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Figure 1: Average orbital participation entropy (as defined in Eq. (9)) for h = 3, and system sizes
L =16,18,20,22, 24.
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Figure 2: Half-chain entanglement entropy growth on two free fermions chains. The entanglement entropy
is computed in high energy product states.
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Figure 3: Saturation half-chain entanglement entropy divided by the Page prediction for the thermal value
Sih = %an — % Initial states are product states whose average energy is at one sigma from the infinite
temperature energy Ep_., = —A/4, except for the L = 18 data where the average is performed over the
50 product states whose energy is the closest to infinite temperature energy.
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Figure 4: Entanglement growth for initial high energy product states at h = 1, for a fixed sample which
is progressively extended on its right.
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Figure 5: Fit of the dynamical exponent z(h = 1) using entanglement growth data in a two time windows,
as a function of system size. For L > 20, the numerics is compatible with a size-independent exponent.



