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The harmonic oscillator is the paragon of physical models; conceptually and computationally
simple, yet rich enough to teach us about physics on scales that span classical mechanics to quantum
field theory. This multifaceted nature extends also to its inverted counterpart, in which the oscillator
frequency is analytically continued to pure imaginary values. In this article we probe the inverted
harmonic oscillator (IHO) with recently developed quantum chaos diagnostics such as the out-of-
time-order correlator (OTOC) and the circuit complexity. In particular, we study the OTOC for the
displacement operator of the IHO with and without a non-Gaussian cubic perturbation to explore
genuine and quasi scrambling respectively. In addition, we compute the full quantum Lyapunov
spectrum for the inverted oscillator, finding a paired structure among the Lyapunov exponents.
We also use the Heisenberg group to compute the complexity for the time evolved displacement
operator, which displays chaotic behaviour. Finally, we extended our analysis to N-inverted harmonic
oscillators to study the behaviour of complexity at the different timescales encoded in dissipation,
scrambling and asymptotic regimes.
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I. INTRODUCTION

One would be hard-pressed to find a physical system
that we have collectively learnt more from than the har-
monic oscillator. Indeed, from the simple pendulum of
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classical mechanics to mode expansions in quantum field
theory, there is no more versatile laboratory than the
harmonic oscillator (and its many variants). This is due
in no small part to two central properties of harmonic
oscillator systems; they are mathematically and physically
rich and simultaneously remarkably simple.

This utility has again come into sharp relief in two
seemingly disparate contexts; quantum chaos and the
emerging science of quantum complexity. While neither
subject is particularly new, both have seen some remark-
able recent developments of late. To see why, note that
conservative Hamiltonian systems come in one of two
types, they are either integrable or non-integrable. The
latter in turn can be classified as either completely chaotic
or mixed (between chaotic, quasiperiodic or periodic), de-
pending on whether the defining Hamiltonian is smooth
or not [1, 2]. By far, most non-integrable classical sys-
tems are of the latter type. The former however includes
some iconic Hamiltonian systems such as the Sinai billiard
model, kicked rotor and, of particular interest to us in
this article, the inverted harmonic oscillator (IHO).

Classical chaotic systems are characterised by a hyper-
sensitivity to perturbations in initial conditions under the
Hamiltonian evolution. This hypersensitivity is usually
diagnosed by studying individual orbits in phase space.
However, as a result of the Heisenberg uncertainty prin-
ciple, the volume occupied by a single quantum state in
the classical phase space is ∼ ~N , for a system with N
degrees of freedom, and we no longer have the luxury of
following individual orbits. This necessitates the need for
new chaos diagnostics for quantum systems. One such
diagnostic, discovered by Wigner in the 1950’s already,
is encoded in the statistical properties of energy spectra;
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quantum chaotic Hamiltonians have eigenvalue spacing
distributions that are given by Gaussian random matrix
ensembles. Unfortunately though, a direct spectral anal-
ysis of the Hamiltonian is computationally taxing for
all but the simplest, or exceedingly special, systems. It
therefore makes sense to develop other, complimentary
diagnostics that probe different aspects of quantum chaos,
say, at different times or energy scales.

One such tool, originally considered in the context
of superconductivity, but rapidly gaining traction in
the high energy and condensed matter communities,
is the out-of-time-order correlator [3–5], OTOC(t) ≡
〈B†(0)A†(t)B(0)A(t)〉β , for Heisenberg operators A(t)
and B(t), and where 〈O〉β = Tr

(
e−βHO

)
/Tr e−βH de-

notes a thermal average at temperature T = 1/β. This
OTOC(t) is the quantum analog of the classical expecta-
tion value 〈(

∂x(t)

∂x(0)

)2
〉
β

∼
∑
n

cne
iλnt , (1)

for a chaotic system with Lyapunov exponents λn. It will
sometimes be more convenient to work with the double
commutator CT (t) = −〈[A(t), B(0)]2〉β , instead of the
four-point function OTOC(t). Since the two are related
through CT (t) = 2 (1− Re (OTOC(t))), their information
content is the same and are usually referred to interchange-
ably. In a chaotic many-body system, CT (t) exhibits a
characteristic exponential growth from which the quan-
tum Lyapunov exponent can be extracted. In this sense,
the OTOC captures the early-time scrambling behaviour
of the quantum chaotic system.

However, like any new technology, the OTOC is not
without its issues. Among these are;

• the fact that its reliability breaks down at late times,
when the chaotic system starts to exhibit random
matrix behaviour,

• a related mismatch to its classical value, where the
commutator in the definition of CT (t) is replaced
by the Poisson bracket, and

• no exponential growth for several single-particle
quantum chaotic systems, such as the well-known
stadium billiards model, or chaotic lattice systems,
such as spin chains.

all of which point to the need for a deeper understanding
of the OTOC.

