of the Bloch sphere. Finally, the CFI is the quantity with the most important difference.
Here, the optimal control of the QFI leads to a constantly zero CFI, which is due to the
orthogonality of the optimal measure basis for ∆ and the basis {| ↑〉, | ↓〉}. However, with
the optimal selective control, we reach the maximum value of the CFI at the very end of
the control process, because the target states correspond to the measurement basis. In this
situation, we have been able to determine numerically that the optimal control maximizing
the CFI is the one given by the selective control. The optimization is performed in the
same way as maximizing the QFI, but with CFI as the terminal cost. This is a difficult task
because the optimization algorithm is easily trapped in a local maximum of the function.

Next, we study the role of the environment in the estimation of ∆ with γ = γ0 =
0.05 ω0. Results similar to those in Fig. 3 are shown in Fig. 4 for the relaxation case.
We observe that the maximum values of the Bures distance and the QFI are significantly
smaller than the ones obtained when γ = 0 (the difference is larger than a factor 2). In
Fig. 4, we consider three different controls, i.e. (i) the optimal selective solution computed
with γ = 0, (ii) the optimal selective one derived with γ = γ0, and (iii) the optimal control
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Figure 3: a) Time evolution of the Bures distance between the density matrices of two
spins associated with the offsets −∆0 and ∆0 when the two spins are simultaneously driven
by the optimal selective control or the one maximizing the QFI. b) QFI for a spin of offset
∆0 when it is driven by such controls. The maximum bound of the QFI, calculated with
Thm. 3, is also indicated. d

:
c) Same as panel b), but with CFI instead of QFI. Panels d)

and e) show respectively ω(t) and φ(t) for the two controls used in the simulations. The
final time tf = 3.235π/ω0 is given by the duration of the time optimal selective control.
Numerical parameters are set to ∆0 = 0.2 ω0, α0 = 1, and γ0 = 0.
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Figure 4: a) Time evolution of the Bures distance between the density matrices of two spins
associated with the offsets −∆0 and ∆0 when the two spins are simultaneously driven by
the optimal selective control computed with γ = 0, the one with γ = γ0, and the optimal
control for the QFI optimized with γ = γ0. b) Same as panel a), but for the QFI of a spin
with ∆ = ∆0. c) Same as panel a), but for the CFI of a spin with ∆ = ∆0. Panels d) and
e) depict respectively ω(t) and φ(t). The final time is fixed to tf = 3.235π/ω0. The other
parameters are set to ∆0 = 0.2 ω0, α0 = 1, and γ0 = 0.05 ω0.
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for the QFI optimized with γ = γ0. We note the behaviors opposite to those of Fig. 3.
Here, a link between the Bures distance and the QFI is no longer observed. For example,
maximizing the selectivity leads to the largest Bures distance, but to the smallest QFI,
even for the optimal solution with γ = 0. Moreover, maximizing the QFI does not lead
to a significant increase in the Bures distance. Since we cannot reach the largest values
of F and D2, we cannot easily relate the QFI maximization and selectivity problem,
and corrections to the optimal strategies due to relaxation effects are specific to control
problems. The maximum values of F and D2 are significantly larger for controls optimized
with γ = γ0 than for γ = 0. However, in the case of Bures Distance, the maximum is
reached before the final time. This means that the control duration can be reduced to
obtain better measurement sensitivity. Concerning the CFI, again, we have constantly
zero with the optimal control of the QFI, and larger values with selective controls. The
best CFI is achieved from the protocol optimized with γ = γ0.

5.3 Estimation of the relaxation rate γ

For the estimation of the parameter γ, an approximated expression of the QFI can be de-
rived by assuming that γ0 = 0. In this situation, a first-order time-dependent perturbation
theory in powers of γ leads to:

ρS(t) = US(t)

(
ρS(0) + γt

{
σ+ρS(0)σ− −

1

2
(σ−σ+ρS(0) + ρS(0)σ−σ+)

})
U †S(t) +O(γ2)

(27)

with US(t) = T exp

(
−i
∫ t

0
dt′H(t′)

)
. Then it is straightforward to apply Thm. 1, since

ρ
(0)
S is a pure state, and ρ

(1)
S is essentially given by Dσ+ [ρ

(0)
S (0)]. We obtain:

F = t2
∣∣∣〈ψ(0)

0 (0)|Dσ+

[
|ψ(0)

0 (0)〉〈ψ(0)
0 (0)|

]
|ψ(0)

0 (0)〉
∣∣∣2

= t2 |〈σ−〉〈σ+〉 − 〈σ−σ+〉|2

= t2
∣∣∣〈↓ |ψ(0)

0 (0)〉
∣∣∣8 .

