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I. REPLY TO THE REPORT OF REFEREE 2

The article discusses the recently discovered localization transition in partially disordered random regular graphs (as
cited in Ref. [34]). The Anderson transition in random graphs with effective infinite dimensionality has garnered
significant interest recently, partly due to its analogy with many-body localization. Recent studies have uncovered in-
triguing properties, particularly the potential for a non-ergodic delocalized phase. In this paper, the authors investigate
partial disorder, where a fraction of the random graph sites has zero disorder. Their primary objective is to elucidate
the mechanism behind the presence of a mobility edge, regardless of the disorder strength, leading to the delocalization
of states near the middle of the band. The article first describes this aspect and then extends the study to related cases,
such as the directed/non-Hermitian scenario and the introduction of a chemical potential for 3-cycles.

Reply:
We thank the referee for a careful reading of our manuscript and for a nice summary of our results.

While I find the paper’s subject matter interesting, I have several reservations about its current form, which prevent
me from recommending it for publication in Scipost Phys. I have outlined my comments below:
1. Understanding the Mobility Edge Mechanism: The initial part of the paper appears to be the most crucial. It delves
into the mechanism behind the mobility edge in the presence of partial disorder. Let me rephrase the argument to
confirm my understanding: the authors explore the limit of infinite disorder and formulate Abou-Chacra-Thouless-
Anderson recursion relations for the cavity Green’s function in the clean (non-disordered) region. Essentially, infinite
disorder excludes certain neighbors, causing fluctuating connectivity between clean sites. The authors approximate this
problem by neglecting connectivity fluctuations, justified in the limit of a large connectivity. This approach leads to a
self-consistent equation for the cavity Green’s function, allowing the prediction of the mobility edge.

Reply:
We thank the referee for a nice summary of Secs. 2 and 3 of our manuscript. We agree with this summary.

It appears to me that this problem resembles the recent rigorous solution for the localization/delocalization transi-
tion of eigenstates of the Adjacency matrix (where onsite potentials are zero) of Erdös-Rényi graphs, as detailed in
arXiv:2005.14180, arXiv:2305.16294. Notably, states can be localized due to fluctuating connectivity. However, I find
it unclear how this localization is described in the authors’ self-consistent approach, where connectivity fluctuations
are neglected.

Reply:
We thank the Referee for pointing out the above mathematical works, which are certainly relevant. Unlike the Erdös-Rényi
models with extensive and strongly fluctuating connectivities

√
lnN ≪ d ≲ lnN , the effective model in Eqs. (11, 12) has

a finite connectivity, which relative fluctuations are parametrically small, see the discussion after Eq. (13). In this case,
we have to conclude from Sec. 1.5 of arXiv:2005.14180 that the above mentioned mathematically rigorous results are not
applicable to our case. In the revised version, we have cited the above mathematical works.

I have additional questions concerning the numerical simulations. Figure 4 seems crucial, demonstrating the good
agreement between the analytical formula for the mobility edge (mentioned only in the caption, not in the main text?)
and the numerical data. However, the plotted variable is D2 as a function of the parameters E and β. The color scale
abruptly changes at D2 = 0.5 (white), with mainly red for D2 > 0.5 and blue for D2 < 0.5. I fail to understand why
D2 is set to 0.5 at the transition. On the contrary, I would expect D2 to tend to 0 slowly with size. My query is: since
the authors possess a theoretical formula, can they precisely determine the transition numerically? The disorder does
not necessarily need to be W = 1000, and the section where the entire band is delocalized might not be as relevant.
The focus should be on the localization transition, which is the crucial aspect of interest.

Reply:
We thank the referee for this set of questions. Let us reply to them one by one.

� There is no threshold in the numerical simulations. Indeed, the data for the fractal dimensions shows nearly abrupt
jump versus energy from D2 ≃ 0.8 to D2 ≃ 0.05, thus, any reasonable color map will show good results. In order to
clarify this issue, in the revised version, we have added Fig. 2(a) of D2(E) at fixed d, β, W , confirming this. Figure
shows both the above jump in D2(E) as well as the different finite-size flow within and beyond the mobility edge.
Thus, we can, indeed, determine the mobility edge location numerically.

� The claims of the referee about the entire delocalized band and W = 1000 seem to be a confusion. Indeed, as we
have replied to the Referee 1 above, there is the contribution to the density of states in Fig. 3 from the localized
states in the interval |E| < W/2 (it is barely seen, e.g., in panel (c)), therefore at large W no fully delocalized regime
exists, there is the mobility edge, predicted by Eqs. (17-18). In order to clarify this, in the revised version, we have
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added Fig. 2(b) of the density of states at smaller W = 30, showing the predicted density of states of the delocalized
states, Eq. (17), supplemented by the nearly flat one of the localized ones, |E| < W/2.

� We understand the referee’s interest in the localization transition in this model and refer to Eq. (18), which shows
the value of β = βc, when the mobility edge disappears and only localized states survive in the system. In the revised
version, we have clarified the corresponding discussion.

2. Sparse and Dense RRG Duality: The subsequent section briefly outlines a duality between sparse and dense Ran-
dom Regular Graphs (RRG). I struggle to comprehend the authors’ motivation for considering this case. Additionally,
the techniques employed lack sufficient explanation for my understanding. Numerical simulations in this limit must
be notably challenging, likely constrained by a smaller system size.

Reply:
We thank the referee for this comment, coherent to the one of the Referee 1. In the revised version, we have motivated
the presence of the above section in the main text via the fact that Eqs. (17-19) fail to describe this limit of |N − d| ≪ N ,
though we don’t see which approximation stops being valid. The techniques, employed in Sec. 4, are standard for rank-1
perturbations and very similar to the Bethe ansatz integrability of the Richardson’s model. For more details, please see [54].
In the revised version, we have clarify the corresponding discussion in the main text.

