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We investigate the dynamics of the driven Jaynes-Cummings model, where a two-level atom
interacts with a quantized field and both, atom and field, are driven by an external classical field. Via
an invariant approach, we are able to transform the corresponding Hamiltonian into the one of the
standard Jaynes-Cummings model. Subsequently, the exact analytical solution of the Schrödinger
equation for the driven system is obtained and employed to analyze some of its dynamical variables.

I. INTRODUCTION

The Jaynes-Cummings model (JCM) is probably the
most fundamental theoretical model in quantum op-
tics [1]. It is also the simplest exactly solvable model
describing the interaction between matter and electro-
magnetic radiation. The JCM consists of a single two-
level atom interacting with a single quantized mode of
the electromagnetic field in a lossless cavity, under the
dipole and rotating wave approximations [2].

In the strong-coupling (or ultra-strong coupling)
regime of matter-radiation interaction, when the rotat-
ing wave approximation is not valid anymore, the corre-
sponding model is known as the Rabi model. It has been
proved that the presence of the counter-rotating terms in
the corresponding (Rabi) Hamiltonian are responsible for
richer dynamics [3, 4]. Although numerical results have
been known for a while, the Rabi model has only been
recently solved by Braak, through highly sophisticated
analytical techniques [5].

In turn, over the years, the JCM has been exhaus-
tively studied, extended and generalized. Such general-
izations intend to address more involved and realistic as-
pects of the interaction between atoms and fields, beyond
the simplifications of the original model [6–9]. These in-
clude the generalized JCM (which incorporates multiple
atomic levels [10–12] or field modes [13, 14]), the disper-
sive JCM [15], models including nonlinear effects [16–18]
and losses [19, 20], among others [21–25].

The standard JCM predicts that the atom and the
quantized field become entangled, ceasing to be individ-
ual systems and turning into a kind of “molecule” [26].
In fact, Alsing et al. [26] demonstrated that in order to
analyze this molecule, it is necessary to probe it in some
manner, and they showed that an external classical field
is the natural way to do it. This leads to a new gen-
eralization of the conventional JCM, referred to as the
“driven Jaynes-Cummings model” [26, 27]. In their ar-
ticle, Alsing et al. analyze two types of driving mecha-
nisms; the first involves the external classical field driv-
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ing the cavity mode (which was experimentally reported
by Thompson [28] et al.), and the second involves the
classical field driving the two-level atom. In both cases,
the eigenenergies and eigenstates of the system are de-
termined. However, we emphasize that nothing about
the dynamical variables of the system (atomic inversion,
average photon number, etc.) is said in [26].

Additionally, Dutra et al. [27] also analyze the sce-
nario in which the classical field drives the atom only,
discussing the necessary criteria for the model to have
physical significance. They also show how the driven
JCM can be transformed into the standard one, enabling
the calculation of certain dynamic variables of the sys-
tem.

In this study, we are interested in investigating the
most general case of the driven Jaynes-Cummings model,
which allows for the simultaneous excitation of both, the
atom and the quantized field, by the presence of an exter-
nal classical field. Our aim is to establish a methodology
that enables the direct calculation of the dynamic vari-
ables of the driven system in a straightforward manner,
and not presented in [26]. Therefore, obtaining the so-
lution of the Schrödinger equation in the general driven
case constitutes our main motivation and contribution.
In that respect, the present work represents also a gener-
alization of [27]. Note also that although we are studying
the interaction between two fields (classical and quan-
tum) with a two-level atom, the Hamiltonian we solve
may also appear in ion-laser interactions [29–31].

The paper is organized as follows: in Section II, a
detailed description of the model under study is given,
and the invariant approach is described. In Section III,
the time-dependent Hamiltonian of the driven system is
related to that of the conventional JCM, by means of
unitary transformations, and according to the invariant
technique. In Section IV, the general solution to the
Schrödinger equation for the driven Hamiltonian is ob-
tained. By choosing specific initial conditions, for both
the atom and the quantized field, the atomic inversion,
the average photon number, the Mandel Q parameter,
and the entropy of the system are easily determined (as
examples of the dynamical variables) and studied from
the general solution. In Section V, the dispersive regime
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is considered. Finally, in Section VI the main conclusions
are presented.

II. THE DRIVEN SYSTEM AND THE
INVARIANT APPROACH

Let us consider a system consisting of a two-level atom,
with states denoted as |g⟩ (ground state) and |e⟩ (excited
state), having a transition frequency ωeg. The atom is
placed within a cavity (the reader may think of a cavity
formed by perfectly reflecting mirrors) sustaining a single
quantized electromagnetic field mode with frequency ωc.
Additionally, an external classical field with frequency ω0

driving both the atom and the quantized field is consid-
ered. This setup is depicted in Fig. 1.

