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Dear editor and reviewer,
we would like to thank very much the reviewer first of all for her/his accurate

and stimulating comments, and then also for the overall positive assessment of
our results and of their importance. We have amended the manuscript according
to all the reviewer’s suggestions, and think that the paper in the present form
is suitable for publication.

We now reply to the specific issues raised by the reviewer.

Reviewer:
I think the authors should also mention quantum sensing in systems showing

a dynamical phase transition (for instance [1,2]), since those are also related to
the ESQPT studied here.
Answer:

We have mentioned quantum sensing with dynamical phase transitions in
the third paragraph of the introduction:

“The QFI also characterises classical and quantum phase transitions [6,17],
dynamical quantum phase transitions [18,19], as well as phase transitions in
steady states of dissipative dynamics [20-22], as it is proportional to the Bu-
res metric in the state space (except for pathological, eliminable singularities
[23,24]). Therefore, the QFI is expected to be much larger, i.e. superexten-
sive, at critical points that separate macroscopically different phases, while it is
at most extensive elsewhere. For certain topological [25] and non-equilibrium
[20,21] phase transitions, the QFI can also be superextensive within an entire
phase. All the aforementioned paradigms for phase transitions have then po-
tential applications in precision metrology.”

Reviewer:
Although I fully agree that the QFI here shows super-extensive scaling, I am

not sure it couldn’t be obtained otherwise.
...
To be clear, this doesn’t affect the validity or interest of the results presented

here; but I think the claims of the paper should be amended. These are threefold:
the QFI allows to witness the presence of the ESQPT, we can design a protocol
showing super-extensive scaling using excited-state preparation, and this super-
extensive scaling comes from the ESQPT. It is this latter claim which I believe to
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be incorrect. In this regard, there are multiple statements that should be rewritten
or supressed: for instance “Fh exhibits a sharp peak close to the critical energy
Ec, and its maximum value... increases with the system size N ” and “The
superextensivity of the QFI... is therefore a signature of the ESQPT” on p.7,
“both ⟨Ek|S2

z |Ek⟩ and ⟨Ẽk|S2
z |Ẽk⟩ scale as O(N2) at the critical point” on p.10,

“their critical behavior is the key resource for enhanced precision” on p.19.
Answer:

We thank the reviewer for raising an issue that points to the role of criticality
for metrology As we understand the reviewer’s arguments, we reworded several
sentences in the paper in order to smooth our claims. We however think that
the superextensivilty of the quantum Fisher information and thus performances
of precision metrology are due to the excited-state quantum phase transition
(ESQPT). After replying to the other issues, we provide informal arguments
but not rigorous proofs. The new rewording conveys that the criticised claim is
not a claim but our interpretation of the results; additional research could shed
light on this conceptual issue.

We did not amend the sentence “Fh exhibits a sharp peak close to the
critical energy Ec, and its maximum value... increases with the system size
N ” and similar sentences where we describe mathematical properties of some
quantity evaluated when the field equals a critical value or when the energy
equals the critical energy. Indeed, we think that these sentences just describe
mathematical statements irrespective of the fact that precision metrology is due
to the ESQPT. Accidentally or not, the QFI as a function of the energy is peaked
at the value Ec which is also the critical energy, as shown in figure 4(a,b).

The sentence “both ⟨Ek|S2
z |Ek⟩ and ⟨Ẽk|S2

z |Ẽk⟩ scale as O(N2) at the critical
point” has been replaced with “The extensivity of the magnetisation also entails
that ⟨Ek|S2

z |Ek⟩ and ⟨Ẽk|S2
z |Ẽk⟩ scale as O(N2)”.

The sentence “The superextensivity of the QFI... is therefore a signature of
the ESQPT...” has been replaced by “We suggest that the superextensive peaks
of the QFI, occurring at magnetic fields equal to the critical values hk

c and at
energy equal to the critical energy Ec, is a signature of the ESQPT. From this
superextensivity, we now estimate the scaling of energy gaps |En − Ek| around
the critical energy Ec, that is another feature of the ESQPT.”