On the other hand, it is becoming increasingly clear
that while no single diagnostic captures all the features
of a quantum chaotic system, there is an emerging web
of interconnected tools that offer complementary insight
into quantum chaos [6, 7]. There is, for example, the
(annealed) spectral form factor (SFF),

g(t;β) ≡ 〈|Z(β, t)|2〉J
〈Z(β, 0)〉J

, (2)

where Z(β, t) is the analytic continuation of the thermal
partition function and the average is taken over different
realizations of the system. The SFF interpolates between
the essentially quantum mechanical OTOC and more
standard random matrix theory (RMT) measures making
it a particularly useful probe of systems transitioning be-
tween integrable and chaotic behaviour where it displays
a characteristic dip-ramp-plateau shape [8, 9]. However,
except in some special cases like bosonic quantum me-
chanics where it can be shown that the two-point SFF
is obtained by averaging the four-point OTOC over the
Heisenberg group [10], computing the SFF is a difficult
task, compounded by various subtleties inherent to the
spectral analysis of the chaotic Hamiltonian.

More recently, this diagnostic toolbox has been further
expanded with the introduction of a number of more
information-theoretic resources with varying degrees of
utility. One of these is the fidelity [11, 12] of a quantum
system. Let U be a unitary map and |ψ(0)〉, some fiducial
state in the Hilbert space. Now evolve this initial state
with U to |ψ(n)〉 = Un|ψ(0)〉 and again, but with a
sequence of small perturbations by some non-specific field

perturbation operator, to |ψ̃(n)〉 =
(
e−iV δU

)n |ψ(0)〉. It
was shown in [13] that the fidelity

F(n) = |〈ψ(n)|ψ̃(n)|2 , (3)

for a classically chaotic quantum system, exhibits a char-
acteristic, and efficiently computable, exponential decay
under a sufficiently strong perturbation. This quantity
has recently been shown [14, 15] to be intrinsically related
to the OTOC.

Closer to the focus of this article, another related tool
drawn from theoretical computer science is the notion
of computational (or circuit) complexity [16], which, in
the lingo of computer science, measures the minimum
number of operations required to implement a specific
task in the following sense: fix a reference state |ΨR〉
and target state |ΨT〉 and construct a unitary U from a
set of elementary gates by sequential operation on the
reference state such that |ΨT〉 = U |ΨR〉. Then the com-
plexity of |ΨT〉 is defined to be the minimal number of
gates required to implement the unitary transformation
from reference to target states. Determining the compu-
tational complexity is then essentially an optimisation
problem, one that was more or less solved by Nielsen in
[17]. Nielsen’s geometrical approach proceeds by defining
a cost functional

D[U(t)] ≡
∫ 1

0

dt F
(
U(t), U̇(t)

)
(4)

on the space of unitaries which is then optimised subject
to the boundary conditions U(0) = 11 and U(t) = U . For
a long time, the idea of circuit complexity was viewed as
a curiosity of computer science, living on the periphery
of theoretical physics. This situation changed dramati-
cally with the introduction, by Susskind and collaborators
[18–20], of complexity as a probe of black hole physics.
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Further, the idea of complexity has extended to quantum
field theory in recent time [21–45]. Following this line of
reasoning, two disjoint subsets of the current authors con-
jectured that not only does the computational complexity
furnish an equivalent chaos diagnostic to the OTOC [46–
49], but in addition, a response matrix may be defined
to characterize the fine structure of the complexity in
response to initial perturbations, giving rise to the full
Lyapunov spectrum in the classical limit [50]. Table 1.
summarises the findings of these studies and compares
the time development of the complexity to that of the
OTOC.

Early scrambling Intermediate regime

OTOC 1− εeλt ∼ exp(−εeλt) e−Γt

Complexity εeλt Γt

TABLE I. Universal correspondence between OTOC and com-
plexity, complexity ∼ − log(OTOC). This relation holds at
both the early scrambling and intermediate decay regime.

In both cases, the system chosen to exhibit this rela-
tionship between the complexity and quantum chaos was
arguably among simplest conceivable; the inverted har-
monic oscillator. This model has also been demonstrated
rich and fruitful in a wider context in the field of quan-
tum chaos [14, 51–55]. The present article builds on these
ideas by returning to the inverted oscillator, developing
the treatment of the OTOC as well as the computational
complexity of particular states in the model and then
connecting them. Again, the oscillator provides a rich
and intuitively clear example, illustrating its multifaceted
utility. It is therefore fitting that we begin with a brief
overview of the inverted harmonic oscillator.