3. Generalizations of the Model: The other two model generalizations are quite challenging to grasp. The directed
couplings case is excessively elusive, referring to a future publication. It is difficult to discern the message and the link
between these results and the previous sections. The explanation of the 3-cycles case is insufficient. What exactly are
3-cycles? Why have they been included in the study?

Reply:
We tend to agree with the opinion of both referees on this issue. In the revised version, we have moved Sec. 5 to Appendix,
updated the citation [36], and defined 3-cycles properly.

4. Figures in the Appendix: There are numerous figures in the appendix, and their purpose is unclear to me. Could
the authors provide context or explanations for these figures?

Reply:
The figures 7-10 in the Appendix A provide the multifractal analysis of the main-text data, which is a bit too cumbersome
and unnecessary to include it into the main text. Figure 11-13 in the Appendix B give the full picture of the complex-
valued spectra with the localization structure of eigenstates in the non-Hermitian case. In the revised version, we have
implemented Fig. 12-13 into the corresponding Appendix on the non-Hermitian generalization of the partially disordered
RRG and extended the discussion of all the figures in the Appendices.

5. Language and Text Quality: Lastly, the English and overall text quality require careful editing. Several excellent
tools are available to accomplish this.

Reply:
We thank the referee for pointing out this issue. In the revised version, we have polished the text in terms of English styling
and grammar.
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Abstract

In this work we analytically explain the origin of the mobility edge in the

ensemble of random regular graphs (RRG), with the connectivity d and the

fraction β of disordered nodes, the location of which is under control. It is

shown that the mobility edge in the spectrum survives in a certain range of

parameters (d, β) at in�nitely large uniformly distributed disorder. The criti-

cal curve separating extended and localized states is derived analytically and

con�rmed numerically. The duality in the localization properties between the

sparse and extremely dense RRG has been found and understood. The mobility

edge physics has been analyzed numerically for the above partially disordered

RRG, perturbed by the non-reciprocity parameter of node as well as by the

enhanced number of short cycles, usually almost absent on RRG.
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1 Introduction

Anderson model on the Cayley tree allows the analytic derivation of the critical disorder
for the localization-delocalization phase transition [1]. More recently, the phase transition
on the Anderson model with diagonal disorder on the hierarchical graphs has found its
reincarnation as a toy model for the transition to many-body localized (MBL) phase in
some interacting many-body systems [2]. The simplest ensemble which can be considered
as the zeroth approximation to the Hilbert space of the many-body system is the random
regular graph (RRG) ensemble [3�32] (see [33] for review).

It was found in [34] that the phase diagram of the Anderson model on RRG, with a
�nite fraction β < 1 of disordered nodes, is di�erent from the standard case of β = 1 and
in some region of (d, β)-parameter plane there are delocalized states in the central part of
the spectrum, separated from the localized states by a mobility edge at arbitrarily large
disorder of β fraction of nodes, with the box distribution. This phenomenon takes place if
we have some fraction of the clean nodes. E�ectively from the Hilbert-space perspective
there are interacting clean and dirty subsystems in the model.

The physical motivation behind this model is given by the attempt to take into account
the topologically protected zero modes in the spectrum of an interacting many-body sys-
tem [35�38] in the Hilbert-space-graph framework. There are the overlaps of these modes
with the unprotected modes hence there are links between the clean and dirty nodes in
the partially disordered RRG, but this overlap does not destroy their topological nature
hence the corresponding nodes in the RRG are clean. On the other hand, even the coex-
istence of strongly disordered (MBL) and clean (thermalized) sites in many-body setting
has attracted quite a bit of attention in the literature [39�43].

In this study, we extend the analysis of [34] and investigate the phase structure of
the partially disordered RRG in (d, β)-parameter space. The region in the (d, β) plane
where the mobility edge survives at arbitrarily large disorder amplitude will be identi�ed
numerically and derived analytically for sparse and extremely dense regimes. The depen-
dence on the graph size N of the fractal dimensions Dq and the singular spectrum f(α) for
eigenfunctions in the delocalized part of the spectrum is analyzed numerically. We shall
explain the microscopic origin of the delocalized eigenstates and identify which aspects
of the partially disordered ("two-color") graph architecture, involving the clean and dirty
nodes, is crucial for the delocalization. We shall show that the delocalized states survive
when the graph, composed with clean nodes only, has a giant connected component. We
also generalize the above approach from the sparse d ≪ N to the extremely dense case
of the degree dc = N − d. For this, we exploit the duality property between the mo-
bility edges for the partially disordered RRG with the degree d and its complementary
counterpart with the degree (N − d). In addition, in the Appendix we shall investigate
the robustness of the above predictions with respect to various perturbations of the RRG.
First, we consider the e�ect of enhanced number of the short cycles, usually almost absent
on RRG, on the localization pattern, suggested in [22,44], and, second, we investigate the
non-Hermitian perturbation of RRG by adding the non-reciprocal directed hopping to the
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partially disordered RRG as in [45].
Unlike several recent works [46�50], here for the emergence of the mobility edge, robust

at the large potential, we need neither special �at-band structure of the disorder-free
model [46�48, 51] nor correlated disorder [49, 50, 52�56]. Our model is based on the i.i.d.
disorder potential on the RRG.

The rest of the article is organized as follows. In Section 2 we de�ne the model and
present the numerical evidence for the mobility edge at arbitrarily large disorder. In
Section 3 we analytically derive the critical curve in (d, β)-parameter space for the mobility
edge. In Section 4 we generalize our analytical consideration to the extremely dense graphs,
by analytically utilizing the duality between the localization patterns for node degrees d
and (N − d) and con�rming the results numerically. Section 5 concludes the results.
In Appendices we consider the multifractal spectrum and prove the robustness of the
phenomena observed with respect to the small perturbations of RRG by non-Hermitian
deformation and the enhanced number of the short cycles, usually almost absent on RRG.