(28)

The initial state must be | ↓〉 in order to obtain the maximum increase of F as a function
of time. However, this procedure cannot be performed when γ0 > 0 since the south pole
of the sphere cannot be reached exactly. To illustrate this point, we set1 ∆0 = 0. We also
use γ0 = 0.05ω0 and α0 = 1. Numerical results are given in Fig. 5. We observe that the
optimal control that maximizes the QFI is given by a square pulse bringing the spin to
a state such that z ' −0.8, followed by a free relaxation. The end of the constant pulse
corresponds to the time when the z-coordinate is minimum (it is the smallest reachable
value). Then, the optimal solution is the closest trajectory to the one given in Eq. (28).

A selectivity problem can also be defined for the estimation of γ. We set C =
{γ0, γ0 + δγ}, with δγ of the order of γ0 (in the simulations, δγ = γ0). Contrary to
the estimation of ∆, the center of the Bloch sphere is chosen as the target state of the first
spin (i.e. ρtarget,1 = I/2), and the initial state as the target state for the second spin. This
choice is motivated by the fact that, in this case, the two poles of the sphere cannot be
reached simultaneously. In the

::::
This

::
is

::::
due

::
to

::::
the

::::::::::
relaxation

::::::::
process

::::
that

::::::::
induces

:::::::::
dynamics

:::::
inside

::::
the

::::::
Bloch

:::::
ball,

::::::
most

::
of

::::
the

:::::::
points

::
of

::::
the

::::::
Bloch

:::::::
sphere

::::
are

:::::::::
therefore

::::
not

::::::::::
accessible.

::::::::::
Moreover,

::
in

:::::
this

:
studied example, the targets

::::::
target

::::::
states

:
cannot be attained exactly

1This can be done if we already know the spin energy transition perfectly, and if we use a frame rotating
at this frequency.
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. The
::::
(due

:::
to

::::
the

:::::::::::::
non-unitarity

:::
of

::::
the

:::::::::::
dynamics),

:::::
and

::::
only

:::::::
states

::::::::
leading

::::::::::::
qualitatively

::
to

::::
the

:::::::
desired

:::::::::
behavior

::::
can

:::
be

::::::::
chosen.

:::::
The

::::::
initial

:::::
state

:::
is

:::
the

::::::::::
attractor

::
of

::::
the

::::::::::
relaxation

::::::::
process,

::
it

::
is

:::::::::
therefore

:::
an

::::::::::
interesting

:::::::
target

:::::
state

::::::
which

::::
can

:::
be

::::::::::
generated

:::::
quite

:::::::
easily.

::::
The

::::::
center

::
of

::::
the

::::::
Bloch

:::::
ball

::
is

::::
less

::::::
easily

::::::::
reached

::::
but

:::
it

::
is

::::::
inside

::::
the

:::::
ball,

:::::
and

::::
this

::::::
allows

:::
us

::
to

::::::::
capture

::
a

:::::::::
property

:::::::
similar

:::
to

:::
the

::::::
south

:::::
pole

::
of

::::
the

::::::
Bloch

::::::::
sphere.

:

:::
We

::::::::
observe

:::::
that

::::
the

:
optimal solution is equivalent to the one maximizing the QFI.

This agreement between the two approaches allows us to interpret physically the optimal
control of the QFI. The control steers the system to a state for which a variation of γ
(with respect to the reference γ0) produces a maximum difference along the z- axis of the
Bloch sphere. In particular, when a spin with γ = γ0 is at z = 0, a spin with γ > γ0 is as
close as possible to the ground state.

We end this section with some comments on the generalization of the selectivity prob-
lem for more general couplings with the environment. If we introduce damping operators
Dσ− and Dσz in the Lindblad equation, this latter is significantly modified [83], and the
selective control strategy presented in this paragraph is, in general, no longer optimal.
Moreover, with the use of the operators Dσ− and Dσz , the selectivity problem becomes
very similar to the contrast problem of spin-1

2 particles in Nuclear Magnetic Resonance,
which has been already studied extensively (see [36–39] for details).

5.4 Estimation of the control scaling factor α

As a third example, we investigate the estimation of the parameter α with α ' α0 = 1
by starting the analysis of the QFI. In the case γ = 0, the state is pure, and Eq. (12) can
be used to compute F . The core of the computation is the derivation of A(t), defined in
Eq. (13). Using a first-order expansion of U (0)(t) in power of α0, we obtain:

A(t) =

∫ t

0
dt1

(
ω(t1)

4

(
ei(−φ(t1)+∆t1)σ+ + e−i(φ(t1)−∆t1)σ−

)
+ 4iα0υ(t1)σz

)
+O(α2

0) (29)

with

υ(t1) =
1

16

∫ t1

0
dt2 ω(t1)ω(t2) cos (∆(t1 − t2)− φ(t1) + φ(t2)) (30)

We point out that if |ψ(0)
k 〉 is an eigenvector of σz, the term in σz is canceled and the QFI

does not depend on α0. Moreover, for the case φ(t) = ∆t, ω(t) = ω0, the QFI becomes:

F = ω2
0t

2. (31)