II. THE IHO MODEL

We start with the harmonic oscillator Hamiltonian

H =
p2

2m
+
mω2

2
x2, (5)

where p ≡ −i~ d
dx is the momentum operator. We will

work in natural units in which ~ = 1 and, without any
loss of generality, assume that the mass of the oscillator
m = 1. By choosing the value of the frequency ω, three
different cases can be obtained:

ω =


Ω harmonic oscillator,

0 free particle,

iΩ inverted harmonic oscillator.

Here Ω is a positive real number. In this work, we will be
mainly concerned with the Hamiltonian of the inverted
harmonic oscillator.

An important point to note is that the regular and
inverted harmonic oscillators are genuinely different. As

a result, one cannot take for granted that formulae known
for the regular oscillator and extrapolate them to the
inverted oscillators by simply replacing Ω with iΩ. For
instance, the regular harmonic oscillator has a discrete
energy spectrum (n+ 1/2)Ω, while the spectrum for an
inverted oscillator is a continuum. However, in some other
cases, such as the Heisenberg evolution for the position or
momentum operator, the derivation follows in much the
same way for both the regular and inverted oscillators.
In such cases, we will explicitly point this out and use
the variable ω to cover both classes of oscillator. It will
be useful in what follows, to define the annihilation and
creation operators [56],

a±ω =
1√
2

(∓ip+ ωx) . (6)

III. OUT-OF-TIME ORDER CORRELATOR

We will consider the OTOC for the displacement opera-
tors in the IHO, which are defined in terms of the creation
and annihilation operators as

D (α) = exp
(
αa† − α∗a

)
. (7)

This is a well known operator whose phase space OTOC
has been the subject of recent study for continuous
variable (CV) systems [57]. There the authors argued
that, for a Gaussian-CV system, the OTOC does not
display any genuine scrambling. In this section, we would
like to explicitly check this claim for the IHO. Since
the Hamiltonian of the IHO belongs to the category of
Gaussian-CV systems, we expect the OTOC for the
displacement operators to display such quasi-scrambling.
More explicitly, the OTOC only changes by an overall
phase, while the magnitude remains constant. We follow
this by adding a cubic-gate perturbation to the oscillator
potential and explore the OTOC analytically. In contrast
to its Gaussian counterpart, this model does indeed
display generic scrambling behavior.

In the second part of this section, we will investigate an-
other important feature of chaos; the Lyapunov spectrum.
Our goal will be to use the IHO to check whether the
quantum Lyapunov exponents exhibit a similar pairing
structure to the classical case.

A. OTOC for the Displacement Operator

To warmup, we will evaluate the OTOC for the dis-
placement operator for the regular harmonic oscillator
with real frequency ω = Ω. Our derivation is esentially
independent of the choice of the frequency ω. Therefore,
by choosing appropriate values of the frequency, we derive
expressions for both the regular and inverted harmonic os-
cillator. The displacement operator in Eq.(7) for a single
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mode harmonic oscillator can be written as

D(α) = exp
[
i
√

2 (Im(α)ωx− Re(α)p)
]
. (8)

To evaluate the OTOC, we need to find the time evolution
of the displacement operator (8), i.e.,

D(α, t) = eiHtD(α, t = 0) e−iHt, (9)

which can be evaluated by implementing the Hadamard
lemma. Some straightforward algebra puts this into the
form,

D(α, t) = exp
[
i
√

2 (Im(α) cos(ωt) + Re(α) sin(ωt)ω)x

+ i
√

2 (Im(α) sin(ωt)/ω − Re(α) cos(ωt)) p
]
.

(10)

The corresponding OTOC function, C2(α, β; t)ρ is defined
as

C2(α, β; t)ρ ≡ 〈D†(α, t)D†(β)D(α, t)D(β)〉
= Tr[ρD†(α, t)D†(β)D(α, t)D(β)],

(11)

where ρ is a given state of the harmonic oscillator. By
using (10), the OTOC (11) simplifies to the following
form

C2(α, β; t)ρ = exp(iθ), (12)

where

θ = 2ωRe(αβ∗) sin(ωt) + 2Im(αβ∗) cos(ωt). (13)

We can immediately see that θ is real-valued for both
ω = Ω and ω = iΩ and we conclude that the magnitude
of the OTOC (12) does not decay in time for either the
regular or inverted harmonic oscillators. This implies that
the harmonic oscillator potential is quasi-scrambling, in
agreement with the general conclusion for the Gaussian
dynamics found in [57]. We can extend the IHO Hamilto-
nian to a simple non-Gaussian one by adding a so-called
cubic-gate as follows:

H =
p2

2m
+
mω2

2
x2 + γ

x3

3!

