
Reply to Referee comments on

Hydrodynamics without Averaging – a Hard Rods
Study

Dear editor and referees,
thank you very much for your time and effort to review my paper, for the

positive reviews and for the useful comments that I have used to improve the
manuscript.

Beneath you find my response to each referee individually.
I have updated the manuscript taking into account the comments of the

referees. To identify them easily, I colored the major changes are colored in
orange (I did not color minor changes like fixing typos etc). One comment
raised by most of the referees is that it was not clear what is the starting
point, the goal and the conclusion of each computation. I agree that my
previous presentation was lacking there. I have added more explanation to
all of the sections, making it clear in each section what quantities are being
computed and also how to interpret the individual results.

Kind regards,
Friedrich Huebner

PS: I fixed the arxiv references.

1



1 Referee 1

• In general, it would be good to add an additional section ”main results”,
explaining and summarizing the results of each section Good idea. I
have added such a section.

• It will be also good to announce the results and explain the logic of
derivation at the beginning of each section. And more importantly try-
ing to exactly pronounce the starting point: equations and assumptions
from which the rest is derived. For instance:I assume that the evolution
of the coarse-grained system is further captured by Eq. 8, however it
was never explicitly stated. It would be good to comment on that di-
rectly when writing down equations 76-79 and also 119-120. I agree
that the presentation in these sections was incomplete. I have added
further details about the starting point, the goal and the conclusion of
each computation.

• It will be good to discuss what are the author’s expectations in case of
a general integrable systems. Does the introduced approach allow to
derive (or at least guess) the generalization of Eq. 159 to the case of a
generic integrable system. If not, briefly comment why. I have added
remark 10 after the equation: Yes, I expect that a very similar equation
will hold in general integrable models. This was proposed by me and
my collaborators in [1]. Unfortunately, it is not possible to do explicit
microscopic computations like for hard rods. Nonetheless, the equation
can still be derived by assuming that there is no intrinsic diffusion
and all diffusion arises from “diffusion by convection”. The outcome
reduces to the correct result for the independently studied special case
of local equilibrium states [2, 3] (where long range correlations are
absent). This is a strong hint, that intrinsic diffusion is indeed absent
in integrable systems in general.

• The definition of zα,β,α′,β′ between 85 and 86 is inaccurate or deserves
explanation, because the RHS of the definition does not contain α′, β′,
containing instead α(xj), β(xj). There was a typo, the definition of
zα,β,α′,β′ should certainly not depend on j. The correct expression is
zα,β,α′,β′ = x̂α + pβt− x̂α′ − pβ′t. I have corrected it.

• The estimation for the number of summation terms in Eq. 87 is not
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clear from the text, in particular what are the summation bounds. It is
also not clear why zα,β,α′,β′ = O(∆x), naively it looks that for different
cells α, α′ the difference x̂α − x̂α′ might be of order one, which is O(1).
For generic α, β, α′, β′, zα,β,α′,β′ is indeed of O(1). Also, the sum in
(95, new version) runs over all α, β, α′, β′ ∈ Z. However, since yij(t) ∼
O(∆x), the indicator function θ(0 < − sgn(yij(t))zα,β,α′,β′ < |yij(t)|)
is only non-zero iff zα,β,α′,β′ = O(∆x), which significantly restricts the
sum over α, β, α′, β′. For instance, fixing α, β, β′, there will only be
very few (typically one or two) α′ such that zα,β,α′,β′ = O(∆x).

• The equations 159-160 deserve better explanation, in particular, it seems
that they should be complemented by an equation for GLR,sym to be com-
plete. Without such a relation, it is not clear how to use 159-160 alone
for the numerical simulation. I agree, the equation for the correlation
functions should be there. I have added it now, see equation (175).

• As a minor suggestion: it will be good to use multline envitonment for
a multiline equuations like 159-160 (and many others). Othervise both
lines get enumerated, which is not common. I agree. I made sure that
each equation is labeled only once, even if it goes over multiple lines.
The only exception to this is (62) and (63), where I refer to both lines
separately in the text beneath.
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2 Referee 2

• Minor typos (page 4 ’jugding’ instead of judging) Fixed.

• There is a missing Delta x in Eq. 26 Fixed.

• In figure 3 the blank plot should be removed. I would prefer to keep it
there. Even though it does not show numerical results, it still shows the
theoretically obtained exponents. However, I understand that it looks
empty. I have altered the plot slightly, emphasizing the theoretical
result.

• Under remark 9 the sentence: ”If on the other hand, one is able to
only measure observables averaged over many initial states, then one
should use (160) instead.” Is a bit unclear to me. I take it to mean
that (160) captures the dynamics that emerge having averaged over the
initial states. Perhaps this could be slightly reworded to clarify the
difference between (8) (evolve many samples then average) vs (160)
(average initial states then evolve). Yes, you interpret the sentence
correctly. I have reworked the paragraph to make it more clear. Is it
clearer now?

• The author points out Ginibre states as being particularly unphysical
thus demonstrating the robustness of GHD. Does the author have any
insight about the types of ensemble of states that are not captured by
GHD? This is an interesting question. In general in hydrodynamic
limits/mean field limits one expects that there are pathological con-
figurations that give rise to all sorts of unusual behaviour1. Typically
these are “measure zero sets” (so unphysical). In the hard rods, the
question is whether the continuum limit of (5-7) can be taken to obtain
(11-12). For sufficiently well behaved states this should always be pos-
sible. Hence, for all intended purposes I would say that GHD always
applies. However, I imagine GHD cannot be applied in the following
pathological scenarios

– The initial density ρ(x, p) does decay very slowly for x or p → ±∞,
so that the continuum limit can not be taken. Also, in case of very

1A typical situation is a configuration where 3 hard spheres in d > 1 dimension meet
simultaneously. At this point the evolution cannot be defined uniquely.
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slow decay in p, the nominator of the effective velocity (10) is not
defined.