This is the upper bound, which can be calculated with Eq. (14). Interestingly, this is the
same solution as the one that can be obtained with α0 = 0. Since the initial state can
be chosen equal to | ↑〉, we do not need to prepare the system as in the case of Sec. 5.2.
We can verify that this control is also the optimal solution for a selectivity problem with
C = {α1, α2}, and the target states ρtarget,α1 = | ↑〉〈↑ | = ρini, and ρtarget,α2 = | ↓〉〈↓ |.
Next, we study the role of the relaxation effect on the QFI if the initial state is either
| ↑〉〈↑ | or | ↓〉〈↓ |. No simple expression can be derived in this case, but the result of
Thm 4 can be used. We have respectively:

F|↑〉〈↑| = F|γ=0 (32)

F|↓〉〈↓| = F|γ=0(1− 2γt) (33)

where F|γ=0 is the QFI computed with γ = 0, as the one in Eq. (31). This suggests that
this solution cannot be improved from an additional control. Our numerical investigation
leads to the same conclusion, both for QFI and selectivity.
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Figure 5: a) Time evolution of the Bures distance between the density matrices of two
spins associated with the rates γ0 and 2γ0 when the two spins are simultaneously driven
by the optimal control maximizing the QFI. b) Same as panel a), but for the QFI of a spin
with γ = γ0. c) Same as panel a), but for the CFI. Panels d) and e) show respectively ω(t)
and φ(t). Panel f) depicts the trajectory of the spin with γ = γ0 in a slice of the Bloch
ball (the initial state of the trajectory is given by a point and the final state by a cross).
The final time tf is given by the duration required to reach approximately the center of
the Bloch ball. Numerical parameters are set to ∆0 = 0, α0 = 1, and γ0 = 0.05 ω0.
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A B

Figure 6: Normalized histogram of values of ∆ determined by the log-likelihood method,
for the control maximizing the QFI (panel A), and for an optimal selective control (panel
B). The controls correspond to the two ones shown in Fig. 3. The data used for the estima-
tion of ∆ is a numerical simulation of experimental measurements (see the main text for de-
tails). The normalization coefficients of the histograms is such that ∫ Pbootstrap(∆) d∆ = 1.
The black curves are smoothed versions of the histograms. The vertical dashed lines show
the value of ∆? that must be recovered by the estimation process.

5.5 Comparison of the methods with a maximum likelihood estimation
and the role of non-local effects

In the previous sections, we have compared the different methods of estimating several
parameters of a spin-1

2 system, using Bures distance, QFI, and CFI as quantifiers of control
efficiency. However, these quantities do not exactly describe the estimation process. In this
section, we approach a real experiment, and we simulate the estimation of the parameter
∆ with the two optimized controls given in Fig. 3. This analysis leads us to additional
comments on the local/non-local properties of the different methods.

We assume that we have a first estimate of ∆, given by ∆ = 0.2 ± 0.4 ω0, and the
other parameters are known perfectly, α = 1 and γ = 0. The knowledge that we have
on ∆ is compatible with the two controls represented in Fig. 3, with ∆0 = 0.2 ω0. To
simulate the fact that ∆0, used in the computation of the control, may not be the correct
value, we introduce the “true” offset frequency ∆? = 0.25 ω0, which must be found by
the estimation process. The simulated experimental data associated with each control are
made of 50.000 independent measurements of σz, randomly sampled with the probability
distribution given by P↑ = |〈↑ |ρ(tf ,∆?)| ↑〉|2 and P↓ = |〈↓ |ρ(tf ,∆?)| ↓〉|2 (we recall
that σz is the measurement operator that allows us to define the POVM used to compute
the CFI in the previous sections). From the two simulated data, the parameter ∆ is
determined using the maximization of the loglikelihood function, and the uncertainty is
computed with a bootstrap of the data [62, 63]. The bootstrap method works as follows.
From the initial series of measurements, new series are created by resampling the data. For
each resampled data, we estimate the value of ∆ with the maximum likelihood method.
For each case, we obtain a different value of the parameter, leading to a mean value and
an uncertainty.

In Fig. 6 we plot the normalized histograms of values of ∆ obtained from the two
simulated experiments. They represent the probability density Pbootstrap(∆) of reaching
a value of ∆ with the maximization of the log-likelihood function. Using the control
maximizing the QFI, two well-localized peaks are observed. This is because, in this case,
P↑ = |〈↑ |ρ(tf ,∆)| ↑〉|2 and P↓ = |〈↓ |ρ(tf ,∆)| ↓〉|2 are identical for ±∆. With optimal
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selectivity, the symmetry is broken since negative and positive offsets are moved to different
hemispheres of the Bloch sphere. For each peak independently, we have: ∆ = −0.245 ±
0.016 ω0 and ∆ = 0.251 ± 0.015 ω0 for the QFI, and ∆ = 0.25095 ± 0.00098 ω0 for the
selectivity. In all these cases, the uncertainty is given for a confidence level of 95%. We see
that the precision is several orders of magnitude better with the selectivity than with QFI,
which is in agreement with the results of Sec. 5.2. We stress that the difference observed
in this example is due to the choice of POVM. We have verified that if we increase the
number of operators in the POVM such that it becomes informationally complete, the two
controls give (up to small random fluctuations) the same results with the same precision.