To display more clearly the role of the different contri-
butions in the Hamiltonian to the OTOC we rewrite the
Hamiltonain in the following form

H = kp2 + lx2 + Jx3,

where k = 1
2m , l = mω2

2 and γ
3! = J . As in the previous

Gaussian case, we first find the time evolution of the
displacement operator (8) for this cubic model. It has the
following form

D(α, t) = exp
[
i
(

Im(α)x− Re(α)p

− 3JtRe(α)x2
)]
.

(14)

From this expression, the OTOC can be computed exactly
as

C2(α, β; t)ρ = exp (iθ(k, l, J)) χ(12iJtRe(α)Re(β), ρ),
(15)

where χ(12iJtRe(α)Re(β), ρ) is the characteristic func-
tion [58], which typically decays in time. To illustrate this,
consider a thermal state ρnth

for which the characteristic
function has the form

χ(ξ, ρnth
) = exp

[
−(nth +

1

2
)|ξ|2

]
. (16)

Using this, the OTOC reads

C2(α, β; t)ρnth
= exp(iθ) χ(2iγtRe(α)Re(β), ρnth

)

= exp(iθ) exp
[
−2(2nth + 1)

(
Re(ξ)2 + Im(ξ)2

)]
, (17)

where

Re(ξ) = −6kJRe(α)Re(β)t2,

Im(ξ) = −6JRe(α)Re(β)t− 6JkIm(αβ∗)t2.
(18)

We can immediately see that there will be an exponential
decay when the cubic term is added to the Hamiltonian.
This essential role of the cubic term is clear from Eq. (18).
When J = 0 (and k 6= 0), the entire exponent vanishes,
and the amplitude becomes unity. This is true for any
value of k. On the other hand, when J 6= 0 and k = 0 we
still get exponential decay. This is the case discussed in
[57]. Finally when both J 6= 0, k 6= 0, we get contributions
from both of them, namely from the x3 and p2 terms.
However, the contribution coming from the p2 will never
cancel the contribution coming from the cubic term.

B. Quantum Lyapunov Spectrum

A defining property of a classical chaotic system is its
hyper-sensitivity to initial conditions in the phase space.
This manifests in the exponential divergence of the dis-
tance between two initially nearby trajectories. The rate
of this divergence is encoded in the so-called Lyapunov ex-
ponent. Technically, this is only the largest of a sequence
of such exponents that constitute the Lyapunov spectrum.
For a 2n-dimensional phase space, the Lyapunov spec-
trum consists of 2n characteristic numbers captured by
the Jacobian matrix

Mij(t) ≡
∂zi(t)

∂zj
, (19)

where the zi are phase space coordinates. The eigenval-
ues si(t) of the Jacobian matrix evolve exponentially in
time and the Lyapunov spectrum can is extracted in the
asymptotic limit,

λi ≡ lim
t→∞

1

t
ln si(t). (20)
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If the initial perturbation in the phase space is applied
to the “eigen-direction” with respect to one eigenvalue
in the Lyapunov spectrum, the trajectories diverge with
a corresponding exponential rate. For generic pertur-
bations which involve all exponents in the Lyapunov
spectrum, in the asymptotic limit, the exponential
with the largest exponent will eventually dominate. In
this case only the maximum Lyapunov exponent is visible.

It is worth emphasizing that the Lyapunov spectrum is
typically computed from the eigenvalues of the matrix

L(t) ≡M(t)†M(t). (21)

Due to the intrinsic symplectic structure of the classical
phase space, the M -matrix is symplectic and, hence, the
Lyapunov exponents always come in pairs with opposite
signs.

Now let’s think about quantum systems. In form of
the commutator square, the OTOC typically grows expo-
nentially, with a rate analogous to the classical Lyapunov
exponent, i.e., for generic operators,

〈[W (t), V ]2〉 ∼ εeλt, (22)

up-to the time scale known as the scrambling (or Ehren-
fest) time [5]. For systems with a classical counterpart,
e.g., quantum kicked rotor, the growth rate of the OTOC
indeed matches the maximum classical Lyapunov expo-
nent. A natural question to ask is if it possible to fine-tune
the operators in the OTOC and extract a full spectrum of
Lyapunov exponents, instead of only the leading one? A
recent attempt [59] to tackle this problem generalized the
Jacobian matrix to quantum systems using the OTOCs:

Mij(t) ≡ i[zi(t), zj ]. (23)

Here zi ranges over canonical variables, and zi(t) is the
Heisenberg evolution. In contrast to the classical case,
the quantum instability matrix (23) lacks a symplectic
structure. Known examples such as spin chains and the
finite size SY K-model show that the quantum Lyaponov
exponents do not come in pairs. However, these models
lack any well-behaved exponential growth in the first
place.