2 Robustness of delocalization in partially disordered RRG

In this Section we consider the numerical simulation of the RRG, with the fraction β of
sites subject to the disorder of i.i.d. random variables ϵi of the amplitude W/2 taken from
the uniform distribution, |ϵi| < W/2. First, in Sec. 2.1 we introduce the model and, second,
in Sec. 2.2 we present the numerical simulations for the spectral and localization properties
of the model across the spectrum.

2.1 The model

In the conventional framework, one studies Anderson transition for non-interacting spinless
fermions hopping over RRG with the connectivity d = 3 in a diagonal disorder described
by Hamiltonian

H =
∑
i,j

Aij

(
c+i cj + cic

+
j

)
+

βN∑
i=1

ϵic
+
i ci . (1)

The �rst sum, representing the hopping between nearest-neighbor RRG nodes i and j,
is written in term of the adjacency matrix (Aij = 1 for nearest neighbors and Aij = 0
otherwise) for the regular graph,

∑
iAij =

∑
j Aij = d. The second sum, running over all

N nodes, represents the potential disorder. The standard fully disordered RRG ensemble,
corresponding to β = 1, undergoes the Anderson localization transition at Wc = 18.16 for
d = 3 [8, 11, 15,33]. For larger d the critical disorder is usually estimated as

Wc(d) ≃ d ln d . (2)

2.2 Robustness of delocalization and fractal dimension D2

Let us investigate numerically the properties of the states in the delocalized spectral part,
found in [34] in the largeW limit. As the probes we choose the density of delocalized states,
ρ(E) =

〈∑
n∈delocalized δ(E − En)

〉
, the spectral level-spacing statistics, P (s), with sn =

En+1 −En, and the dependence of the fractal dimension D2 ≡ − ln
(∑

i |ψE(i)|4
)
/ lnN of

an eigenstate ψE(i) on the point in the (d, β) parameter plane.
First, let us demonstrate that the delocalized states survive at the very large disorder

and are clearly seen numerically. Figure 1 clearly demonstrates that at large W the width

3
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Figure 1: Mobility edge structure versus disorder W . Color plot shows the
fractal dimension D2 versus the disorder W and eigenvalues E in the partially
disordered RRG of size N = 1024, with connectivity d = 20, and the fraction
of disordered nodes β = 0.5. The data is averaged over 100 realizations. Figure
shows that delocalized states survive at any achievable disorder amplitude W .

of the delocalized energy range is W -independent. An additional level, started at E =
d at W = 0 corresponds to the standard eigenstate of the adjacency matrix, which is
homogeneous over the entire graph. Its separation from the bulk bandwidth at W ≲ 2d
protects it from the most of the localization mechanisms. At larger disorder amplitudes,
it merges to the bulk spectrum and then localizes.

Note that here and further we focus mostly on the localization, D2 = 0, and delocal-
ization, D2 > 0, but not on the ergodicity, D2 = 1 versus non-ergodicity, 0 < D2 < 1.
Already in a fully disordered RRG at β = 1 the question of the existence of a non-ergodic
phase in RRG has been a discussion point for years [4�20,27�32] and even now the maximal
system sizes of few millions, N ∼ 106 do not resolve this issue [14,31,32]. Therefore in this
work we calculate the fractal dimensions D2 (and their generalization Dq together with
the singularity spectrum f(α) with the de�nitions given below) in the Appendix A only
of �nite sizes up to N ∼ 30000 and do not claim ergodicity or non-ergodicity. In addition,
we have checked that the above picture of the mobility edge, see Fig. 1, converges with the
system size much below the maximal considered size of N ∼ 30000.

Figure 2 demonstrates �nite-size data up to N ∼ 30000 and its in�nite-size extrapola-
tion for partially disordered RRG with connectivity d = 3 and the fraction of disordered
nodes β = 0.5 at intermediate disorder amplitudes W = 30. The mobility edges calculated
from (18) stay in the same energy regardless of the system size, while the fractal dimension
�ows upwards between the mobility edges and goes to zero beyond it.

The delocalization can be also checked via the level spacing distribution P (s), see
Fig. 3. Level spacing determines the statistics of spacing between two adjacent energy
levels si = Eui+1 − Eui , where E

u
i are energy levels after the unfolding procedure (see,

e.g., [26] for details). There the eigenenergy statistics shows the standard repulsion inside
the delocalized region and the Poisson statistics beyond the mobility edge [59]. Some
deviations from Poisson statistics for the localized nodes, |E| > EME , should be related
to the small DOS for these states and its �uctuations for large W = 1000, see the further
discussion of Fig. 4 below.

The density of states, ρ(E), see Figs. 2(b) and 4, shows a clear separation into two
parts: the states, localized at disordered nodes, form a �at box-like distribution of the
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Figure 2: (a) Fractal dimension D2 and (b) density of states across the

spectrum on partially disordered RRG at several sizes N , with connectivity
d = 3, disorder amplitude W = 30 and fraction of disordered nodes β = 0.5.
Colored symbols show �nite-size data, while the solid purple line shows an ex-
trapolated curve [8,57,58]. Black dashed lines in (a) show the mobility edges, cal-
culated from (18). The black solid line in (b) shows a generalized Kesten-McKay
distribution of delocalized states, calculated from (17). The �at contribution of
the localized states is clearly seen in (b).

width W ≫ d (barely seen in Fig. 4), while the extended ones are con�ned at small
energies, |E| ≲ 2

√
(1− β)(d− 1). At small β, the density of delocalized states, ρ(E), is

close to the Kesten-McKay distribution [60,61]

ρ(E) = ρKM (E) =
d
√
[4(d− 1)− E2]

2π(d2 − E2)
(3)

while at large β it becomes close to the Wigner-Dyson distribution Fig. 4. We con�rm this
behavior later in Eq. (17) by the analytical consideration. It is expected since at small β
the clean nodes form almost RRG while at larger β the clean-node graph get randomized
by the dirty nodes.