The results obtained by the estimation process with the optimized QFI are, in the
situation discussed here above, not the best one, but contrary to what we can expect from
Fig. 3, the error is not infinite. The CFI computed with the corresponding control is
constantly zero, but in fact, for ∆ 6= ∆0, the Bloch vector does not stay on the equator
of the Bloch sphere, and at time tf , we have a non-zero projection onto the z- axis.
Therefore, we can estimate, in a limited way, the value of the parameter even if the CFI is
zero. This effect is one of the non-local effects that play a role in the parameter estimation.
This is welcome from the experimental point of view because the precision is better than
expected, but it can also have a detrimental effect. Consider that the experimentally
accessible POVM is compatible with the QFI (i.e. the CFI and the QFI are equal). For
a closed quantum system, the maximum of QFI depends on time, and a better value can
be reached for a longer control time. This argument is not valid for very large duration
because the volume of the space of density matrices is finite. For a given final time, taken
long enough, a given point of the space of density matrices can correspond to several values
of X, and thus this may lead to a loss of precision in the measurement.

Figure 7: The line represents the positions in the Bloch sphere, at a fixed time tf , of an
ensemble of spin−1

2 with different offsets, when they all start their dynamics at the north

pole of the sphere. The system Hamiltonian (in the rotating frame) is H = −∆
2 σz−

ω(t)
2 σx,

with ∆ ∈ [−ω0, ω0] the offset with respect to the rotating frame frequency, ω(t) the control
field, and σx,z two Pauli matrices. The control law is ω(t) = ω0 if t < π

2ω0
and ω(t) = 0

if t ≥ π
2ω0

. The final time is tf = 3π
ω0

. We observe that the line is self-intersecting at 3
positions, given by x = 0 and y ≈ ±1. Hence, a difference between the offset values cannot
be made if a measurement of the system state returns one of these positions.

This can be easily observed with a spin-1
2 system. In Fig. 7, we show the ensemble of

positions in the Bloch sphere, for a continuous ensemble of spin frequency ∆ ∈ [−ω0, ω0],
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at time tf = 3π/ω0, when the spins are driven by the optimal control maximizing the
QFI for the offset ∆ = 0 (in this case, the control is a standard π/2 square pulse). For
simplicity, we set α = 1 and γ = 0 in the simulation. We observe that this ensemble
of positions is a line on the sphere, that is self-intersecting at several positions. Hence,
we would not be able to make the difference between the corresponding offset values if a
measurement of the system state returns one of these positions. In practice, this situation
is similar to the one already observed in Fig. 6 A). In the previous case, the effect was
induced by a bad choice of POVM and it was not time-dependent, but in the present case,
this happens only at specific times.

As a consequence, the fact that X 7→ ρX(tf ) is not injective in general must be taken
into account a posteriori in the analysis of the control strategy used to maximize the QFI,
i.e. we have to choose tf such that these problems cannot occur. On another side, this
aspect can be avoided in the definition of the selectivity problem. Indeed, choosing δX
equal to the uncertainty of measurement of X0 gives us a separation of quantum states
well adapted to the experimental setup, and the non-injectivity problem of the mapping
can thus be bypassed.

6 Conclusion

In this paper, we have compared two methods that can be used to design a control to
improve parameter estimation of a quantum system. The first method is based on the
maximization of Quantum Fisher Information at a fixed time, while the second approach
consists of a time-optimal selective control problem. In the two cases, the underlying idea
is to maximize the distance between two quantum states associated with two different
values of the system parameters.

The two methods have several specificities that make them very different in practice.
A summary of their differences and similarities is given in Tab. 1. Both techniques have
their own advantages and difficulties. For QFI, it is easier to compute analytically the
control or to have a global understanding of the optimal solution, at least in the case of
a closed quantum system. However, the natural POVM of the QFI may not be adapted
to the experiment, and we cannot easily take into account the non-local effects of the
estimation problem. On the opposite, the selectivity method offers better flexibility in the
computation of the control. Its main advantage is the fact that the target states can be
adapted to the experimental POVM. We have restricted this study to two different meth-
ods, but we can imagine many slightly different approaches which mix several aspects of
QFI and selectivity problems. For example, we can consider a version of the selectivity
problem in which the target states are not fixed, the goal being to maximize the distance
between the two states. The QFI and the selectivity methods can be seen as two com-
plementary approaches. The QFI maximization can be used first, to highlight a specific
control mechanism, which is used in a second step to compute a time-optimal selective
control.