In light of the quantum-classical correspondence be-
fore the Ehrenfest time, we conjecture that whenever the
OTOC scrambles exponentially, the quantum Lyapunov
spectrum admits paired structure. Let’s test this against
the IHO, which is known to have a classical Lyapunov
spectrum {±Ω}. The Heisenberg evolution of the canoni-
cal pair of variables {x, p} can be computed exactly,

x(t) = x(0) cosh Ωt+
1

mΩ
p(0) sinh Ωt

p(t) = p(0) cosh Ωt+mΩx(0) sinh Ωt.
(24)

This in turn allows us to compute the quantum Jacobian
matrix,

M(t) =

(
sinh Ωt/(mΩ) − cosh Ωt

cosh Ωt −mΩ sinh Ωt

)
, (25)

the elements of which are OTOCs that all grow exponen-
tially with the largest Lyapunov exponent Ω. Once we
diagonalize the above matrix, the hyperbolic functions
arrange in such a way that a pair of exponentials emerge
with exponents ±Ω. This coincides with the Lyapunov
exponent of the classical inverted oscillator.

IV. COMPLEXITY FOR INVERTED
HARMONIC OSCILLATOR

Recently by using the inverted harmonic oscillator,
complexity has been proposed as a new diagnostic of
quantum chaos [6, 60]. Depending on the setup and
details of the quantum circuit, the scope and sensitivity
of computational complexity as a diagnostic can vary.
Since this is a fairly new diagnostic, its full capacity to
capture chaotic behaviour is not yet fully understood.
Therefore, to gain further insight into quantum chaotic
systems, we will extend our investigation in two different
directions. First, we compute the complexity for the
displacement operator by using the operator method
of Neilsen [17, 21, 61, 62], which explores how one can
construct a given operator from the identity. Then we
will develop a construction based on the Heisenberg
group, which provides a natural basis choice for the
displacement operator. Notice that this displacement
operator description is analogous to the doubly evolved
quantum circuit constructed in Ref. [60]. We would like
to explore if this operator formalism is consistent with
the existing results and whether it can provide us with
any additional information about chaos.

In the second part of this section, we will use the wave
function, or correlation matrix method, for a system of
N-oscillators to study the behaviour of complexity at
different timescales, namely, dissipation, scrambling and
asymptotic regimes. This particular setup introduces
two new parameters into the problem: the number of
oscillators and the lattice spacing, and we will also deter-
mine how complexity and the scrambling time depends
on them.

A. Complexity for the Displacement Operator

Now let’s compute the circuit complexity corresponding
to the time evolved displacement operator. We evolve the
displacement operator mentioned in (8) by the inverted
harmonic oscillator Hamilton. We get the following,

D(α, t) = exp
[
A(t) i x+B(t) i p

]
, (26)



6

where

A(t) =
√

2 (Im(α) cosh(Ωt)− Re(α) sinh(Ωt)Ω) ,

B(t) =
√

2 (Im(α) sinh(Ωt)/Ω− Re(α) cosh(Ωt)) .
(27)

Evidently it is an element of the Heisenberg group.
Consequently, we can parametrize the unitary as,

U(τ) =
←−
P exp(i

∫ τ

0

dτ H(τ)), (28)

where,

H(τ) =
∑
a

Y a(τ)Oa. (29)

Oa = {i x, i p,−i ~ I} generators of Heisenberg group
whose algebra is defined by,

[i x, i p] = −i~ I, [i x,−i ~ I] = 0, [i p,−i ~ I] = 0. (30)

The associated complexity function is defined as,

C(U) =

∫ 1

0

dτ
√
GabY a(τ)Y b(τ). (31)

We choose Gab = δab. To proceed further we choose to
work with following representation of Heisenberg gen-
erators. For ease of computation, we start with the 3-
dimensional representation of the Heisenberg group gen-
erators [63].

M1 =

0 1 0
0 0 0
0 0 0

 ,M2 =

0 0 0
0 0 1
0 0 0

 ,M3 =

0 0 1
0 0 0
0 0 0


(32)

It can be easily checked that these Ma’s satisfy the same
algebra as that of (30). From (28), and using the expres-
sions of Ma’s we can easily show that,

Y a = Tr(∂τU(τ).U−1(τ).MT
a ). (33)

This in turn helps us to define a metric on this space of
unitaries,

ds2 = δab(Tr(∂τU(τ).U−1(τ).MT
a ))×

× (Tr(∂τU(τ).U−1(τ).MT
b ))

(34)

The last step is to minimize the complexity functional
(31). The minimum value that it takes will then give the
required complexity. It can be shown, following [21, 24,
64], that (31) can be minimized by evaluating it on the
geodesics of (34) with the boundary conditions,

τ = 0, U(τ = 0) = I, τ = 1, U(τ = 1) = D(α, t), (35)

where in the representation (32) D(α, t) becomes,

D(α, t) =

1 A(t) 1
2A(t)B(t)

0 1 B(t)
0 0 1

 . (36)