The sentence “their critical behavior is the key resource for enhanced pre-
cision” has been replaced with “our results lead us to suggest that the critical
behaviour of Hamiltonian eigenstates is the key resource for enhanced precision”.

Reviewer:
I found the way Σ∗

Fh
was defined a bit confusing. From the caption of Fig.4,

I take it it corresponds to the half-peak width of the QFI, but when expressed as
a function of E/N? Could the authors write this down explicitely in the main
text?
Answer:

We have corrected the text according to the reviewer’s suggestion: “The
width at half peak of the QFI expressed as a function of E/N ” at page 7.

Reviewer:
More generally, I found the notations ΣFh

(Ek) and Σ∗
Fh

rather cumbersome,
I would suggest something like Σh(Ek) and ΣE(h)

∗ instead, to lighten up the
notation and highlight which parameter one takes the width against.
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Answer:
We have implemented the changes suggested by the reviewer. Consistently,

we have replaced Dk
hc

with Dk.

Reviewer:
After Eq.(8), there is a somewhat complicated argument to conclude that

⟨Ek|Sz|Ek⟩ behaves like Nκ, with κ ∼ 1.02. Instead, I would simply and imme-
diately say κ = 1, since magnetization is an extensive quantity... To which one
can add a quick comment stating that numerical analysis confirms this scaling
(the 0.02 deviation is much more likely to come from finite-size effects or nu-
merical errors in the implementations than from relevant physical effects, in my
opinion).
Answer:

We have implemented the change suggested by the reviewer. The new para-
graph starts with

“The magnetisation is an extensive quantity, and thus ⟨Ek|Sz|Ek⟩ = O(N).
We have numerically checked this scaling for the minima of ⟨Ek|Sz|Ek⟩ attained
at the critical points Ek = Ẽk = Ec and h = hk

c (see figure 5(a)). The minimum
values are fitted by |⟨Ŝz⟩min| = CNκ, resulting in κ ≃ 1.02 irrespective of
the excited state |Ek⟩ (see figure 5(b)), where the deviation of κ from 1 is
due to numerical errors. The extensivity of the magnetisation also entails that
⟨Ek|S2

z |Ek⟩ and ⟨Ẽk|S2
z |Ẽk⟩ scale as O(N2).”

Reviewer:
After Eq.(12), it could be interesting to show ρ(E)p(E) and F(E) on the

same figure, to illustrate how they overlap when N changes.
Answer:

We plotted in figure 7 the functions Fh(Ek) and ρ(Ek)p(Ek), with ρ(Ek) =∑
l δ(Ek −El). The function ρ(Ek)p(Ek) is plotted for the two choises p(Ek) =

e−βEk/Tr e−βHh with β = 0.01 and β = 0.005, and p(Ek) =
∣∣⟨Ek|(| ↓z⟩)⊗n

∣∣2.
Panel (a) of figure 7 shows the plots for N = 800, and panel (b) shows plots
for N = 1600. The peak of ρ(Ek)p(Ek) decreases with N . Indeed, p(Ek) =
e−βEk/Tr e−βHh scales as 1/N for large temperatures (small β), and p(Ek) =∣∣⟨Ek|(| ↓z⟩)⊗n

∣∣2 scales as N−0.06 (see reference [52]). Nevertheless, the integrand
of equation (12) remains highly peaked around the critical energy. Note that
we have rescaled some curves in order to plot them in the same figure. We have
added the following comment after equation (12):

“In order to visualise the overlap of the QFI Fh(Ek) with ρ(E) p(E),these
functions are plotted in figure 7, with two choices for p(Ek). The first case
is p(Ek) = e−βEk/

∑
k e

−βEk and corresponds to the state before the phase
estimation algorithm being the Gibbs state at large temperatures. The second
case, namely p(Ek) =