– The initial configuration is sparse, say the initial xj = 2j, so that in
the continuum limit the density everywhere is formally vanishing.

– Initial particles are very precisely located inside fluid cells.

– Many particles cluster very close together (such that the denomi-
nator of the effective velocity (10) explodes).

– A similar effect (which however does not appear in hard rods), is
a macroscopic scattering event, where a macroscopic number of
particles scatter for a macroscopic time, leading to a breakdown
of GHD for that time in the scattering region. In case you are
interested, this is explained in my PhD thesis on the example of
negative length hard rods [4], see in particular figure 5.2.
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3 Referee 3

• The presentation of the derivation in sections 3 and 4 can be improved.
If possible, it would be useful to clearly mention the motivation, goal
and the plan of the derivation at the beginning of each section+ subsec-
tion. Currently the conclusion of the sections are also not very clearly
stated. I agree that the presentation in these sections was incomplete.
I have added further details about the starting point, the goal and the
conclusion of each computation.

• In BMFT it is typically assumed that the for coarse-gaining scale ‘cg ∼
‘variation and in such scale also the evolution of the initial fluctuations
are described by Euler equations. For coarse graining size µ = 1/2
or > 1/2, it seems there will be significant noise. Does it imply one
needs to look at such noise to understand (corrections to) correlation
at diffusive space-time scale? My understanding of the large fluid cell
case µ > 1/2 is that the error is dominated by a systematic error (as
opposed to a statistical error for µ < 1/2). The fluid cells are so big
that one does not have sufficient information to predict the value of an
observable more precisely, even if statistical fluctuations were absent.
This already appears after initial coarse-graining, so I believe that this
is a general coarse-graining effect, independent of the time evolution.
Also, one can always choose smaller µ < 1/2 to obtain a lower error.

About BMFT: Note that (Euler) BMFT only requires that for each
sample Euler GHD is correct up to an error that decays as ℓ → ∞.
For µ > 1/2 the error decays as ℓ−2(1−µ), meaning that (Euler) BMFT
also can be used with µ > 1/2. What is special about µ < 1/2 is
that the error is beneath 1/ℓ, meaning that BMFT is exact also on the
diffusive scale (one might call it diffusive BMFT). So no, I do not think
that any further noise has to be taken into account to study correlation
functions on the diffusive scale.

• The proof of Eq. (137) is not given in Appendix A I agree, I forgot
to put it. It follows from the explicit formula (11). I rewritten that
paragraph.

• It would be good to write the representation of the operator D̂ in Eq.
(156).I agree, I have put it there.
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• Eq.(A1) and (A2) are same and (A2) has a typo. I agree. I have
removed (A2).

• (vi) Eq. (A12): beginning of the second last line: +2a → 2a3I agree.
Fixed it.

• Eq. (A27): A(x, p) in the second term on the right.I agree. Fixed it.

• First line of sec. (A.2): the correlation should be CLR according to
the notation in Eq. (131). I agree that this is confusing. I forgot to
say that in this paragraph I consider only the long range correlations,
i.e. as if there was no singular part. This splitting is allowed since
the correction to the current is linear in the correlations, so one can
study the singular and long range part separately. I have improved the
paragraph.
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4 Referee 4

• The introduction is very long, and not very focused. It could be more
concise, and ’to-the-point’. A summary of the results would be appreci-
ated. Also , in the first paragraph of the introduction the author seems
to be talking about integrable systems since he is talking about general-
ized Gibbs ensembles. But then the later discussion in the introduction
seems to be aimed at all systems, including non-integrable. Please clar-
ify whether this introduction is about integrable or generic systems.

I agree that the introduction is very long. The reason for this is that
I wanted to embed the work in the context in hydrodynamics, and
especially the open problems therein: I wanted to highlight that the
advantage of the “hydrodynamics without averaging” approach to bet-
ter understand the physics beyond the Euler scale or of correlation
functions, as compared to more traditional approaches. For now, I did
not change the introduction, but if you have a strong opinion that it
would improve the paper, then I am also open to make it more concise.

However, in combination with a comment of referee 1, I added a new
section 3 summarizing the main results of the paper.

About integrable vs non-integrable: The introduction considers a gen-
eral system, integrable or non-integrable. While GGE is the common
terminology for integrable systems, but the concept is valid more gen-
eral. In a system with N (finite or infinite) conservation laws Qn, the

GGE is a state of the form 1
Z
e−

∑N
n=1 βnQn . In the context of a usual

Galilei invariant system (conserving particle number, momentum and
energy) these reduce to usual Gibbs states. Thus the introduction is
about a general system (until I start to discuss hard rods). I have
changed to paragraph to make it more clear.

• Sections 3.1 ,3.2,3.3,3.4 and 5.2 merely look like technical notes. Please
provide a roadmap to the reader at the beginning of each subsection to
explain what is the goal of the calculations I agree that the presentation
in these sections was incomplete. I have added further details about
the starting point, the goal and the conclusion of each computation.

• Please clarify whether / which conclusions of this paper hold beyond
the integrable case. I think this is an important point which I did not
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emphasize in the conclusion. I have added an extra paragraph in the
conclusion, see section 8.1.

• ’Weak solution’ in page 7 does not seem to be defined. Please define.
Good point. I have added the definition.

• There are many typos ( p.2 ’would be differ’, p.4 ’hards’, p.8 ’is that is
that’, ’corase-graining’, etc). Please proofread. Thank you for spotting
these. I have corrected them and some further typos.
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