As the localized states live mostly on the dirty nodes, they are subject to the box-
distributed disorder of the amplitude W = 1000. The number of such localized states is
β · N ≃ 300 − 500 in Fig. 4. As a result, in normalized DOS,

∫
ρ(E)dE = 1, shown in

Fig. 4, the contribution of such localized states is rather small ρ(|E| < W/2) ≃ β/W ≃
0.0001 − 0.0007 on average in panels (a)-(d). At small β, panel (a), in one realization
of the graph only few localized states, ∼ β∆EN/W ≃ 0.6, appear in the shown interval
|E| < ∆E = 6 and this gives barely seen �uctuations (don't associate a peak at E ≃ d
with them). With increasing β from panel (a) to (d) the number of localized states grows
and so does the background, becoming more and more homogeneous and close to the box
distribution of the diagonal disorder. At intermediate W ≃ 30, shown in Fig. 2(b), this
box contribution to the DOS overcomes the threshold of the noise.

In the central part of the spectrum, the deviations from the predicted behavior, Eq. (17),
are expected in Fig. 4 as the parameter (1−β)d goes down, making our cavity-method ap-
proximation Eqs. (11) and (12) less and less accurate. Other deviations, see, e.g., Fig. 2(b)
come from the corrections in small parameter d/W , neglected in the analytical considera-
tion for simplicity.

The width of the delocalized energy range has nontrivial (d, β) dependence, see Fig. 5(a).
There, the above-mentioned �uctuations in DOS from the localized nodes, box-distributed
with the width W = 1000, have been eliminated by putting a threshold to the DOS data,
see the caption of Fig. 5.
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Figure 3: Level spacing distribution between (black dots) and beyond

(purple dots) the mobility edges in the partially disordered RRG of the
size N = 8192, with the connectivity d = 10 and the fraction of disordered nodes
β = 0.5 at the disorder W = 1000. The data is averaged over 1024 realizations.
The data within (beyond) the mobility edge is well described by red dashed (blue
dotted) line, corresponding to the Wigner-Dyson (Poisson) distribution.

There is the critical curve βc(d) in the parameter space which separates the regime
with and without the mobility edge, see Fig. 5(c). This is related to the percolation via
the clean nodes on the partially disordered RRG, see the analytical consideration in the
next section.

We have also investigated the N -dependence of the fractal dimension

Dq ≡
ln
(∑

i |ψE(i)|2q
)

(1− q) lnN
(4)

and spectrum of fractal dimensions

f(α) ≡ 1 +
lnP

(
α = − ln |ψE(i)|2

lnN

)
lnN

. (5)

The corresponding plots for β = 0.5 and β = 0.75 are presented in Fig. 7 � 10 in Ap-
pendix A.

3 Derivation of critical curve at (d, β) plane

In this section, we explain why the density of the delocalized states at not very large β is
well-approximated by the Kesten-McKay distribution with the rescaled RRG d∗ and tree
d∗t degrees. This rescaling reproduces correctly the numerical result for the spectral width
of the delocalized range and the critical curve at (d, β) plane at relatively small d≪ N/2.
Note that the one-loop correction for Kesten-McKay law has been found in [62] and more
general cavity analytic approach for the dense graphs has been developed in [63].

This result can be straightforwardly understood as follows. For large enough disorder
W ≫ 1, d, all the dirty nodes of the RRG become localized and the only possibility
for extended states to survive comes is to live on the clean nodes. This reduces the
problem to the RRG with the β fraction of edges being removed from that. This graph
should be equivalent to the Erd�os-R�enyi one or other hierarchical graphs with �uctuating
connectivity [64] with a certain distribution of the number of edges.

6



SciPost Physics Submission

6 3 0 3 6E
0.00

0.05

0.10

0.15

ρ(E)

β= 0.1
d= 6

(a)

10 5 0 5 10E

β= 0.1
d= 10

(b)

10 5 0 5 10E

β= 0.5
d= 10

(c)

20 10 0 10 20E

β= 0.7
d= 20

(d)

Figure 4: Density of states of partially disordered RRG for di�erent

vertex degrees d and fractions of disordered nodes β. Green-colored his-
tograms show numerically calculated spectral densities for the size N = 8192 and
disorder amplitude W = 1000. The data is averaged over 100 realizations. Black
lines are spectral densities of delocalized states only, calculated from (17) for each
panel. (a) β = 0.1, d = 6, (b) β = 0.1, d = 10, (c) β = 0.5, d = 10, (d) β = 0.7,
d = 20. The contribution of the localized states is barely seen at such large dis-
order.
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Figure 5: Mobility edge structure versus the fraction of disordered nodes

β and the connectivity d. Color plots in panels (a) and (b) show the fractal
dimension D2 versus β and eigenvalues E in the partially disordered RRG of size
N = 1024 at the disorder amplitude W = 1000 for (a) the dilute graph with
connectivity d = 10 and (b) the extremely dense graph with the connectivity
dc = N − d ≃ N , which is complement to the one in (a). Black solid (dashed)
line denotes mobility edge, |EME |2 = 4(1− β)(d− 1), Eq. (19), (|EME + 1|2 =
4(1− β)(d− 1)). The localized states are spread over a huge energy interval
|E| < W/2 = 500 and thus, give only a noise-like contribution to DOS. In order
to make the data smooth and accessible, we have put a threshold on the DOS
and got rid of this noisy part. Grey color in panels (a) and (b) corresponds to
the DOS below threshold. (c) Color plot of the average fractal dimensions D2

in the central band |E| < EME in the partially disordered RRG versus β and d
at W = 1000. Green solid lines in all panels show the critical curve βc, given
by (19). All the data is averaged over 25 realizations.
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In order to make the above argument clear, as on the usual RRG, let's consider cavity
equations for the single-site Green's functions on clean G∗

n and dirty G′
n nodes and their

tree counterparts G∗
n→a and G

′
n→a with the removed link from n to its ancestor a.