FIG. 1: Scheme of a lossless cavity formed by perfectly re-
flecting mirrors (in shades of gray). Within the space be-
tween the mirrors, a two-level atom with a transition fre-
quency ωeg interacts with a quantized field of frequency
ωc (in shades of red). Additionally, both the atom and
the quantized field, are influenced by an external classi-
cal field with frequency ω0. The classical field that drives
the quantized field is represented by the thick horizontal
arrow in green, while the one that impinges on the atom
is depicted by a thin diagonal arrow in black.

Furthermore, we assume that the coupling between the
cavity mode and the atom is significantly larger than the
cavity damping and atomic decay rates, enabling us to
neglect their effects [27]. Based on these assumptions,
and in the dipole and rotating wave approximations, the
time-dependent Hamiltonian describing the system can
be written as [26]

Ĥ =
ωeg

2
σ̂z + ωcâ

†â+ g
(
σ̂+â+ σ̂−â

†)
+ ζ

(
σ̂−e

iω0t + σ̂+e
− iω0t

)
+ ξ

(
âeiω0t + â†e− iω0t

)
,

(1)

where the real parameters g, ζ and ξ are the coupling con-
stants between the atom and the quantized field, the ex-
ternal classical field and the atom, and the quantized and
classical fields, respectively. As usual, the creation and
annihilation operators â† and â, satisfying the commu-
tation relation

[
â, â†

]
= 1, are considered for the quan-

tized field, while the pseudo-spin operators σ̂+ = |e⟩ ⟨g|,

σ̂− = |g⟩ ⟨e|, and σ̂z = |e⟩ ⟨e| − |g⟩ ⟨g|, with the com-
mutation relations [σ̂+, σ̂−] = σ̂z and [σ̂z, σ̂±] = ±2σ̂±,
describe the atomic part of the system.
It is possible to write an invariant Î satisfying [32, 33]

dÎ

dt
=
∂Î

∂t
− i[Î , Ĥ] = 0, (2)

for the time-dependent Hamiltonian (1), in the form

Î =
σ̂z
2

+ â†â+ α
(
âeiω0t + â†e− iω0t

)
, (3)

where α is a real constant to be determined. For Î to ful-
fill (2), it is necessary that α = ζ/g and ξ = α(ωc − ω0),
constrictions that prevent the classical and quantized
fields to be on resonance.
The time dependence of the invariant (3) can be elimi-
nated by changing to a frame rotating at frequency ω0,
i.e.,

ÎT := T̂ ÎT̂ † =
σ̂z
2

+ â†â+ α
(
â+ â†

)
, (4)

where T̂ = exp [iω0t(n̂+ σ̂z/2)], with n̂ = â†â the usual
number operator.
Furthermore, by transforming (4) with the Glauber dis-

placement operator D̂(α) = exp
[
α(â† − â)

]
[34], the

well-known constant of motion of the standard JCM is
obtained [35]

ÎD := D̂(α)ÎT D̂
†(α) =

σ̂z
2

+ â†â. (5)

The above result suggests that properly transforming the
Hamiltonian (1), we can arrive at the (solvable) Jaynes-
Cummings Hamiltonian, as we show in the next section.
It is important to emphasize that if a classical field drives
either only the atom or the quantum field, it is not possi-
ble to write an invariant. Furthermore, it is noteworthy
also to stress that when the classical field solely drives
the quantum field, even though a solution exists [26],
it is actually hardly useful to study the system dynamics.

III. CONNECTION BETWEEN THE DRIVEN
AND THE STANDARD JCM

The dynamics of the system associated to the Hamil-
tonian (1) is governed by the Schrödinger equation

i
∂ |ψ(t)⟩
∂t

= Ĥ |ψ(t)⟩ . (6)

As we saw previously, we can move to a frame that ro-
tates at frequency ω0. We propose |ψ(t)⟩ = T̂ † |ϕ(t)⟩;
therefore, the resulting Schrödinger equation is

i
∂ |ϕ(t)⟩
∂t

= ĤT |ϕ(t)⟩ , (7)
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with

ĤT = T̂ ĤT̂ † − i T̂ ∂tT̂
†

= ∆cn̂+
∆eg

2
σ̂z + g

(
σ̂+â+ σ̂−â

†)
+ ζ (σ̂− + σ̂+) + ξ

(
â+ â†

)
,

(8)

where ∆c = ωc−ω0 and ∆eg = ωeg−ω0 represent the de-
tunnings between the quantized and the classical fields,
and the atomic and the classical field frequencies, respec-
tively.
If now we perform a unitary transformation such that
|ϕ(t)⟩ = D̂†(α) |χ(t)⟩, we arrive to the Schrödinger equa-
tion

i
∂ |χ(t)⟩
∂t

= ĤD |χ(t)⟩ , (9)

where ĤD is given by

ĤD = D̂(α)ĤT D̂
†(α)

= ∆cn̂+
∆eg

2
σ̂z + g

(
σ̂+â+ σ̂−â

†)+ α(α∆c − 2ξ)

+ (ζ − gα) (σ̂− + σ̂+) + (ξ − α∆c)
(
â+ â†

)
.