∣∣⟨Ek|
(
| ↓⟩

)⊗N ∣∣2, occurs when the state before the phase
estimation algorithm has all spins down in the z direction. Note that some
functions are rescaled by suitable factors (see the legends and the caption) in
order to plot all of them in the same figure. The peak of ρ(E) p(E) decreases with
increasing N , but the peak of Fh(Ek) increases with N so that ρ(E) p(E)Fh(Ek)
remains highly peaked around the critical energy. When the initial state is
| ↓⟩⊗N , for instance, the probability to obtain the critical eigenstate decays very
slowly with N , i.e. p(Ek) =

∣∣⟨Ek|
(
| ↓⟩

)⊗N ∣∣2 = O(N−0.06) [52]. Therefore the
averaged QFI scales as Fh ∼ Nγ−0.06 ∼ N2.01.”
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Reviewer:
“p.8: the notation ĈU2j∆t is fairly cumbersome, I would suggest something

like ĈU (j) instead”.
Answer:

We have implemented the suggested changes, and consistently also at pages
11 and 13.

Reviewer:
p.9: “ ‘For instance, psucc = 0.9 imples” → “implies”
p.13: “also the metrological performances are probabilistic” → “the metrolog-

ical performances are also probabilistic”.
p.15: “scale with N much slowly than the spacing” → “much more slowly”
still on p.15, “we show the robustness magnetometric performances” → “the

robustness of the magnetometric”
p.15 still, “We then obtain superextesive QFI” → “superextensive”

Answer:
We have implemented the corrections.

We now reply in detail to the criticisms concerning the claim that the su-
perextensivity of the QFI and of the sensitivity is due to the ESQPT. Since we
only provide informal arguments, we agree to amend the claim in the paper, as
the reviewer suggested.

Reviewer:
Even for h = 0, when we are seemingly far away from the transition, we still

obtain super-extensive behavior. Hence, it seems to me that this N2 scaling may
not come from the ESQPT directly; rather, it comes from the fact that we pick
up highly-excited states.
Answer:

ESQPTs are characterised by accumulation of eigenstates around the critical
energy: the density of eigenstates shows a logarithmic divergence, see figure
1(b,c) and equation (2). This accumulation is responsible of the broadness
of the QFI peak at the critical energy and at criticial values of the magnetic
field. The fact that the QFI is maximised exactly at the critical field for each
eigenstate is in our opinion a hint that ESQPT plays a role. The QFI decreases
away from the critical field, and thus the best magnetometric sensitivity is
achieved at the critical point hk

c given the k-th eigenstate. As the QFI gives the
best metrological sensitivity, we think that there exists some kind of connection
between precision magnetometry, the superextensivity of the QFI, and ESQPT.

Moreover, the Hamiltonian is unitarily invariant under h → −h, therefore the
QFI of the k-th eigenstate in figure 2 shows also a symmetric peak at a negative
field. The superextensivity of the QFI at h = 0 could also be a consequence
of the decay away from the peak that is contrasted by the above symmetry
requirement.

Finally, the metrological protocols we have proposed relies upon the use of
the “critical eigenstate” corresponding to the maximum of the QFI. Although at
h = 0 several highly excited eigenstates show superextensive QFI, it is not simple
to project on one of these eigenstates on demand. So our ideal metrological
source state are only the eigenstates at the critical energy.
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Reviewer:
To be more precise, consider the two Hamiltonians S2

x/N or Sz constituting
the LMG. Taken individually, they do not display any ESQPT; yet their highly-
excited states are Dicke states with high dipole moment, which can exhibit super-
extensive sensitivity.
Answer:

The operators S2
x/N and Sz commute respectively with σi

x and σi
z for all

spin index i = 1, . . . , N . Therefore, eigenstates of either S2
x/N or Sz can be

product states but are highly degenerate, and Dicke states are permutation in-
variant states lying in each of the Hamiltonian eigenspaces. Moreover, these
states (both the product and the Dicke ones) do not depend on external pa-
rameters and thus the QFI is zero (as the derivative of the density matrices
with respect to the external parameter is zero). In order to use these states
as probes in metrological protocols, one has to encode there information about
an external parameter to be measured. For instance, these states can be in-
jected into linear interferometers with the scope to measure the relative phase.
Considering now this setting, product states do not exhibit superextensive QFI
and sensitivity, while Dicke states do. Nevertheless, product states are simple
to be prepared, while the preparation of Dicke states has a computational cost
in terms of entangling operations. It is also difficult to implement optimal or
nearly-optimal estimation procedures for interferometric setup fed with Dicke
states, that might require Bayesian analysis and adaptive schemes. The Lipkin-
Meshkov-Glick (LMG) Hamiltonian with the competition between its two terms
has the advantage to encode the value of magnetic fields in its eigenstates with
superextensive QFI. We therefore proposed metrological protocols exploiting
this encoding, which are different than the above interferometric setup.

Reviewer:
As the authors state themselves on p.2, one would talk about a critical behav-

ior when we have two phases with a “normal” extensive behavior, and a different,
super-extensive behavior occuring only at the boundary. This is the case, for in-
stance when we consider the ground-state of the LMG, for which the QFI shows
O(N4/3) scaling at the critical point only, and O(N) elsewhere. Here, it seems
to me we can find this super-extensive behavior everywhere.
Answer:

As the reviewer has outlined, the QFI is superextensive typically at critical
points that separate different phases in most of the phase transitions. Neverthe-
less, there are phase transitions with superextensive QFI in an entire phase, like
topological phase transitions with a gapless phase (Gu, Lin, Europhys. Lett. 87,
10003 (2009)), or non-equilibrium quantum phase transitions (Banchi, Giorda,
Zanardi, Phys. Rev. E 89, 022102 (2014); Marzolino, Prosen, Phys. Rev. B 96,
104402 (2017)). These phase transitions separate phases with macroscopically
different features, and the QFI scaling is one of this features.

Moreover, in the aforementioned phase transitions, one considers the QFI
of the “same” state (the ground state for topological phase transitions, or the
steady state for non-equilibrium phase transitions) at different values of exter-
nal parameters. In the ESQPT of the LMG model, we consider the QFI of
“different” states (all the eigenstates) at different values of the field. If we fix
the state, say the k-th Hamiltonian eigenstate, the QFI reaches its maximum at
the corresponding critical value hk

c and decreases away from it. This behaviour
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is similar to what happens to ground states in standard quantum phase transi-
tions: the value hk

c separates two macroscopically different features of the k-th
eigenstate.

Reviewer:
If h is small enough (more precisely, for h ≪ N−2, then hSz can be safely

treated as a perturbation, and the eigenstates of the full LMG Hamiltonian are
still given by |m⟩, with energies m2/N .

To compute the QFI, we need to consider terms of the form
(

⟨n|Sz|m⟩
En−Em

)2

. Let
us consider two neighboring highly-excited states, |m⟩ and |m+1⟩, with m = kN
and k = O(1). Then we have directly ⟨m|Sz|n⟩ = O(N), and Em+1 − Em =
(m+1)2−m2

N = (2m + 1/N) = O(1). As the authors state shortly before Eq.(4)
in the main text, these scalings are ultimately responsible for the superextensive
scaling of the QFI. However, as we just showed, this behavior can be obtained
for vanishingly small value of h, deep in the h < 1 phase, where the ESQPT
should not play any role. This suggest that the behavior which is obtained here
comes purely from the excited-state structure of S2

x/N , rather than from the
competition between S2

x/N and Sz.
Answer:

The perturbative computation that the reviewer explained pertains proper-
ties of the full Hamiltonian Hh = hSz−S2

x/N . It gives the QFI of eigenstates of
Hh for small but non-vanishing h. If h is identically zero, the derivative of the
density matrix with respect to h vanishes and so does the QFI. Therefore, the
superextensivity is due in our opinion to the competition between S2

x/N and
Sz.