1
G∗

n
= E + iη −

kn∑
m=1

G∗
i∗m→n −

d−kn∑
m=1

G′
i′m→n

1
G′

n
= E + iη − εi −

kn∑
m=1

G∗
i∗m→n −

d−kn∑
m=1

G′
i′m→n

1
G∗

n→a
= E + iη −

ln∑
m=1

G∗
i∗m→n −

d−1−ln∑
m=1

G′
i′m→n

1
G′

n→a
= E + iη − εi −

ln∑
m=1

G∗
i∗m→n −

d−1−kn∑
m=1

G′
i′m→n

, (6)

where i∗m and i′m are the indices, enumerating the pure and disordered sites on the tree,
the ancestor of which is n, kn and ln are numbers of clean descendants of n on the RRG
(Gn) and on the tree (Gn→a), respectively. It is important to note that the total number
of the descendants of n for the tree is given by a branching number dt = d − 1, while for
the RRG, where each point is locally a root of the tree, it is given by the vertex degree d.

The number of clean nearest descendants of any node n obeys binomial distribution

pd̃(k) =

(
d̃

k

)
(1− β)kβd̃−k , (7)

with d̃ = dt, k = ln for the tree (pdt(ln)) and d̃ = d, k = kn for the RRG (pd(kn)). In both
cases, for large enough (1− β)d̃≫ 1 this distribution is well approximated by the normal
distribution with the mean and the variance given by

⟨k⟩d̃ =
∑
k

pd̃(k)k = (1− β)d̃ (8)

σ2
d̃

=
∑
k

pd̃(k)(k − ⟨k⟩d̃)
2 = β(1− β)d̃ (9)

Let's consider the simplest approximation at large W by keeping in the equation for
the dirty nodes only the disorder term which yields

G′
n ∝W−1 (10)

and substitute this solution into the equation for the clean nodes. In the limitW → ∞, the
e�ects of dirty nodes are subleading, and the problem reduces to the one on the disorder-
free nodes on a graph with node degree distribution (7). Hence we get the equation for
clean nodes

1

G∗
n

= E + iη −
kn∑
m=1

G∗
i∗m→n (11)

1

G∗
n→a

= E + iη −
ln∑
m=1

G∗
i∗m→n . (12)

These equations evidently yield the RRG KM spectral density, but now both with �uctu-
ating and rescaled d∗ = kn and d∗t = ln. For large enough ⟨k⟩dt ≫ 1 the corresponding
rescaled parameters in the most realizations are given by their mean values

d∗ = ⟨k⟩d = (1− β)d, d∗t = ⟨l⟩dt = (1− β)dt (13)

8
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and their relative �uctuations are small as σd/d
∗ ∼

√
β/d∗ ≪ β1/2 ≤ 1. The critical value

βc, when the clean nodes do not form a connected tree-like graph, can be derived from the
equation d∗t (βc) = 1.

Note that, unlike the regular case, both rescaled parameters d∗ and d∗t are not anymore
related to each other via d∗ = d∗t + 1 (similarly to [64]).

The generalized KM distribution can be obtained from Eqs. (11) and (12). In the
limit (1− β)d̃≫1, when due to the large e�ective connectivity of clean nodes, it is natural
to assume that G∗

n→a is self-averaging, one can rewrite the latter of two equations as a
self-consistent equation on the mean ⟨G∗

n→a⟩ = G∗
→ as follows

1

G∗
→

= E + iη − d∗tG
∗
→ , (14)

which immediately gives the solution

G∗
→ =

E + i
√
4d∗t − E2

2d∗t
, d∗t = (1− β)(d− 1). (15)

with the semi-circular density of states ρ→ = Im G∗
→/π.

The generalized KM distribution is given by the equation (11) for ⟨G∗
n⟩ = G∗ with

kn ≃ d∗ = (1− β)d

G∗ =
1

E + iη − d∗G∗
→

=
(d− 2)E + id

√
4d∗t − E2

2 [d2(1− β)− E2]
. (16)

This gives for the density of states ρ

ρ(E) =
Im G∗

π
=
d
√
4(d− 1)(1− β)− E2

2π [d2(1− β)− E2]
(17)

and the corresponding mobility edges EME at

EME = ±
√

4(d− 1)(1− β) . (18)

Like in the standard KM distribution, the critical value βc is de�ned as percolation
threshold d∗t = 1 on the tree with the branching number d∗t

1− βc =
1

d− 1
→ βc = 1− 1

d− 1
. (19)

If β ≤ βc, the graph of clean nodes has a giant connected component, and the wave
functions on this component are delocalized. If β > βc, the graph of clean nodes separates
into disconnected components, average size n of each of those is small compared to the
network size, n ≪ N . Localized eigenstates in Fig. 5(a) signi�cantly below threshold
appear due to the isolated pure nodes at λ = 0 and connected pairs of pure nodes at
λ = ±1. Probably, it is these isolated clean nodes that lead to the deviations of DOS from
Eq. (17) in Figs. 2(b) and 4(c), (d).

Note that the above problem might be similar to the one of the Erd�os-R�enyi graph,
where some states can be localized even without disorder due to the �uctuating extensive
node degree d ∼ (lnN)a, 1 < a < 2 [65,66]. However, we cannot see an immediate relation
to our problem of a �nite connectivity with a small relative �uctuations, Eq. (13) and at
large disorder amplitude W ≫ d, 1.

The robustness of the delocalized states with respect to various perturbations, sug-
gested in the literature [44, 45], are considered in Appendix B. There we focus on the

9
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non-Hermitian versions of RRG with the (partially) directed edge, see Appendix B.1, as
well as the presence of the short cycles of a length 3, which are usually almost absent in the
RRG. The latter increase of the short-cycle number is achieved by a certain deformation
of the distribution over all possible RRG by adding an exponential weight of the number
of such cycles [22,44], see Appendix B.2.