(10)

As before, setting

α =
ζ

g
, (11)

and ∆c = gξ/ζ, the last two terms in (10) are eliminated,
and we obtain

ĤD = D̂ (ζ/g) ĤT D̂
† (ζ/g)

= ∆cn̂+
∆eg

2
σ̂z + g

(
σ̂+â+ σ̂−â

†)− ζξ/g.
(12)

The last term above can be ignored, as it does not play
any role in the dynamics of the system, resulting in the
standard Jaynes-Cummings Hamiltonian

ĤJCM = ∆cn̂+
∆eg

2
σ̂z + g

(
σ̂+â+ σ̂−â

†) . (13)

Finally, we can move to a frame rotating at frequency ∆c,
via the transformation Ŝ = exp [i∆ct(n̂+ σ̂z/2)], such

that |χ(t)⟩ = Ŝ† |η(t)⟩. The equation to solve is then

i
∂ |η(t)⟩
∂t

= ĤI |η(t)⟩ , (14)

with the interaction Hamiltonian

ĤI =
∆

2
σ̂z + g

(
σ̂+â+ σ̂−â

†) , (15)

where ∆ = ∆eg −∆c = ωeg − ωc.

IV. DYNAMICS

The evolution operator associated to (15) is widely
known [7, 8, 36, 37], and can be expressed as

ÛI = e− i tĤI =

(
Û11(t) Û12(t)

Û21(t) Û22(t)

)
, (16)

where

Û11(t) = cos
(
Ω̂n+1t

)
− i

∆

2

sin
(
Ω̂n+1t

)
Ω̂n+1

, (17a)

Û12(t) = − i gâ
sin

(
Ω̂nt

)
Ω̂n

, (17b)

Û21(t) = − i gâ†
sin

(
Ω̂n+1t

)
Ω̂n+1

, (17c)

Û22(t) = cos
(
Ω̂nt

)
+ i

∆

2

sin
(
Ω̂nt

)
Ω̂n

, (17d)

and

Ω̂n =

(
∆2

4
+ g2n̂

)1/2

. (18)

Then, the solution of the initial Schrödinger equation (6)
is given by

|ψ(t)⟩ = T̂ †D̂† (ζ/g) Ŝ†ÛI(t)D̂ (ζ/g) |ψ(0)⟩ , (19)

since T̂ (0) = Ŝ(0) = 1̂, with 1̂ the identity operator. Re-
call that we have set ∆c = gξ/ζ, thus there are only five
free parameters out of the initial six parameters in the
Hamiltonian (1). From now on, we set ω0 = ωc − gξ/ζ.
The general solution (19) allows to calculate and ana-
lyze the dynamical variables of the driven system, en-
abling also a direct comparison with the standard JCM,
as shown next. For the sake of simplicity, we consider
that the field is initially in a coherent state |β⟩, where
β is an arbitrary complex number, while the atom is in
the excited state |e⟩; that is, our initial state will be
|ψ(0)⟩ = |β⟩ ⊗ |e⟩ = |β, e⟩.

A. Atomic inversion

The atomic inversion W (t) is a meaningful observable
that indicates changes in the population distribution of
atoms and contains important statistical information of
the field. It is defined as the difference between the prob-
ability of the atom to be in its excited state and the
probability of it to be in its ground state. It can be cal-
culated as the expected value of the operator σ̂z, namely,
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W (t) = ⟨ψ(t)| σ̂z |ψ(t)⟩. From (19), we get

W (t) =

∞∑
n=0

Pn(γ)

{
cos2 (Ωn+1t) +

[
∆2

4
− g2(n+ 1)

]
× sin2 (Ωn+1t)

Ω2
n+1

}
,

(20)

where Pn is the probability of detecting n photons in the
field, which is given by the Poisson distribution

Pn(γ) = e−|γ|2 |γ|2n
n!