For our case U(τ) is an element of Heisenberg group so
we can parametrize U(τ) as,

U(τ) =

1 x1(τ) x3(τ)
0 1 x2(τ)
0 0 1

 , (37)

and, given this parametrization, from (34) we find that,

ds2 = (1 + x2
2)dx2

1 + dx2
2 + dx2

3 − 2x2 dx1dx3, (38)

and the complexity functional,

C(U) =

∫ 1

0

dτ
√
gij ẋi(τ)ẋj(τ), (39)

where, xi = {x1, x2, x3}. We have to minimize (39) using
the boundary conditions (35). For this we need to solve
for the geodesics of this background, which amounts to
solving second order differential equations. Alternatively,
we can find the killing vectors of this space and the corre-
sponding conserved charges to formulate the system as a
first order one. We first list the Killing vectors below,

k1 =
∂

∂x1
,

k2 =
∂

∂x2
+ x1

∂

∂x3
,

k3 =
∂

∂x3
.

(40)

The corresponding conserved charges (cI = (kI)
igij ẋ

j)
are,

c1 = (1 + x2(τ)2)ẋ1(τ)− x2(τ)ẋ3(τ),

c2 = ẋ2(τ) + x1(τ)ẋ3(τ)− x1(τ)x2(τ)ẋ1(τ),

c3 = ẋ3(τ)− x2(τ)ẋ1(τ).

(41)

To solve these first order differential equations we first set
c3 = 0 in (41) to get,

ẋ1(τ) = c1,

ẋ2(τ) = c2,

ẋ3(τ) = x2(τ)ẋ1(τ).

(42)

The solutions for these equations are,

x1(τ) = χ1 + c1τ,

x2(τ) = χ2 + c2τ,

x3(τ) = χ3 + c1χ2τ +
1

2
c1c2τ

2

(43)

From τ = 0 boundary condition, χ1 = χ2 = χ3 = 0. Then
we are left with,

x1(τ) = c1τ,

x2(τ) = c2τ,

x3(τ) =
1

2
c1c2τ

2

(44)
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FIG. 1. Time evolution of complexity of the displacement
operator (computed from the operator method), for different
choice of parameters. The red and the blue dotted curves
correspond to {Im(α) = 0.1,Re(α) = 0.1,Ω = 0.1} and
{Im(α) = 5,Re(α) = 0.1,Ω = 0.5} respectively

Then from the final boundary condition at τ = 1 we have,

c1 = A(t), c2 = B(t). (45)

Then finally we have,

x1(τ) = A(t)τ, x2 = B(t)τ, x3(τ) =
1

2
A(t)B(t)τ2. (46)

We evaluate the complexity with this solution,

C(U) =
√
A(t)2 +B(t)2. (47)

This is a remarkably simple expression. We suspect that
this is a consequence of the simple structure of the Heisen-
berg group. One can immediately see the behaviour of
complexity at large times where it grows as a simple
exponential

C(U) ≈ Im(α)− Re(α)Ω√
2Ω

(
√

1 + Ω2)eΩt. (48)

Fig. 1 displays the time evolution of complexity for
two different sets of parameters in the logarithmic scale.
Note that the overall behaviour is chaotic as expected
for IHO and it matches with Ref. [60]. The late time
behavior for both cases are exponential as expected. The
early times behaviour on the other hand is a bit subtle.
Looking closer, we notice that for a particular set of values
of the parameters there is a minimum in the evolution
of complexity during the scrambling-time regime. This
strange feature is absent for the complexity computed
from the correlation matrix method used in Ref. [60]. The
physical significance of this minimum is unclear to us at
this point. To understand its implications and whether it
is a generic feature for this method will require further
investigations of other models. Naively though, it hints
that the operator method is perhaps more sensitive than
the wave function method for computing complexity. We
would like to investigate these issues elsewhere.

B. Complexity for N-Oscillators and Scrambling

To further investigate the scrambling behaviour for the
inverted harmonic oscillator, in this sub-section we will
take a different approach. First of all we will compute the
state complexity instead of operator complexity. Secondly,
we will consider a large number of inverted harmonic
oscillators. To establish our point we will use the model
used by Ref. [46], where the authors extended the inverted
harmonic oscillator model and considered the field theory
limit. Below we start with a review of the model studied
in Ref. [46].

First we will consider two free scalar field theories
((1+1)-dimensional c = 1 conformal field theories) de-
formed by a marginal coupling as in Ref. [46]. The Hamil-
tonian for such model is given by

H = H0 +HI =
1

2

∫
dx
[
Π2

1 + (∂xφ1)2 + Π2
2 + (∂xφ2)2

+m2(φ2
1 + φ2

2)
]

+ λ

∫
dx(∂xφ1)(∂xφ2).

