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We would like to thank the referee for carefully reading our manuscript and providing de-

tailed and valuable comments. The version of the manuscript that we resubmit addresses

the aspects that the report brought to our consideration. Please find below the comments

from the referee and our answers.

1. Referee’s comment: Page 3: It is not clear what Eqs. 1 and 2 mean, or what the vari-

able r stands for. I assume the intended meaning of eq. 1 is that xreco is sampled from

p(xreco|xpart), and operationally xreco is computed using xpart and some standard-normally

distributed random variables r. If this is the case, it might just be easier to explain this in

words instead of equations.

Author response: We agree with the referee’s suggestions and have accordingly up-

dated the relevant discussion on Page 3 (first paragraph of Sec. 2.1).

2. Referee’s comment: Page 3: “guarantee a statistically correct and calibrated output” It

is unclear what this means.

Author response: Statistically correct and calibrated output refers to a predicted pos-

terior with a calibration curve [1] that matches the identity. Such a calibration curve

measures the representation of the true posterior within the predicted posterior, aver-

aged over the condition. For example a good calibration curve indicates that across

all conditions we average over, 70% of truth samples lie in the 70% quantile of the

predicted posterior for the respective condition. While this does not ensure agreement

between the true and predicted posterior, a calibration curve that is equal to the iden-

tity is a necessary condition for the true posterior and thus a helpful sanity check.

Now, we spell out the meaning of "statistically correct and well calibrated" in more de-

tail on page 4, while adding a clear pointer to the reference for a detailed explanation:

“[The loss] guarantees a reconstructed posterior whose quantiles are well calibrated to

agree with the truth statistics, as demonstrated in Ref. [60]”

3. Referee’s comment: Page 6: “In our case, we will guarantee the correct descriptions of

the intermediate top-mass peaks through the network architecture” It is unclear what this

means. Is this about using MMD loss for the intermiate top-mass distributions?
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Author response: We do not employ MMD loss in our analysis. Instead, what we mean

by the above statement is that the top quark’s mass is integrated into the network ar-

chitecture by explicitly choosing it as a degree of freedom in the event parametrization,

as shown in Eq. (10) of the manuscript. This approach allows the network to learn it

directly without requiring additional MMD terms in the loss function. We have updated

the discussion in the first paragraph of Section 2.3 to clarify this.

4. Referee’s comment: A claim is made that iterative cINN in Ref. [62] can be used to

reduce model dependence in the unfolding networks. I don’t think this is true (explained

below). However, one doesn’t need a model independent unfolder for the purposes of this

paper, so maybe this claim can be taken out.

On model independence: My understanding of Ref. [62] is as follows. Let’s say we have a

simulation model A for p(xpart) and another simulation model B for p(xreco|xpart), and let’s

say model B could be wrong/mismodeled. Then assuming that model A is correct (which

is fair to do in control regions only), iterative cINNs can learn an unfolder, which corrects

for the mismodeling in B using the experimental data. In this paper, model dependence

is used to mean dependence on model A. I don’t think cINNs have been demonstrated to

reduce dependence on A. In fact, an unfolder can be completely independent of model A

only if the map from xpart to xreco is invertible (i.e., for any given xreco there exists only one

possible xpart). This is typically not true in collider physics. Also, even if we’re considering

dependence on model B, I’d say the iterative technique corrects for simulation-model errors,

and doesn’t induce model independence, although that’s arguably just semantics.

Author response: As stated in Ref. [2], all unfolding methods require a trustable de-

tector simulation, i.e. they cannot correct for mismodeling in model B. Contemporary

unfolding methods, such as Omnifold [3], cINN [1] and iterative cINN unfolding [4],
are Bayesian methods, thus rely on the accuracy of the likelihood p(xpart|xreco), i.e. of

the result of the detector simulation (“model B”). We would like to emphasize here

that what can be corrected for in a Bayesian method, however, is prior dependence.