, (21)

with γ = β + α, and α is given in (11). Besides,

Ωn =

(
∆2

4
+ g2n

)1/2

. (22)
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FIG. 2: Atomic inversion W (t) corresponding to the ini-
tial condition |ψ(0)⟩ = |β, e⟩, using the following parame-
ter values: ωc = 0.4, ωeg = 0.9, g = 1.0, ζ = 0.7, ξ = 0.2,

ω0 = ωc − gξ/ζ, and β =
√
8. In (a) the atomic inver-

sion corresponding to the driven JCM is shown. In (b)
the atomic inversion corresponding to the conventional
JCM is displayed. The black lines represent the analyt-
ical result, while the green ones stand for the numerical
solution obtained using QuTiP [38].

It is important to note that the expression (20) dif-
fers from that of the conventional JCM only in a shift
in the probability distribution of photons: we go from
Pn(β) in the usual JCM, to Pn(β + α) in the driven sys-
tem. Then, the magnitude of the shift is determined by
the couplings ζ and g. Fig. 2 illustrates the aforemen-
tioned effect; Fig. 2(a) and Fig. 2(b) show the atomic
inversion W (t) in the driven and conventional JCM, re-
spectively. For the chosen values of the parameters, it

is evident that the occurrence time of the first revival in
the driven case [Fig. 2(a)] increases with the value of α,
in comparison with the conventional JCM [Fig. 2(b)]. In
other words, as ζ (g) is increased (decreased), there is an
observed displacement in time at which the first revival
occurs; from a physical point of view, this means that if
the coupling ζ between the classical field and the atom
is far greater than that between the atom and the quan-
tized field g, the transitions may be suppressed by the
interaction with the classical field.

B. Average photon number

It is crucial to analyze another observable: the expec-
tation value of the number operator n̂, namely ⟨n̂(t)⟩ =
⟨ψ(t)| n̂ |ψ(t)⟩. By studying ⟨n̂(t)⟩, we can get a better
understanding of the statistical properties of the system,
including the photon distribution and its relation with
the dynamics of the atom-field interaction. From (19),
we obtain

⟨n̂(t)⟩ = S1(t)− 2αRe [γ exp (− i ∆ct)S2(t)] + α2, (23)

where

S1(t) =

∞∑
n=0

Pn (γ)

[
|γ|2

∣∣∣V (n+2)
1 (t)

∣∣∣2
+(n+ 1)

2
g2

∣∣∣V (n+1)
2 (t)

∣∣∣2] , (24)

S2(t) =

∞∑
n=0

Pn (γ)
[
V̄

(n+1)
1 (t)V

(n+2)
1 (t)

+ (n+ 2) g2V
(n+1)
2 (t)V

(n+2)
2 (t)

]
,

(25)

and

V
(n)
1 (t) = cos (Ωnt)− i

∆

2

sin (Ωnt)

Ωn
, (26)

V
(n)
2 (t) =

sin (Ωnt)

Ωn
, (27)

with the bar denoting complex conjugation, and Re [z]
meaning the real part of z. It is relevant to note that
similar to the case of the atomic inversion (20), the prob-
ability distribution of the number of photons in (23) un-
dergoes a change when going from the conventional to
the driven JCM: Pn(β) → Pn(β + α). Nevertheless, the
resulting ⟨n̂(t)⟩ reveals a modification of the Rabi fre-
quency Ωn (this can be particularly seen in the shifts of
the labels Ωn → Ωn+1, Ωn → Ωn+2 in the expressions

for S1(t) and S2(t) above, through V
(n)
1 (t) and V

(n)
2 (t)),

which leads to a strikingly different behavior of the aver-
age photon number, in comparison to the standard JCM.
This fact is illustrated in Fig. 3; in Fig. 3(a) the average
photon number ⟨n̂(t)⟩ in the driven JCM is shown, and in
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Fig. 3(b) the average photon number of the usual JCM
is depicted; the same values of the parameters used in
Fig. 2 are employed. Unlike the usual JCM [Fig. 3(b)],
in which ⟨n̂(t)⟩ exhibits a behavior similar to the atomic
inversion [Fig. 2(b)], the driven JCM shows a completely
different dynamics due to the direct influence of the ex-
ternal classical field on the cavity mode that feeds it with
photons.

In addition, in the driven JCM the average photon
number shows the super revivals discussed in [27]; if we
analyze ⟨n̂(t)⟩ at times larger than those of Fig. 3, it
can be observed [Fig. 4(a)] that ⟨n̂(t)⟩ shows a collapse,
just as in the case of the conventional JCM [Fig. 3(b)],
though at larger times. Moreover, at even larger times
[see Fig. 4(b)], the corresponding revival can be appre-
ciated. Such large-scale fluctuations (referred to as su-
per revivals) were previously noted and studied in [27],
where the external classical field drives the atom only.
Thus, they are present in the general case as well, where
the classical field drives also the quantized cavity field,
as can be clearly seen from Fig. 4.