(49)
We will discretize this theory by putting it on a lattice.
Using the following re-definitions

x(~n) = δφ(~n), p(~n) = Π(~n)/δ, ω = m,

Ω =
1

δ2
, λ̂ = λ δ−4 and m̂ =

m

δ
,

(50)

we get the following Hamiltonian

H =
δ

2

∑
n

[
p2

1,n + p2
2,n +

(
Ω2 (x1,n+1 − x1,n)2

+ Ω2 (x2,n+1 − x2,n)2 +
(
m̂2(x2

1,n + x2
2,n)

+ λ̂ (x1,n+1 − x1,n)(x2,n+1 − x2,n)
)]
.

(51)

Next we perform a series of transformations,

x1,a =
1√
N

N−1∑
k=0

exp
(2π i k

N
a
)
x̃1,k,

p1,a =
1√
N

N−1∑
k=0

exp
(
− 2π i k

N
a
)
p̃1,k,

x2,a =
1√
N

N−1∑
k=0

exp
(2π i k

N
a
)
x̃2,k,

p2,a =
1√
N

N−1∑
k=0

exp
(
− 2π i k

N
a
)
p̃2,k,

p̃1,k =
ps,k + pa,k√

2
, p̃2,k =

ps,k − pa,k√
2

,

x̃1,k =
xs,k + xa,k√

2
, x̃2,k =

xs,k − pa,k√
2

,

(52)

that lead to the Hamiltonian

H =
δ

2

N−1∑
k=0

[
p2
s,k + Ω̄2

kx
2
s,k + p2

a,k + Ω2
kx

2
a,k

]
, (53)
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FIG. 2. Universal growth of the complexity in Eq. (56) at differ-
ent time scales. Top, middle, and bottom figures show, respec-
tively, the power-law dissipation, the exponential scrambling
in semi-log scale, and the intermediate linear growth. Blue
dotted, black, and red dashed curves correspond to {δ = 0.4,
N = 100}, {δ = 0.5, N = 200}, and {δ = 0.5, N = 100},
respectively. Other parameters are fixed as m = 1, λ = 10,
δλ = 0.01.

where

Ω̄2
k =

(
m̂2 + 4 (Ω2 + λ̂) sin2

(π k
N

))
,

Ω2
k =

(
m̂2 + 4 (Ω2 − λ̂) sin2

(π k
N

))
.

(54)

Note that the underlying model of interest is still the in-
verted harmonic oscillators. It becomes immediately clear

by appropriately tuning the value of λ̂–the frequencies
Ωk can be made arbitrarily negative resulting in coupled
inverted oscillators. The other frequency, Ω̄k, however,
will be always positive. Therefore, effectively this model
(53) can be seen as the sum of a regular and inverted
oscillator for each value of k. Since we are interested in
the inverted oscillators we will ignore the regular oscillator

part and we will simply use the inverted oscillator part
of the Hamiltonian

H̃(m,Ω, λ̂) =

δ

2

N−1∑
k=0

[
p2
k +

(
m̂2 + 4 (Ω2 − λ̂) sin2

(
π k

N

))
x2
k

]
.

(55)

Even with this Hamiltonian, by tuning λ̂ we can get both
regular and inverted oscillators.

It is worth stressing that the above Hamiltonian origi-
nates from the discretization of the scalar field (49). This
imposes a UV cut-off inverse proportional to the lattice
spacing. As long as only the low energy physics is con-
cerned, Hamiltonian (55) for the uncoupled oscillators
should describe the original field theory very well.

Now we will talk about the structure of the quantum
circuit we will be using to study the complexity. At t = 0

we start with the ground state of H̃(m,Ω, λ̂ = 0) and then

time evolve it with H̃(m,Ω, λ̂ 6= 0) and H̃ ′(m,Ω, λ̂′ 6= 0)

with two slightly different couplings, λ̂ and λ̂′ = λ̂+ δλ̂,

where δλ̂ is small. The complexity of the state evolved
by H with respect to the state evolved by H ′ is given by
[25, 27, 60]

Ĉ(Ũ) =
1

2

√√√√N−1∑
k=0

(
cosh−1

[
ω2
r,k + |ω̂k(t)|2

2ωr,k Re(ω̂k(t))

])2

, (56)

where

ω̂k(t) = i Ω′k cot(Ω′kt) +
Ω′2k

sin2(Ω′kt) (ωk(t) + iΩ′k cot(Ω′kt))
(57)

and

Ω′2k = m̂2 + 4 (Ω2 − λ̂− δλ̂) sin2
(π k
N

)
. (58)

The frequencies ωk(t)2, ω2
r,k are given by

ωk(t) = Ωk

(
Ωk − i ωr,k cot(Ωk t)

ωr,k − iΩk cot(Ωk t)

)
, (59)

Interestingly, this simple model exhibits three universal
behaviors for the complexity growth in three different
time scales.