Both generalizations show that small perturbations do not break the presence of the ex-
tended states below the mobility edge and con�rm the robustness of the above conclusions.

4 Duality in localization properties between sparse and dense

RRG

The analytical derivations of the density of states for the delocalized states, Eq. (17),
and the corresponding mobility-edge location, Eq. (18), should be valid for large enough
disorder amplitudesW ≫ 1, d and e�ective degrees of the graph of clean nodes, d∗t , d

∗ ≫ 1,
Eq. (13), but for any bare degree d.

However the numerical simulations in Fig. 5(b) show that this is not the case for the
dense RRG at large d, when |N−d| ≪ N . In this case, the energy interval, where the states
are delocalized and the mobility edge curve in the (d, β)-plane exists, is not determined by
the large degree d, but instead by the one of the complimentary graph, dc = N−d−1 ≪ N .
Indeed, the comparison of Fig. 5(a) and (b) shows that the width of this interval ∆E is

∆E = (1− β)min [d, (N − d− 1)]− 1 (20)

that corresponds to the results of the complementary graph with dc = N − d− 1 ≪ N .
For the adjacency matrix, consisting of 0 and 1, and for the symmetric disorder distribu-

tion, the above mapping to the complimentary graph can be straightforwardly understood
via the rank-1 perturbation of the initial problem, see [67].

Indeed, using the eigenvalues E0
n and eigenvectors

∣∣E0
n

〉
of a certain realization of the

problem on the standard (complimentary) graph with the connectivity dc ≪ N and the
diagonal disorder εi, well-described by Eqs. (17) and (18), one can straightforwardly write
the Hamiltonian of the dense model (with d = N − dc ≃ N) as a complimentary graph as
follows

H = −
∑
n

E0
n

∣∣E0
n

〉 〈
E0
n

∣∣+ |1⟩ ⟨1| − I . (21)

Here ⟨i|1⟩ = 1 for all sites i and I is the identity matrix, as the vector |1⟩ of ones is not
normalized. Note that for any disorder realization on the initial (complimentary) graph
ϵi,c, the e�ective disorder realization in the dense one changes its sign ϵi = −ϵi,c.

The peculiar property of the complimentary model is that the part |1⟩ ⟨1|, non-diagonal
in the eigenstate basis of the initial problem {

∣∣E0
n

〉
}, is a rank-1 matrix and therefore this

dense model can be solved using the simplest Bethe ansatz solution of the Richardson's
model [68�72]. ∑

n

|
〈
E0
n|1

〉
|2

E + E0
n + 1

= 1, (22)

|E⟩ = CE
∑
n

〈
E0
n|1

〉
E + E0

n + 1

∣∣E0
n

〉
, (23)

C−2
E =

∑
n

|
〈
E0
n|1

〉
|2

(E + E0
n + 1)2

. (24)

10
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From the literature [58,71,73�75] it is known that, as soon as
∣∣〈E0

n|1
〉∣∣2 is more or less

homogeneous versus n and W ≪ N , all but one new eigenvalues, being the solutions of
Eq. (22), E = En (shifted by 1 in our case due to the presence of I in the equation) are
located in between the old ones −E0

N−n+1 < En + 1 < −E0
N−n and the eigenstates are

power-law localized in the eigenbasis of the initial problem with the power-law exponent
2, |

〈
E0
N−n|Em

〉
|2 ∼ 1/|m− n|2. This property is related to the fact that for W ≪ d ∼ N

all but one eigenstates are nearly orthogonal to |1⟩.
The only high-energy level (not shown in Fig. 5(b)), which is not orthogonal to |1⟩

takes the large energy of the order of EN ∼ N . As soon as the diagonal disorder W ≪ N ,
this vector is delocalized as |EN ⟩ ≃ |1⟩ /

√
N .

This immediately means that

� The width and the pro�le of the band are the same in the initial and complementary
problems and controlled by the e�ective node degree deff = min(d,N − d+ 1);

� The localization and fractal properties Dq are also the same, at least for q > 1/2,
where the power-law localization tails are not important;

� The only di�erence appears at W ≪ N , when there is the high-energy level at
EN ≃ N , while the bulk bandwidth is shifted by −1 (due to the same trace of both
initial and complimentary matrices).

All these properties have been numerically investigated in Fig. 5(b), please compare with
the panel (a) to see the shift of energy by 1.

5 Conclusion

In this study, we have clari�ed the mechanism behind the robustness of the delocalized
energy range at arbitrarily large disorder, found in [34]. The system involves coupled clean
and dirty subsystems and the delocalized region at the (d, β)-parameter plane corresponds
to an e�ective problem solely on the clean nodes, with the renormalized RRG and tree
degrees, at the large enough disorder. This result has been obtained analytically in the
leading approximation in 1/W and at large, but �nite node degree and con�rmed numer-
ically for sparse and extremely dense regimes. In addition, in Appendices, the e�ects of
various perturbations of β-deformed RRG have been as well investigated.

The pattern of the appearance of the controllable mobility edge we have found pro-
vides the additional insights for the account of the topologically protected modes of the
interacting many-body systems in the Hilbert space framework. In this respect it would be
of a particular interest to generalize the e�ect of β-deformation to the many-body Hilbert
space structures, like a hypercube graph in the quantum random energy model [76,77]. It
is also interesting to consider a randomly distributed β parameter and the e�ects of the
non-Hermitian diagonal disorder, which may lead to the localization enhancement [78�81],
unlike the usual non-reciprocity [82]. If the RRG ensemble is considered as the discrete
model for the 2d quantum gravity the Anderson model corresponds to the massive �eld
coupled to the �uctuating geometry. The case of the Anderson model on partially disor-
dered RRG corresponds to the situation when there are zero modes of the �eld localized
at some defects. It would be interesting to develop this framework further.
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A Multifractal spectrum f(α) and fractal dimensions Dq

In this Appendix, we show the multifractal analysis for the spectrum of fractal dimensions,
Figs. 7 and 8, and for the fractal dimensions, Figs. 9 and 10, on the RRG with d = 3 for
two di�erent values of β in the three distinct part of the spectrum, shown in Fig. 6.