Finally, it can be appreciated that the collapse in
Fig. 4(a) occurs at ⟨n̂⟩ ∼ 13.44 (red dashed line), while
in the conventional case [Fig. 3(b)] it does occur at
⟨n̂⟩ = 8.5 [35]. Of course, this is attributed to the
classical driving field that, as mentioned, provides the
quantized one with photons, increasing ⟨n̂(t)⟩.
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FIG. 3: Average photon number ⟨n̂(t)⟩ corresponding to
the same initial condition and parameters used in Fig. 2.
In (a) and (b), the average photon number is shown for
the driven JCM and the standard JCM, respectively. The
black lines correspond to the analytical result, while the
green ones represent the numerical result.
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FIG. 4: Average photon number ⟨n̂(t)⟩ in the driven
JCM for relatively large time. The same initial condi-
tion and parameters of Fig. 2 were used. In (a) the col-
lapse of ⟨n̂(t)⟩ can be clearly appreciated, while in (b)
the collapse-revival is observed. The black lines denote
the analytical result, while the green ones represent the
numerical result.

C. Mandel Q parameter

The Mandel Q parameter is defined as follows [39]:

Q =
⟨n̂2⟩ − ⟨n̂⟩2

⟨n̂⟩ − 1, (28)

and it measures the deviation from a Poissonian distri-
bution. In other words, it gives information about the
nature (sub- or super-Poissonian) of the quantized cav-
ity field. For Q > 0 (Q < 0) we have a super (sub)
Poissonian distribution of photons; for Q = 0, we have a
Poissonian distribution of photons. In Figure 5, we show
the Mandel Q parameter as defined by (28) for the driven
JCM, as well as for the conventional case. It is seen that
in both, the driven and the conventional JCM, the field
shows sub- and super-Poissonian features. In particular,
the driven case (a) presents a slower dynamics, which is
in agreement with what has been observed in the case of
the average photon number ⟨n̂(t)⟩, due to the presence
of the driving classical field.
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FIG. 5: Mandel Q parameter (28) in the driven JCM
(a), and its comparison with the conventional case (b).
The same initial condition and parameters of Fig. 2 were
used. These plots correspond to numerical calculations,
however the analytical expression is pretty straightfor-
ward to be obtained from the exact solution (6).

D. Entanglement and von Neumann entropy

Even when the quantized field and the atom are ini-
tially separate entities, while interacting they become to-
gether a composed system; in other words, the initial
separable state becomes mixed. An accurate quantita-
tive measure of the degree of mixing is obtained from the
(von Neumann) entropy of the system, defined as [35]

S = −Tr {ρ̂ ln ρ̂} , (29)

with ρ̂ = |ψ(t)⟩ ⟨ψ(t)| the density matrix of the composed
system.
As the initial states of the field and atom are pure states
(|ψ(0)⟩ = |β, e⟩), the corresponding initial entropies of
the quantum field and the atomic subsytems, SF and
SA, are equal to zero. In fact, as the initial state of the
composed system is a pure (separable) state, the total
entropy S is zero as well. Furthermore, as the entropy of
a closed system does not change in time, we have S(t) = 0
for all t. From the Araki-Lieb theorem [2, 35, 36]

|SA − SB | ≤ S ≤ SA + SB , (30)

it follows that SF (t) = SA(t). Therefore we can focus,
for instance, on the entropy of the atomic subsystem

SA = −TrA {ρ̂A ln ρ̂A} , (31)

where

ρ̂A = TrF {ρ̂} . (32)

Using basic properties of the trace, it is easy to show that
the atomic entropy (31) is given by

SA = −λ1 lnλ1 − λ2 lnλ2, (33)

with λ1 and λ2 the eigenvalues of the matrix ρ̂A.
Fig. 6 shows a comparison of the atomic entropy for