As shown in Fig. 2, the complexity starts to grow as a
power-law, in a transient time known as the dissipation
time. This is a time scale when local perturbation relaxes.
It corresponds to an exponential decay of time-ordered
correlators of local observable. At larger times the com-
plexity switches to an exponential growth, i.e., scrambling,
which corresponds to the early exponential decay of the
OTOC, 1− εeλt. Asymptotically, the complexity grows
linearly in time. This corresponds to the exponential



9

relaxing of the OTOC. Note that the inverted harmonic
oscillators are not bounded, the complexity grows forever
without saturation.

We also identified the scaling of the complexity growth
in terms of parameters N and δ in the model. In the dis-
sipation and intermediate linear growth regime, the com-
plexity scales as C ∼

√
Nδ−2t. In the scrambling regime

the complexity grows as C ∼
√
N exp δ−2t. The scram-

bling time, i.e., the time scale for which the complexity
becomes O(1), can then be extracted as td ∼ δ2 log 1/

√
N .

V. DISCUSSION

The harmonic oscillator is one of the most versatile
toy models in all of physics. Largely, this is because
the oscillator Hamiltonian is quadratic, and Gaussian
integrals are a staple of any physicist’s diet. This article
details our systematic study of the inverted harmonic
oscillator as a vehicle to explore quantum chaos in a
controlled and tractable setting. To be concrete, we
focused on two recently developed probes of chaos,
namely the out-of-time-order correlator and the circuit
complexity, both computed for the displacement operator
(8). We find that, with the addition of a cubic-gate
perturbation to the IHO Hamiltonian, the OTOC
exhibits a crossover from no- to exponential-decay. We
then computed the full quantum Lyapunov spectrum
for the IHO, finding that it exhibits a paired structure
among the Lyapunov exponents. This in turn leads
us to conjecture that as long as the OTOC scrambles
exponentially, such a structure will manifest in the
Lyapunov spectrum.

Using the operator method we then computed the
complexity of a target displacement operator obtained
from a simple reference displacement operator by the
chaotic Gaussian dynamical evolution expected of the
IHO. Our construction is primarily based on Nielsen’s
geometric formalism, making use of the Heisenberg
group as a natural avatar for the displacement operator.
The takeaway from this analysis is that the choice of
operator or wave function approaches in the computation
of the complexity really depends on the physical
problem in question. For example, the wave function
approach is more convenient for the study of a system of
N -oscillators, where we showed that both the complexity
and scrambling time depend on two new parameters,
namely, the number of oscillators and lattice spacing
between them.

As elucidating as this study of the chaos and complexity
properties of the inverted harmonic oscillator is, there are
several questions remain to be addressed. Among these,
we count:

• A clear recipe for the penalization procedure, which
usually accompanies the circuit complexity, is still
missing for continuous systems such as the inverted

oscillator and, more pressingly, in quantum field
theory.

• While progress in understanding circuit complex-
ity has come in leaps and bounds since it entered
into the horizon of high energy theory and black
hole physics, much of this progress has been fo-
cused on simple linear systems. For the purposed
of understanding interacting systems, it would be
of obvious benefit to push the operator complexity
computation beyond the Heisenberg group. Here
too, the inverted oscillator offers some hints. For ex-
ample, one conceptually straightforward extension
that may shed some light into this matter would
be precisely the cubic-gate perturbation that we
considered above.

• Finally, and more speculatively, there is the novel
and largely unexplored class of Hamiltonians with
unbroken PT symmetry which describe non-isolated
systems in which the loss to, and gain from the en-
vironment are exactly balanced. In a sense then, PT-
symmetric Hamiltonians interpolate between Her-
mitian and non-Hermitian Hamiltonians but with
spectra that are real, positive and discrete. An ex-
ample relevant to our study here is the 1-parameter
family of Hamiltonians

H(ε) =
p2

2
+ x2(ix)ε ,

with real parameter ε. Clearly H(0) = p2/2 + x2 is
just the familiar harmonic oscillator. On the other
hand H(1) = p2/2 + ix3 is not only unfamiliar, it
is also complex! Continuing along ε, we find the in-
verted quartic Hamiltonian H(2) = p2/2− x4 which
looks decidedly unstable. Nevertheless, it was rigor-
ously shown in [65] that the eigenvalues of H(ε) are
real for all ε ≥ 0. Given the numerous manifesta-
tions of PT-symmetric Hamiltonians in for example
optics, superconductivity and even graphene sys-
tems, it would be interesting to explore both its
quantum chaotic as well complexity properties with
some of the tools that we have explored here.

We leave these and related questions for further study.
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