For β = 0.5, smaller than a threshold value, Eq. (19), see Figs. 7, 9, the states in the
bulk part of the spectrum, |E| < EME2 are delocalized at any available disorder amplitude
(f(0) stays signi�cantly negative and Dq > 0). Unlike this, above the threshold value,
β = 0.75 > βc, see Figs. 8, 10, all the states tend to the localization eventually at large
enough disorder. This con�rms the main claims of the main text.

In addition, one can see some deviations from ergodicity in the delocalized parts (two
rightmost rows in Figs. 7, 9), that may though be �nite-size e�ects. Therefore in the
main text we don't claim any fractality or multifractality of these states, focusing on the
localization (leftmost rows) versus delocalization (the rest).

Figure 6: The �nite-size approximation of the fractal dimension, Dq(N) =
ln [IPR(N)/IPR(2N)] / ln [2], versus energy for W = 30, d = 3, and β =
0.5, used to separate the energy windows for the next four �gures: (left) below
the mobility edge (localized states), |E| > EME1; (middle) above the mobility
edge (delocalized states), EME2 ≤ |E| ≤ EME1; (right) in the central (not fully
ergodic) part, |E| < EME2.
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Figure 7: The spectrum of fractal dimensions f(α) for di�erent disor-

der amplitudes W , d = 3, and β = 0.5 in di�erent parts of spectrum

(see Fig. 6): (left) below the mobility edge (localized states), |E| > EME1; (mid-
dle) above the mobility edge (delocalized states), EME2 ≤ |E| ≤ EME1; (right) in
the central (not fully ergodic) part, |E| < EME2. Colored symbols show �nite-size
data, while the solid purple line shows an extrapolated curve [8, 57, 58]. Panels
show gradual localization of the states, below the mobility edge (left) with increas-
ing disorderW (f(0) goes to 0), while both states above it and at the central part
stay delocalized (f(0) stays signi�cantly negative).
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Figure 8: The spectrum of fractal dimensions f(α) for di�erent disor-

der amplitudes W , d = 3, and β = 0.75 in di�erent parts of spectrum

(see Fig. 6): (left) below the mobility edge (localized states), |E| > EME1; (mid-
dle) above the mobility edge (delocalized states), EME2 ≤ |E| ≤ EME1; (right) in
the central (not fully ergodic) part, |E| < EME2. Colored symbols show �nite-size
data, while the solid purple line shows an extrapolated curve [8, 57, 58]. Panels
show gradual localization of all the states with increasing disorder W , both below
the mobility edge, above it, and at the central part as β > βc = 1 − (d − 1)−1,
Eq. (19).
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Figure 9: Fractal dimensions Dq, extrapolated from the �nite sizes of

Fig. 7, (upper row) versus disorder for di�erent q and (lower row) versus q for
di�erent disorder amplitudesW in the partially disordered RRG in di�erent parts
of spectrum (see Fig. 6): (left) below the mobility edge (localized states), |E| >
EME1; (middle) above the mobility edge (delocalized states), EME2 ≤ |E| ≤
EME1; (right) in the central (not fully ergodic) part, |E| < EME2. The fraction
of disordered nodes is β = 0.5. Panels show gradual localization of the states,
below the mobility edge (left) with increasing disorder W (Dq goes to 0), while
both states above it and at the central part stay delocalized (Dq > 0).
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Figure 10: Fractal dimensions Dq, extrapolated from the �nite sizes of

Fig. 8, (upper row) versus disorder for di�erent q and (lower row) versus q for
di�erent disorder amplitudesW in the partially disordered RRG in di�erent parts
of spectrum (see Fig. 6): (left) below the mobility edge (localized states), |E| >
EME1; (middle) above the mobility edge (delocalized states), EME2 ≤ |E| ≤
EME1; (right) in the central (not fully ergodic) part, |E| < EME2. The fraction
of disordered nodes is β = 0.75. Panels show gradual localization of all the states
with increasing disorder W , both below the mobility edge, above it, and at the
central part as β > βc = 1− (d− 1)−1, Eq. (19).
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Figure 11: Representative realizations of the complex-valued spectra in

partially disordered and partially directed RRG of the size N = 1024,
with the connectivity d = 8 for di�erent disorder strengths W and the fraction
β of disordered nodes. Color coding corresponds to the fractal dimension D2 of

a product of left and right eigenvectors in a biorthogonal basis,
〈
ψLi |ψRj

〉
= δij ,

for each point in the parameter space. The top row corresponds to an undirected
Hermitian graph, r = 1, while the second and third ones � to the directed graphs,
with the reciprocity parameter r = 0.125 determined as the fraction of bidirected
connections to all connections. One can see that small non-Hermiticity does not
break the existense of the mobility edge in the spectral central part along the real
part of the energy.

B Further generalizations of the model

In this Appendix, we consider various perturbations of the partially disordered RRG model
to the directed non-reciprocal version of it [45], see Sec. B.1, and to the RRG, perturbed
by the presence of short cycles of a length 3 [22, 44], which are almost absent in the
standard RRG case, see Sec. B.2. In both next subsections we investigate numerically the
localization and multifractal properties of these models.

B.1 Directed partially disordered RRG

In this section, we consider the localization in the Anderson model on a partially directed
RRG with the non-Hermitian spectrum in the partially disordered case, dubbed as β-
deformation of RRG. The two-parametric non-Hermitian model of RRG with standard
disorder in the full generality is presented in [45].