the driven and standard JCM. It can be observed that,
in the driven case [Fig. 6(a)] the minimum entropy is dis-
placed to larger values of t (dashed red vertical line, at
around t ∼ 11.5), with respect to the minimum entropy
(at around t ∼ 9.83) in the conventional JCM [Fig. 6(b)].
This in turn corresponds to the displacement observed in
the atomic inversion (Fig. 2) caused by the classical driv-
ing field. At the minimum entropy, the quantum field and
two-level atom subsystems behave nearly as separate in-
dependent entities (see [36] and references therein). Also,
the decreasing of the entropy to its minimum is known to
coincide with the collapse of W (t) (see for instance [35]
and compare time scales in Fig. 2 and Fig. 6). In other
words, in the driven case [Fig. 6(a)] the entropy takes
longer time to reach its minimum value, in comparison
with the conventional case [Fig. 6(b)]. This is as well in
agreement with the longer collapse observed in Fig. 2(a),
in comparison with Fig. 2(b), due to the classical driving
field.
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FIG. 6: Entropy SA(t) corresponding to the same ini-
tial condition and parameters used in Fig. 2. In (a)
and (b) the entropy is shown for the driven and stan-
dard JCM, respectively. These plots correspond to nu-
merical calculations, however the analytical expression is
pretty straightforward to be obtained from the exact so-
lution (6), (see also Ref. [35]).

V. DISPERSIVE MODEL

In this section we analyze the dispersive interaction
for the general driven case, this means that |∆| ≫ g
is considered. In turn, the importance of the dispersive
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regime lays on a couple of facts. First, in such a regime
the solution |ψ(t)⟩ of the Schrödinger equation (6) sim-
plifies considerably due to the condition |∆| ≫ g. On
the other hand, and more importantly, the dispersive
regime is quite useful to obtain, both theoretically and
experimentally, highly non-classical (entangled) states of
light [7, 36] (see also [24, 25] and references therein). Par-
ticularly, Schrödinger cat states can be straightforwardly
constructed, as we shall show in the following.

Starting from (9), with ĤD = ĤJCM, we propose

the infinitesimal rotation |χ(t)⟩ = R† |φ⟩, with R̂ =
exp[µ(σ̂+â − σ̂−â

†)], and µ ≪ 1 a parameter to be de-

termined. The effective (diagonal) Hamiltonian Ĥeff =

R̂ĤJCMR̂
† is then

Ĥeff =

(
∆c +

2g2

∆
σ̂z

)
n̂+

(
∆eg +

2g2

∆

)
σ̂z
2

+
g2

∆
, (34)

where we have set µ = g
∆ , and dropped all the powers

of µ greater than two; this is deeply related to what is
known as small rotations approach [40]. Consequently,
the state vector is

|ψ(t)⟩ = T̂ †D̂† (ζ/g) R̂†Ûeff(t)R̂D̂ (ζ/g) |ψ(0)⟩ , (35)

where Ûeff = e− i tĤeff .
In this section a more general initial condition is con-

sidered for the atom: a superposition of the excited and
ground states [7]

|ψ(0)⟩ = |β⟩ ⊗ 1√
2

(
|e⟩+ eiϕ |g⟩

)
, (36)

with 0 ≤ ϕ < 2π. Besides, as we have supposed that
µ ≪ 1, we can take R̂ ≈ 1̂. After some straightforward
calculations, the state |ψ(t)⟩ of the system is found to be

|ψ(t)⟩ =e
− i Θ

√
2

[
Λeiα Im(κ+) |(κ+ − α)e− iω0t⟩ ⊗ |e⟩

+eiϕΛ̄eiα Im(κ−) |(κ− − α)e− iω0t⟩ ⊗ |g⟩
]
, (37)

where Θ = g2t
∆ + α Im(β), Λ = exp[− i t(

ωeg

2 + g2

∆ )],

κ± = (β+α) exp[− i t(∆c ± 2g2

∆ )], and Im(z) denotes the
imaginary part of z. The state in (37) is an entangled
(highly mixed) state of the quantum field and the two-
level atom. It is a generalization of the Schrödinger cat
states studied in sections 4.8 and 10.5 of Ref. [7]. Also,
the initial condition (36) can be easily implemented ex-
perimentally, as explained in [7]. Moreover, despite the
more involved initial condition used in this section, it
is pretty straightforward to obtain the rather simple ex-
pression (37) in the large detunning limit ∆ ≫ g.

VI. CONCLUSIONS

Using an invariant approach as a preamble, we have
shown that the theoretical driven Jaynes-Cummings
model can be transformed into the standard one through
a pair of unitary transformations. This in turn allows to
obtain the exact analytical solution of the Schrödinger
equation for the driven system, as well as the corre-
sponding dynamical variables. Some examples of interest
were given: atomic inversion, average of the number of
photons in the electromagnetic field, and subsystem en-
tropies. The classical driving field has shown to have
notorious effects in such dynamical variables.

The present work constitutes then a generalization of
the method established in [27], where it is considered that
the classical field drives the atomic system only. Also, it
represents a further step with respect to Ref. [26], as our
solution serves to obtain the dynamical variables of the
driven system in a straightforward manner, a result that
is not present in the approach in [26]. In addition, the
atom in the studied driven system is susceptible to be
used as a catalyst, as described in Ref. [41], this will be
reported elsewhere.