The Classical Fisher Information has been considered in this paper to characterize the
control protocols. This quantity may also be used as a figure of merit to maximize. Using
CFI instead of QFI may help avoid the POVM problem. We have not investigated this
approach because the calculation of CFI is much more difficult than that of QFI, and even
in simple cases, it is very difficult to obtain analytic or numerical control laws. The opti-
mization algorithm stays generally stuck in a local minimum, which is not interesting for
the estimation process. Therefore, selective control seems to be an interesting alternative
to CFI maximization.
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QFI maximization Time-optimal selectivity

Local/Non-local Local Non-local

Intrinsic solution to the system Yes No

Suitable for experimental POVM No Yes

Intelligibility of the
optimal solution

Easy to interpret
May be difficult

to interpret

Taking into account the
uncertainty on the

parameter
With post-processing Yes

Proof of optimality of
the experimental uncertainty

Yes, but if the experimental POVM
is adapted, and if X0 is

closed to the true
value of X

No

Equivalent to QFI maximization -
yes, if the target

states are well chosen

Table 1: Summary of the main elements of comparison between a control process max-
imizing the QFI and a time-optimal selective control. A cell in gray corresponds to an
advantage of the corresponding method.
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A Proofs of some mathematical theorems

A.1 Limit properties between Bures and Fubini-Study metrics

In this appendix, we clarify the relation between Bures and Fubini-Study metrics which
are different in the case where the support of the first-order density matrix is not included
in the support of the unperturbed one. These points are already considered in [70]. They
are described here for the sake of completeness, and with our own notations.

Our approach can be summarized as follows. First, a relation similar to the one of
Thm. 1 is derived using the Bures metric as a starting point. The result is similar, but the
sums do not run exactly in the same range. To be more specific, with the Bures distance,
we are limited to the contributions included in the support of ρ(0), whereas the general
formula contains contributions outside this support. Next, we consider the situation in
which ρ(0) is full rank but approaches a pure state by means of a small parameter tending
to zero.

We first focus on the calculation of lim
δX→0

4

(δX)2
D(ρX0 , ρX0+δX)2. The non-trivial part

concerns the computation of
√√

ρ1ρ2
√
ρ1. Since the quantum fidelity is symmetric (and

so is the Bures metric), we can choose ρ(0) 7→ ρ1 and ρX0+δX 7→ ρ2. Moreover, the
definition of F indicates that a Taylor expansion of order 2 in δX is needed. To this aim,

22



SciPost Physics Submission

we introduce the matrices A and B such that:√√
ρ(0)ρX0+δX

√
ρ(0) = ρ(0) + δX A+ δX2 B +O(δX3). (34)

Taking the square of this expression gives us:√
ρ(0)ρX0+δX

√
ρ(0) = (ρ(0))2 + δX

(
ρ(0)A+Aρ(0)

)
+ δX2

(
ρ(0)B +Bρ(0) +A2

)
+O(δX3)

= (ρ(0))2 + δX

√
ρ(0)ρ(1)

√
ρ(0) + δX2

√
ρ(0)ρ(2)

√
ρ(0) +O(δX3).

In the second line, we have used the Taylor expansion (3). Using the fact that

√
ρ(0) =∑

k

√
p

(0)
k |ψ

(0)
k 〉〈ψ

(0)
k |, and identifying the terms of the same power in δX, we obtain:

〈ψ(0)
k |A|ψ

(0)
l 〉 =


√
p

(0)
k p

(0)
l

p
(0)
k + p

(0)
l

〈ψ(0)
k |ρ

(1)|ψ(0)
l 〉 , if p

(0)
k 6= 0 and p

(0)
l 6= 0

0 , otherwise

(35)

〈ψ(0)
k |B|ψ

(0)
l 〉 =


√
p

(0)
k p

(0)
l

p
(0)
k + p

(0)
l

〈ψ(0)
k |ρ

(2)|ψ(0)
l 〉 −

1

p
(0)
k + p

(0)
l

〈ψ(0)
k |A

2|ψ(0)
l 〉 , if p

(0)
k , p

(0)
l 6= 0

0 , otherwise
(36)

Note that the matrix elements are 0 if p
(0)
i = 0 in the formula. This prevents any singularity

or undetermined expression of the form 0/0. The trace is then given by

Tr

[√√
ρ(0)ρX0+δX

√
ρ(0)

]
= Tr[ρ(0)] + δXTr[A] + δX2Tr[B] +O(δX3) (37)

= 1− δX2

2

∑
k|p(0)k >0

1

p
(0)
k

〈ψ(0)
k |A

2|ψ(0)
k 〉+O(δX3) (38)

The final result is drastically simplified because Tr[ρ(1)] = Tr[ρ(2)] = 0, since Tr[ρX0+δX ] =
Tr[ρ(0)] = 1. Note that this result holds only if the support of ρ(n), n > 0 is included in
the support of ρ(0). Using Eq. (35) and the definition of the Bures metric (7), we arrive
at:

D(ρX0 , ρX0+δX)2 = δX2
∑

k|p(0)k >0

∑
m|p(0)m >0

p
(0)
m

(p
(0)
k + p

(0)
m )2

∣∣∣〈ψ(0)
k |ρ

(1)|ψ(0)
m 〉
∣∣∣2 +O(δX3). (39)

Plugging Eq. (39) into the definition of F , given in Eq. (6), we arrive directly at Eq. (10),
but with a difference on the sum over k.