The model in [45] uses two parameters that correspond to the reciprocity and the hop-
ping asymmetry. In this work, only dependence on reciprocity 0 ≤ r ≤ 1 is studied. A
traditional way to de�ne network reciprocity involves the ratio of the number of bidirec-
tional connections to the number of all, bidirectional and unidirectional, connections. We
modify the RRG network as follows: with the probability r, we replace an undirected edge
by two oppositely directed ones, with weights of 1 each. Otherwise, with probability 1− r,
the undirected edge is changed to one directed in a random direction, with the weight of
2. Therefore, the total bandwidth of the link between connected nodes is constant and
equal to 2. If r = 0 the graph becomes an oriented directed RRG graph, while at r = 1
the graph is equivalent to the standard undirected RRG. At certain ranges of parameters,
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Figure 12: Complex-valued spectra of the partially disordered and par-

tially non-reciprocal RRG with the node degree d = 8 for di�erent reci-
procity parameters r and disorder amplitudes W at the fraction of disordered
nodes β = 0.5. Each plot is colored by fractal dimension value D2. For all
panels, diagonal disorder distribution has the same realization from the interval
[−1/2; 1/2], but multiplied by W .

this model has a tendency to become undiagonalizable due to the existence of exceptional
points, see [45] for more details. To overcome the problem, small perturbation feedback
ϵ = 2× 10−5 is added to unidirected edges.

The representative realizations of complex-valued spectra for RRG with the connec-
tivity d = 8 for di�erent r, W and for β = 0.5 and β = 1.0 are shown in Fig. 11. All
the points in these plots are colored by the value of the fractal dimension D2 of a product

of left and right eigenvectors in a biorthogonal basis,
〈
ψLi |ψRj

〉
= δij . For more details,

please see Fig. 12, 13.
Let us summarize the e�ects of competition of β and r parameters at large W

� Instead of the mobility edge of the undirected case, r = 1, for r < 1, β < 1 we have
the mobility curve in the complex plane. At β = 0.5 and large W the spread of the
imaginary parts of the delocalized states is independent of W . The imaginary part
of the localized states at large W vanishes. The latter is natural as the diagonal
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Figure 13: Complex-valued spectra of the fully disordered (β = 1) and
partially non-reciprocal RRG with the node degree d = 8 for di�erent reci-
procity parameters r and disorder amplitudes W . Each plot is colored by fractal
dimension value D2. For all panels, diagonal disorder distribution has the same
realization from the interval [−1/2; 1/2], but multiplied by W .

disorder, which is dominant, is real, see [82].

� With the parameter r, the width of the delocalized region along the real axis varies
in the same order as the initial model.

� At r < 1, β < 1 the non-reciprocity leads to the emergence of the island of the
localized states inside the delocalized region. Similarly to [45], this island is related
to the emergence of the topologically equivalent nodes (TEN) as well as the nodes
with only incoming edges (node in�ows). This localized island disappears at large
enough r.
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Figure 14: Color plot of the fractal dimension D2 across energy E and

versus (a) disorder W or (b) chemical potential µ3 of 3-cycles in the

partially disordered RRG of the size N = 1024, with β = 0.5. Panel (a)
shows the clustered phase with µ3 = 2, while panel (b) corresponds to strong dis-
orderW = 1000. Each point of a color plot is averaged over totally 100 structural
and disorder realizations. From both panels one can see that the mobility edge
picture survives fully in the unclustered phase, µ3 < 1.3 and at least partially
even in the clusterized one.

B.2 E�ect of enhanced number of the 3-cycles

For completeness, let us consider the e�ect of the deformation of the RRG by a chemical
potential µ3 of the 3-cycles on the localization of the partially disordered RRG. We focus at
the RRG ensemble, where the degrees of all nodes are �xed to d and the partition function
is considered Z(µk) =

∑
RRG exp(

∑
k µkMk), where Mk is the number of the length-k

cycles in the graph without the back-tracking and µk are the chemical potentials counting
the number of these k-cycles. Cycles of length k are paths on a graph with length k, where
all edges are di�erent and the start and end vertex are the same.

For the β = 1, some observations concerning the localization in µ3-deformed theory
can be found in [22] and the thorough analysis which uncovered quite rich phase structure
has been performed in [44] for various systems sizes N , node degrees d, and the cycle
lengths k, corresponding to µk. The number of 3-cycles can be derived from the graph
adjacency matrix M3 ∝ TrA3. There are four di�erent phases at the (µ3, d) parameter
space: unclustered, µ3 < µ3,TEN , TEN-scarred, µ3,TEN < µ3 < µc, and two clustered
ones, µ3 > µc, µ3,TEN : ideal and interacting ones. At leading terms in N of the above

critical line are given by µ3,TEN ∼ (d−2) lnN
(d−1) and µc ∼ 3(d−2) lnN

d(d−1) , please see [44] for more
details.

Here we shall consider numerically some e�ects of the β-deformation in the µ3-deformed
RRG. In Figure 14(a) we present the localization pattern for fractal dimension at β = 0.5
in the (W,E)-plane, while in Fig. 14(b) we show its behavior in the (µ3, E)-plane.

Figure 14(b) shows the e�ect of µ3 on the partially disordered RRG. At small µ3 < µc
in the unclustered phase, both the dependence of D2 on the parameters and the position
remains the same as in Figure 1. At µ3 > µc (see Fig. 14(b) at µ3 > 1.25), the system
undergoes the clusterization transition [44]. The dependence ofD2 onW changes, as shown
in Figure 14(a). The localization in the β-deformed RRG model occurs in each cluster
separately. This e�ectively replaces N by d+ 1 and suppresses Dq value in Fig 14(b). In
clustered phase, the center of the continuous spectrum part shifts to −1 because the graph
consists of dense clusters of triangles and narrows due to the change of spectral density
from KM distribution to triangular shape distribution, like in the diagonal disorder-free
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case.
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