In all the cases, the analytical results had proven to be
in good agreement with the numerical calculations. Also,
they reduce to those of the standard Jaynes-Cummings
model in the appropriate limit.
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V. Bužek. Interaction of superpositions of coherent
states of light with two-level atoms. J. Mod. Opt., 39:
1441, 02 1992. doi:10.1080/09500349214551481. URL
https://www.tandfonline.com/doi/abs/10.1080/

09500349214551481.

[24] S. Haroche, M. Brune, and Raimond J. M. Manipula-
tion or optocal fields by atomic interferometry: quan-
tum variations on a theme by young. January 1992.

https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/https://doi.org/10.1038/nphys1730
https://doi.org/https://doi.org/10.1038/nphys1730
https://www.nature.com/articles/nphys1730
https://www.nature.com/articles/nphys1730
https://doi.org/https://doi.org/10.1103/PhysRevLett.105.263603
https://doi.org/https://doi.org/10.1103/PhysRevLett.105.263603
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.263603
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.105.263603
https://doi.org/https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/https://doi.org/10.1103/PhysRevLett.107.100401
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.100401
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.107.100401
https://www.perlego.com/book/1693769/quantum-optics-pdf
https://www.perlego.com/book/1693769/quantum-optics-pdf
https://doi.org/10.1017/CBO9780511791239
https://doi.org/10.1017/CBO9780511791239
https://doi.org/https://doi.org/10.1002/9783527624003.ch5
https://onlinelibrary.wiley.com
https://doi.org/10.1007/978-3-540-28574-8
https://doi.org/10.1007/978-3-540-28574-8
https://doi.org/10.1007/978-3-540-28574-8
https://doi.org/10.1007/978-3-540-28574-8
https://doi.org/10.1088/0305-4470/20/6/004
https://api.semanticscholar.org/CorpusID:122880652
https://api.semanticscholar.org/CorpusID:122880652
https://doi.org/10.1080/09500349014551091
https://doi.org/10.1080/09500349014551091
https://doi.org/10.1080/09500349014551091
https://doi.org/10.1080/09500349014551091
https://doi.org/10.1016/0378-4371(88)90060-X
https://doi.org/10.1016/0378-4371(88)90060-X
https://api.semanticscholar.org/CorpusID:123634961
https://api.semanticscholar.org/CorpusID:123634961
https://doi.org/10.1016/0378-4371(91)90051-D
https://doi.org/10.1016/0378-4371(91)90051-D
https://api.semanticscholar.org/CorpusID:121136819
https://api.semanticscholar.org/CorpusID:121136819
https://doi.org/https://doi.org/10.1016/0375-9601(81)90825-2
https://doi.org/https://doi.org/10.1016/0375-9601(81)90825-2
https://www.sciencedirect.com/science/article/pii/0375960181908252
https://www.sciencedirect.com/science/article/pii/0375960181908252
https://doi.org/10.1088/1367-2630/15/11/115002
https://doi.org/10.1088/1367-2630/15/11/115002
https://dx.doi.org/10.1088/1367-2630/15/11/115002
https://dx.doi.org/10.1088/1367-2630/15/11/115002
https://doi.org/https://doi.org/10.1016/0378-4371(90)90440-4
https://doi.org/https://doi.org/10.1016/0378-4371(90)90440-4
https://www.sciencedirect.com/science/article/pii/0378437190904404
https://www.sciencedirect.com/science/article/pii/0378437190904404
https://doi.org/10.1088/0953-4075/49/16/165503
https://doi.org/10.1088/0953-4075/49/16/165503
https://dx.doi.org/10.1088/0953-4075/49/16/165503
https://dx.doi.org/10.1088/0953-4075/49/16/165503
https://doi.org/10.1364/OE.21.012888
https://opg.optica.org/oe/abstract.cfm?URI=oe-21-10-12888
https://opg.optica.org/oe/abstract.cfm?URI=oe-21-10-12888
https://doi.org/https://doi.org/10.1007/978-1-4757-9742-8_52
https://doi.org/https://doi.org/10.1007/978-1-4757-9742-8_52
https://link.springer.com/chapter/10.1007/978-1-4757-9742-8_52
https://link.springer.com/chapter/10.1007/978-1-4757-9742-8_52
https://doi.org/10.1103/PhysRevA.75.013811
https://link.aps.org/doi/10.1103/PhysRevA.75.013811
https://link.aps.org/doi/10.1103/PhysRevA.75.013811
https://doi.org/10.1103/PhysRevA.44.6023
https://doi.org/10.1103/PhysRevA.44.6023
https://link.aps.org/doi/10.1103/PhysRevA.44.6023
https://link.aps.org/doi/10.1103/PhysRevA.44.6023
https://doi.org/10.1142/S0219749915600059
https://doi.org/10.1142/S0219749915600059
https://doi.org/10.1142/S0219749915600059
https://doi.org/10.1142/S0219749915600059
https://doi.org/10.1080/09500349214551481
https://www.tandfonline.com/doi/abs/10.1080/09500349214551481
https://www.tandfonline.com/doi/abs/10.1080/09500349214551481