Next, we proceed to the computation of F in the limit when the density matrix ap-
proaches a pure state. In this limit case, the support of ρ(1) is not included in the support
of ρ(0).

We assume that the coefficients p
(0)
k are of the form p

(0)
k = δk0(1− a0ε) + (1− δk0)εak,

with ε a small parameter such that lim
ε→0

ρ(0) = |ψ(0)
0 〉〈ψ

(0)
0 |. The coefficients a0 and ak,
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which do not depend on X, are chosen such that Tr[ρ(0)] = 1. Next, we can compute the

first order correction ρ(1). Using the fact that ∂Xp
(0)
k = 0 we have:

ρ(1) =
dimH−1∑
k=0

p
(0)
k

(
|ψ(0)
k 〉〈ψ

(1)
k |+ |ψ

(1)
k 〉〈ψ

(0)
k |
)
. (40)

Inserting Eq. (40) into Eq. (10), we arrive at:

F = 4
∑
k,l,n

p
(0)
m p

(0)
n

(p
(0)
m + p

(0)
k )2

∣∣∣〈ψ(0)
k |
(
|ψ(0)
n 〉〈ψ(1)

n |+ |ψ(1)
n 〉〈ψ(0)

n |
)
|ψ(0)
m 〉
∣∣∣2

= 4
∑
k,l

p
(0)
m

(p
(0)
m + p

(0)
k )2

∣∣∣p(0)
k 〈ψ

(1)
k |ψ

(0)
m 〉+ p(0)

m 〈ψ
(0)
k |ψ

(1)
m 〉
∣∣∣2

= 4
∑
k,l

p
(0)
m (p

(0)
m − p(0)

k )2

(p
(0)
m + p

(0)
k )2

∣∣∣〈ψ(0)
k |ψ

(1)
m 〉
∣∣∣2 .

(41)

In the last equation, we use the relation 〈ψ(0)
k |ψ

(0)
m 〉 = δkm, and thus 〈ψ(1)

k |ψ
(0)
m 〉 =

−〈ψ(0)
k |ψ

(1)
m 〉. We can now work on the term Ckm =

p
(0)
m (p

(0)
m −p

(0)
k )2

(p
(0)
m +p

(0)
k )2

as a function of ε.

An explicit computation of the matrix elements gives us:

C =


0 εa1 εa2

1− ε(a0 + 4a1) 0 ε (a1−a2)2a2
(a1+a2)2

. . .

1− ε(a0 + 4a2) ε (a1−a2)2a1
(a1+a2)2

0
...

. . .

+O(ε2). (42)

We observe that in the limit ε→ 0, only the terms Ck0 are non-zero and we have:

lim
ε→0
F = 4

∑
k>0

∣∣∣〈ψ(0)
k |ψ

(1)
0 〉
∣∣∣2 . (43)

This corresponds to the Fubini-Study metric, as given in Def. 1. To conclude, the Bures
metric tends toward the Fubini-Study metric when the density matrix goes to a pure state,
but the Bures metric is not equal to the Fubini-Study metric when it is evaluated with an
exact pure state. This reveals a discontinuity in the Bures metric as discussed in [70].

A.2 Proof of Thm. 2

Proof. The proof is established from the calculation of |ψ(0)(t)〉 and |ψ(1)(t)〉 using a time-
dependent perturbation theory [84]. Explicitly, we have

|ψ(t)〉 = U(t)|ψi〉 =
(
U (0)(t) + δX U (1)(t)

)
|ψi〉+O(δX2), (44)

where U(t) is the evolution operator from the initial time to time t, and |ψi〉 is the initial
state, assumed to be independent of X. The first two orders of the Taylor expansion of
the evolution operator with respect to δX are given by:

U (0)(t) = U(t)|X=X0 (45)

U (1)(t) = −i
[
U (0)(t)

∫ t

0
dt′ U (0)†(t′)

∂H(t′)

∂X
U (0)(t′)

]
X=X0

. (46)
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Plugging the first-order term into Eq. (8) leads to:

F
4

= 〈ψ(0)(0)|A†(t)A(t)|ψ(0)(0)〉 −
∣∣∣〈ψ(0)(0)|A(t)|ψ(0)(0)〉

∣∣∣2 (47)

where

A(t) =

[∫ t

0
dt′ U (0)†(t′)

∂H(t′)

∂X
U (0)(t′)

]
X=X0

. (48)

The first term of Eq. (47) can be simplified by introducing a resolution of identity:

〈ψ(0)|A†(t)A(t)|ψ(0)〉 =

∫ t

0
dt1

∫ t

0
dt2〈ψ(0)|U (0)†(t1)

∂H(t1)

∂X
U (0)(t1)

× U (0)†(t2)
∂H(t2)