This works by iteratively re-applying Bayes theorem on some initial, potentially inaccu-

rate, prior [5]. Both iterative cINN unfolding and Omnifold use this idea to reduce the

dependence on the SM prior usually assumed for unfolding. The plain cINN unfolding

used in our paper applies Bayes theorem only once, which leads to a larger prior de-

pendence that could be further reduced by the iterative method introduced in Ref. [4].
We agree with the referee that iterative cINN unfolding cannot render the unfolding

results fully model-independent for a typical non-invertible detector simulation. Our

intention behind the statement was only to emphasize that an iterative method might

be able to reduce model dependence to an extent but not eliminate it.

2



5. Referee’s comment: Eq. 3 shows the loss function for mapping to a Gaussian latent

space, instead of not a generic latent space. However, this work uses uniform latent spaces

as well. The loss function for that case could be provided.

Author response: The referee’s comment is well-taken, and we appreciate your bring-

ing this to our attention. We have updated Eq. (3) and the associated discussion on

Page 4 (Para 1) to describe the loss function for a generic latent space.

6. Referee’s comment: In Eq. 5, does k take on different values for different x? If so, it is

not obvious from the equation or the text.

Author response: We thank the referee for bringing this to our attention. Indeed,

k takes on different values for different x . We have replaced k → kx in the updated

manuscript to clarify it.

7. Referee’s comment: Section 3.2 is confusing in a number of ways. Given that the

approach is to only use the unfolding network as an analysis variable, the first part of

section 3.2 feels unnecessary. In Eq. 26, p(α|xreco) and p(α|xpart) only make sense if

there is a prior on α. p(xpart|xreco, B) is not defined, since xpart (in the chosen phase

space parameterization) doesn’t exist for background events. This renders Eqs. 27, 28 and

“p(xpart|xreco, B) = p(xpart)” meaningless in my opinion.

Author response: First, similarly to unfolding, we do Bayesian analysis here, so we

assume an implicit prior on α, from which we want to infer the posterior p(α|xreco).
So the second point is true, but as far as we can see it does not raise a problem for our

argument.

Second, our argument considers p(xpart|xreco, B) to be defined as the probability density

of any parton-level signal event xpart occuring under the condition that a background

event xreco was measured on reco-level. Note that, since the detector-level measure-

ment of a background event gives us no information about the probability of a signal

event on parton-level, we trivially have p(xpart|xreco, B) = p(xpart), so we only write

down p(xpart|xreco, B) for clarity. In this sense it is unclear what the referee means with

“xpart doesn’t exist for background events”, since background events on parton-level

are not part of our argument.

To address the referee’s concerns, we clarified our argument concerning p(xpart|xreco, B)
in the text below Eq. 30 of the new draft: “Let us consider p(xpart|xreco, B) for a mo-

ment. This is defined as the probability density of any parton-level signal event xpart

occuring under the condition that a background event xreco was measured on reco-

level. However, the detector-level measurement of a background event gives us no

information about the probability of a signal event on parton-level. For this reason, we
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can drop xreco and write p(xpart|xreco, B) = p(xpart), where p(xpart) is only constrained

through prior knowledge. This includes our model assumptions as well as phase-space

constraints due to a finite center-of-mass energy.”

We also made the prior on α explicit in the second paragraph of Sec. 3.2 of the new

draft: “Since we do not know if a particular reco-level event xreco is signal or back-

ground, we only care about the full probability p(α|xreco) of our model parameter,

given some reco-level event xreco which is either signal or background and some prior

p(α).”

8. Referee’s comment: It is unclear how a variable number of jets is handled in section 3.3.

The details weren’t immediately obvious to me even after looking through Ref. [60].

Author response: A variable number of jets is handled by zero-padding the missing

jets, so that the networks input vector maintains a fixed length. In contrast to Ref. [1]
(Ref. [60] in the paper), we do not use the number of jets as an additional dimension

of the input vector. We clarify this in the second paragraph of Sec. 3.3 of the revised

manuscript: “In the latter case, we ensure that the input vector to the network has

a fixed length by zero-padding the missing jets. We note that our approach to tackle

a variable number of jets differs from that in Ref. [60] where the numbers of jets is

incorporated as an observable in the training dataset.”