9

doi:https://doi.org/10.1007/BF00325380. URL https:

//link.springer.com/article/10.1007/BF00325380.

[25] J. M. Raimond, M. Brune, and S. Haroche. Ma-
nipulating quantum entanglement with atoms
and photons in a cavity. August 2021. doi:
https://doi.org/https://doi.org/10.1103/RevModPhys.73.565.
URL https://journals.aps.org/rmp/abstract/10.

1103/RevModPhys.73.565.
[26] P. Alsing, D.-S. Guo, and H. J. Carmichael. Dy-

namic Stark effect for the Jaynes-Cummings sys-
tem. Phys. Rev. A, 45:5135–5143, Apr 1992. doi:
10.1103/PhysRevA.45.5135. URL https://link.aps.

org/doi/10.1103/PhysRevA.45.5135.
[27] S. M. Dutra, P. L. Knight, and H. Moya-Cessa.

Large-scale fluctuations in the driven Jaynes-Cummings
model. Phys. Rev. A, 49:1993–1998, Mar 1994. doi:
10.1103/PhysRevA.49.1993. URL https://link.aps.

org/doi/10.1103/PhysRevA.49.1993.
[28] R. J. Thompson, G. Rempe, and H. J. Kimble. Obser-

vation of normal-mode splitting for an atom in an op-
tical cavity. Phys. Rev. Lett., 68:1132–1135, Feb 1992.
doi:10.1103/PhysRevLett.68.1132. URL https://link.

aps.org/doi/10.1103/PhysRevLett.68.1132.
[29] Jorge Casanova, Ricardo Puebla, Hector Moya-Cessa,

and Martin B. Plenio. Connecting nth order gener-
alised quantum Rabi models: Emergence of nonlin-
ear spin-boson coupling via spin rotations. npj Quan-
tum Inf., 4(1):47, 09 2018. ISSN 2056-6387. doi:
10.1038/s41534-018-0096-9. URL https://doi.org/10.

1038/s41534-018-0096-9.
[30] C. Di Fidio, W. Vogel, R. L. de Matos Filho, and

L. Davidovich. Single-trapped-ion vibronic Raman
laser. Phys. Rev. A, 65:013811, Dec 2001. doi:
10.1103/PhysRevA.65.013811. URL https://link.aps.

org/doi/10.1103/PhysRevA.65.013811.
[31] S. Wallentowitz, W. Vogel, and P. L. Knight. High-

order nonlinearities in the motion of a trapped
atom. Phys. Rev. A, 59:531–538, Jan 1999. doi:
10.1103/PhysRevA.59.531. URL https://link.aps.

org/doi/10.1103/PhysRevA.59.531.
[32] H. R. Lewis. Classical and quantum systems with

time-dependent harmonic-oscillator-type hamiltonians.
Phys. Rev. Lett., 18:510–512, Mar 1967. doi:
10.1103/PhysRevLett.18.510. URL https://link.aps.

org/doi/10.1103/PhysRevLett.18.510.
[33] H. R. Lewis and W. B. Riesenfeld. An exact quantum

theory of the time-dependent harmonic oscillator and of

a charged particle in a time-dependent electromagnetic
field. J. Math. Phys., 10(8):1458–1473, 08 2003. ISSN
0022-2488. doi:10.1063/1.1664991. URL https://doi.

org/10.1063/1.1664991.
[34] Roy J. Glauber. Coherent and incoherent states of the

radiation field. Phys. Rev., 131:2766–2788, Sep 1963. doi:
10.1103/PhysRev.131.2766. URL https://link.aps.

org/doi/10.1103/PhysRev.131.2766.
[35] S. J. D Phoenix and P. L. Knight. Fluctua-

tions and entropy in models of quantum optical reso-
nance. Ann. Phys., 186(2):381–407, 1988. ISSN 0003-
4916. doi:https://doi.org/10.1016/0003-4916(88)90006-
1. URL https://www.sciencedirect.com/science/

article/pii/0003491688900061.
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