∂X
U (0)(t2)|ψ(0)〉

=
dimH−1∑
k=0

∫ t

0
dt1

∫ t

0
dt2〈ψ(0)|U (0)†(t1)

∂H(t1)

∂X
U (0)(t1)|k〉

× 〈k|U (0)†(t2)
∂H(t2)

∂X
U (0)(t2)|ψ(0)〉

=
dimH−1∑
k=0

∣∣∣∣∫ t

0
dt1〈ψ(0)|U (0)†(t1)

∂H(t1)

∂X
U (0)(t1)|k〉

∣∣∣∣2
Note that we have used |ψ(0)〉 = |ψ(0)(0)〉, to simplify the equations. Next, we can set

|ψ(0)(0)〉 = |ψ(0)
0 〉 and |k〉 = |ψ(0)

k 〉 without loss of generality, since we assume that the
unperturbed eigenvectors are a basis of the Hilbert space. This allows us to remove the
rightmost term in Eq. (47), and we finally arrive at:

F = 4
dimH−1∑
k>0

∣∣∣∣∫ t

0
dt1〈ψ(0)

0 |U
(0)†(t1)

∂H(t1)

∂X
U (0)(t1)|ψ(0)

k 〉
∣∣∣∣2 (49)

= 4
dimH−1∑
k>0

∣∣∣∣∫ t

0
dt1〈ψ(0)

0 (t1)|∂H(t1)

∂X
|ψ(0)
k (t1)〉

∣∣∣∣2 . (50)

A.3 Proof of Thm. 3

Proof. Our starting point is Eq. (8), which can be rewritten into Eq. (47). We notice that
the QFI is proportional to the variance of A, since A is hermitian. Then, we have

F = 4

〈(
A− 〈A〉

ψ
(0)
0

)2
〉
ψ
(0)
0

= 4

〈(
B − 〈B〉

ψ
(0)
0

)2
〉
ψ
(0)
0

(51)

where in the second equality we have introduced B = A−eig min(A), eig min(A) denoting
the smallest eigenvalue of A. Note that the spectrum of B is such that: 0 ≤ eig(B) ≤
eig max(A)− eig min(A). We observe that〈

(B − 〈B〉)2
〉

= 〈B2〉 − 〈B〉2 ≤ c〈B〉 − 〈B〉2, (52)

with c = eig max(B). This is a polynomial in 〈B〉 that can be maximized. A straightfor-
ward calculation gives the location of the maximum: 〈B〉 = c/2. The maximum value is
c2/2− c2/4 = c2/4. Therefore,

F ≤ c2 = (eig max (A)− eig min(A))2 (53)
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Note that this computation is essentially a rewrite of a standard theorem in commutative
probability theory, which can be found in [85]. The difference of eigenvalues of A is
straightforwardly obtained since it is the integral of an operator of the form U †∂XHU .
The evolution operator gives us only a change of basis, and we have to consider the
difference of eigenvalues of ∂XH. Denoting them λmax and λmin, we finally obtain

F ≤
(∫ t

0
dt1 [λmax(t1)− λmin(t1)]

)2

. (54)

A.4 Proof of Thm. 4

Proof. The starting point is the formula given in Eq. (10). We need to compute the

coefficients p
(0)
k and 〈ψ(0)

k |ρ
(1)|ψ(0)

m 〉. We can set p
(0)
k = δk0 + εp

(1)
k and ρ(1) = ρ(1,0) + ερ(1,1).

Then, we have

|〈ψ(0)
k |ρ

(1)|ψ(0)
m 〉|2 = |〈ψ(0)

k |ρ
(1,0)|ψ(0)

m 〉|2 + 2ε<
(
〈ψ(0)

k |ρ
(1,1)|ψ(0)

m 〉〈ψ
(0)
k |ρ(1,0)|ψ(0)

m 〉
)

+O(ε2)

(55)
We can go further by using

ρ(t) = U (0)(t)
{
ρ′(t) + i δX [ρ′(t), A(t)]

}
U (0)(t)† +O(δX2),

with ρ′(t) = |ψ0〉〈ψ0|+ ε
∑
k

p
(1)
k (t)|ψk〉〈ψk|. Inserting these expressions into Eq. (55), and

using the notation Akm = 〈ψ(0)
k |A(t)|ψ(0)

m 〉 gives us:

|〈ψ(0)
k |ρ

(1,0)|ψ(0)
m 〉|2 =

(
|A0m|2δk0 + |Ak0|2δm0

)
(1− δk0δm0) (56)

and

<
(
〈ψ(0)

k |ρ
(1,1)|ψ(0)

m 〉〈ψ
(0)
k |ρ(1,0)|ψ(0)

m 〉
)

=
∑
n

p(1)
n

{
|A0m|2δk0δkn − |A0n|2δmnδk0 − |An0|2δknδm0 + |Ak0|2δm0δmn

}
.