9. Referee’s comment: The input and output shapes of the various neural networks could

be provided.

Author response:

We agree that this could serve as a sanity check when reproducing the paper, in the

sense that one can check if the shapes of the network input match the provided shapes.

However, the shapes can be easily inferred by the number of final states in the provided

parameterization as well as the number of reco-level objects, which we provide. Hence,

we do not think that this would provide much benefit.

10. Referee’s comment: MMD is discussed only briefly in page 6. It is unclear whether (and

for which distributions) MMD is used in the paper. "Its main advantage is that it only

affects the target distribution and avoids an unnecessarily large model dependence." The

meaning of this statement is unclear.

Author response: As previously stated in our response to Comment (c), we do not em-

ploy MMD loss in our analysis. Rather, the important sharp kinematic features, such as

the invariant mass of the top quarks, are explicitly included in the event parametriza-

tion (see Eq. (10)). We have also updated the discussion in Section 2.3 to clarify
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this: ‘For full high dimensional unfolding, as considered here, the simplest way of en-

coding LHC events at the parton-level is through the components of the final-state 4-

momenta. However, it was observed that intermediate particle mass-peaks are poorly

reconstructed in this parameterization. A problem that was already encountered in

Ref. [81]. One way to improve the reconstruction quality of these peaks is to add a

maximum mean discrepancy (MMD) between a given set of generated and truth dis-

tributions in the loss function [81,82]. As the name suggests, the MMD is a measure

for the discrepancy between two distributions. It is reasonably efficient to compute

from samples only, although it admits quadratic scaling with batch size, making it a

potentially useful tool for generative network training. The disadvantage is that the

additional loss term complicates the training and consequently limits the precision of

the network. For our INN architecture, the computation of an MMD loss requires sam-

ples generated from the latent distribution, making the training twice as computa-

tionally expensive, while the usual INN loss works on latent-space samples. The MMD

additionally adds a sizable amount of hyperparameters to the training, making it signif-

icantly more difficult to optimize. In this paper we use, instead of the MMD, a different

phase-space parameterization for improving the reconstruction quality of intermediate

particle mass-peaks.’

11. Referee’s comment: In figure 6 top 2 rows, it is confusing to have three truth distribu-

tions. The non-SM truth curves could be labelled differently in the legend. Also, in those

plots, it cINN/truth should probably be computed with the SM truth for all three networks,

instead of using different truth curves for each network.

Author response: We agree with the referee’s comments and have updated the plots

accordingly.

12. Referee’s comment: A description of how the cINN histograms are created could be

provided. For instance, to get the central values of the bin counts in a histogram, is only

one parton level event computed for each reco-level event? Or is the central bin-count

value computed as an average over many samplings?

Author response: The histograms are created by unfolding each reco-level event only

once and then compiling them from the resulting samples. We mentioned this in the

first paragraph of Sec. 3.3 of the new draft: “Note that, here and in the following, we

sample only one parton-level prediction of the cINN for each sampled reco-event in our

plots.” Note that we would expect the specific method, at least in the infinite statistics

limit, to not impact the resulting histograms. If we assume that our predictions are

continuous with respect to the reco-level input of the cINN, we would expect a suffi-

ciently small neighborhood of xreco to yield sufficiently similar results as just sampling
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multiple times from xreco.

Some minor suggestions/comments from referee 3:

1. Referee’s comment: Page 14: “The conventional approach to complex kinematic corre-

lations...” Is this supposed to be “compute kinematic correlations”?

Author response: Indeed, we have corrected the typo here.

2. Referee’s comment: Page 1: Maybe change “The, arguably, most interesting symmetry

in the SM is CP” to “Arguably, the most interesting symmetry in the SM is CP”?

Author response: We have corrected the above statement.

3. Referee’s comment: Page 1: “CP . . . potentially realized in an extended Higgs sector”. It

is not obvious that the authors are referring to CP violation here.

Author response: We have modified the statement to make this aspect clearer.

We have fully addressed all the comments and minor suggestions. We hope that with these

clarifications and associated changes made to the manuscript, the paper can be accepted for

publication in SciPost.
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