Moreover, from the metrological perspective, the assumption h ≪ N−2 im-
plies that the perturbative computation applies when the magnetic field is known
to be small up to a precision much smaller that the estimation error given by
the QFI, i.e. F−1/2 ∼ N−1. Therefore, the reviewer’s argument seems to be
not relevant for metrological applications. Indeed, if we cannot approximate the
Hamiltonian eigenstates with the eigenstates of S2

x/N , the competition between
S2
x/N and Sz is not negligible.

We would also notice that it has been already shown for quantum phase
transitions in the ground state (Cozzini, Giorda, Zanardi, Phys. Rev. B 75,
014439 (2007)) and non-equilibrium quantum phase transitions (Banchi, Giorda,
Zanardi, Phys. Rev. E 89, 022102 (2014)) that the QFI can remain superex-
tensive when a control parameter approaches zero, as in our case.

Reviewer:
Alternatively, we could also propose a protocol more in line with Ramsey

interferometric protocol, in which we prepare the eigenstates of S2
x/N , then let

it evolve under a weak field Sz; in this case, we recover again a N2 scaling,
without relying on critical effects at any point. To conclude, it seems to me that
the protocol discussed here may not really be called critical, in that it doesn’t
leverage the competition between two operators to give rise to a different behav-
ior. Rather, its interest would lie in the preparation scheme, which allows to
differ from usual approaches relying on one-axis twisting operations.
Answer:

We thank the reviewer for the interesting comparison. Firt of all, we remind
that the eigenstates of S2

x/N can be product states but are highly degenerate.
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Product states do not exhibit superextensive QFI and sensitivity, but we can
entangle degenerate product eigenstates to prepare an entangled eigenstate that
is indeed useful for metrology. This preparation has a computational cost, and is
not the simplest preparation of S2

x/N eigenstates. The simplest way to prepare
such eigenstates instead results in product states.

We agree that criticality does not play a role in the Ramsey scheme pro-
posed by the reviewer. Nevertheless, we think that the competition between
the operators S2

x/N and Sz is indeed exploited in the scheme. If, for instance,
one considers the field Sx instead of Sz, entangled eigenstates of S2

x/N do not
provide good metrological performances. It is the non-commutativity of S2

x/N
and Sz together with the initial entanglement that provide good metrological
performances, and this non-commutativity is in our opinion a form of competi-
tion (as, e.g., the two operators cannot be diagonalised simultaneously). In the
framework of phase transitions, the competition is implemented as competing
Hamiltonian terms.

Moreover, we have exploited eigestates at critical energy for arbitrary fields
|h| < 1, not only for small h, connecting the critical behaviour with the metro-
logical performances of our specific protocols. On the other hand, one can
implement the Ramsey protocol for precise measurements not only for small h
but for any phase induced by the field Sz: the QFI for this protocol is ∆2Sz

independent of the phase. The comparison with the Ramsey interferometry can
then be extended also to standard quantum phase transitions, like that in the
Ising model with transverse field, H = −

∑
j σ

j
xσ

j+1
x − h

∑N
j=1 σ

j
z (for N even),

that is critical for h = 1. One can feed a Ramsey interferometer with entangled
ground states of −

∑
j σ

j
xσ

j+1
x , namely

(
|+⟩⊗N ± |−⟩⊗N

)
/
√
s, which provide

Heisenberg-limited precision in the Ramsey protocol even for h = 1. In our
opinion, this protocol does not prove that the criticality of the quantum phase
transition in the Ising model is not useful for metrology. On the contrary, we
think that the Ramsey interferometry is alternative to critical metrology, and
differently allocates metrological resources.

Yours sincerely,
Qian Wang and Ugo Marzolino
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