(57)

Combining these expressions altogether, we get

F = 4
∑

k>0,m>0

p
(0)
m

(p
(0)
m + p

(0)
k )2

(
|A0m|2δk0 + |Ak0|2δm0

)
+ 8ε

∑
k,m,n

p
(0)
m p

(1)
n

(p
(0)
m + p

(0)
k )2

(
|A0m|2δk0δkn − |A0n|2δmnδk0 − |An0|2δknδm0 + |Ak0|2δm0

)
= 4

∑
n>0

|A0n|2

p
(0)
0 + p

(0)
n

+ 8ε
∑
m

|A0m|2

(p
(0)
m + p

(0)
0 )2

(
p(0)
m p

(1)
0 − p

(0)
m p(1)

m − p
(0)
0 p(1)

m + p
(0)
0 p

(1)
0

)
= 4

∑
n>0

|A0n|2

p
(0)
0 + p

(0)
n

+ 8ε
∑
m

|A0m|2

p
(0)
m + p

(0)
0

(
p

(1)
0 − p

(1)
m

)
= 4

∑
n>0

|A0n|2(1− ε(p(1)
0 + 3p(1)

n ))

where in the last line we have used (p
(0)
0 + p(0)

n )−1 = 1− ε(p(1)
0 + p(1)

n ) +O(ε2).
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Training Schrödinger’s cat: quantum optimal control. Strategic report on current sta-
tus, visions and goals for research in Europe, European Physical Journal D 69, 279
(2015), doi:10.1140/epjd/e2015-60464-1.

[12] C. Brif, R. Chakrabarti and H. Rabitz, Control of quantum phenomena: past, present
and future, New J. Phys. 12, 075008 (2010).

[13] C. Altafini and F. Ticozzi, Modeling and control of quantum systems: An introduction,
IEEE Trans. Automat. Control 57, 1898 (2012).

31

https://doi.org/10.1126/science.1104149
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1088/2058-9565/abd4c3
https://doi.org/10.1103/RevModPhys.91.035005
https://doi.org/10.1140/epjqt/s40507-022-00138-x
https://doi.org/10.1140/epjqt/s40507-022-00138-x
https://doi.org/10.1126/science.1138007
https://www.science.org/doi/pdf/10.1126/science.1138007
https://www.science.org/doi/pdf/10.1126/science.1138007
https://doi.org/10.1103/PhysRevA.94.022313
https://doi.org/10.1007/BF01007479
https://doi.org/https://doi.org/10.1002/qute.202100080
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.202100080
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.202100080
https://doi.org/10.1140/epjd/e2015-60464-1


SciPost Physics Submission

[14] D. Dong and I. A. Petersen, Quantum control theory and applications: A survey, IET
Control Theory A 4, 2651 (2010).

[15] S. Pang and A. N. Jordan, Optimal adaptive control for quantum metrol-
ogy with time-dependent hamiltonians, Nature Communications 8, 14695 (2017),
doi:10.1038/ncomms14695.

[16] J. Liu and H. Yuan, Control-enhanced multiparameter quantum estimation, Phys.
Rev. A 96, 042114 (2017), doi:10.1103/PhysRevA.96.042114.

[17] S. A. Haine and J. J. Hope, Machine-designed sensor to make optimal use of
entanglement-generating dynamics for quantum sensing, Phys. Rev. Lett. 124, 060402
(2020), doi:10.1103/PhysRevLett.124.060402.

[18] C. Lin, Y. Ma and D. Sels, Optimal control for quantum metrology via pontryagin’s
principle, Phys. Rev. A 103, 052607 (2021), doi:10.1103/PhysRevA.103.052607.

[19] J. Yang, S. Pang, Z. Chen, A. N. Jordan and A. del Campo, Variational principle
for optimal quantum controls in quantum metrology, Phys. Rev. Lett. 128, 160505
(2022), doi:10.1103/PhysRevLett.128.160505.

[20] C. Lin, Y. Ma and D. Sels, Application of pontryagin’s maximum principle to
quantum metrology in dissipative systems, Phys. Rev. A 105, 042621 (2022),
doi:10.1103/PhysRevA.105.042621.

[21] Y. Zhai, X. Yang, K. Tang, X. Long, X. Nie, T. Xin, D. Lu and J. Li, Control-
enhanced quantum metrology under markovian noise, Phys. Rev. A 107, 022602
(2023), doi:10.1103/PhysRevA.107.022602.

[22] D. Basilewitsch, H. Yuan and C. P. Koch, Optimally controlled quan-
tum discrimination and estimation, Phys. Rev. Research 2, 033396 (2020),
doi:10.1103/PhysRevResearch.2.033396.

[23] T. Gefen, F. Jelezko and A. Retzker, Control methods for improved
fisher information with quantum sensing, Phys. Rev. A 96, 032310 (2017),
doi:10.1103/PhysRevA.96.032310.

[24] M. Zhang, H.-M. Yu, H. Yuan, X. Wang, R. Demkowicz-Dobrzański and J. Liu,
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