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Abstract

ITensor is a system for programming tensor network calculations with an inter-
face modeled on tensor diagrams, allowing users to focus on the connectivity of
a tensor network without manually bookkeeping tensor indices. The ITensor
interface rules out common programming errors and enables rapid prototyping
of algorithms. After discussing the philosophy behind the ITensor approach, we
show examples of each part of the interface including Index objects, the ITen-
sor product operator, tensor factorizations, tensor storage types, algorithms
for matrix product state (MPS) and matrix product operator (MPO) tensor
networks, quantum number conserving block sparse tensors, and the NDTen-
sors library. We also review publications that have used ITensor for quantum
many-body physics and for other areas where tensor networks are increasingly
applied. To conclude we discuss promising features and optimizations to be
added in the future.
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1 Introduction

Tensor networks are a technique for working with tensors which have many indices [1–6].
The naive memory and computing costs of working with a tensor having N indices (an
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order-N tensor) scales exponentially with N . A tensor network is a representation of a
large, high-order tensor as the contracted product of many low-order tensors. When all of
the tensors in the network are low-order, a tensor network can make it efficient to perform
important operations such as summing two high-order tensors or computing their inner
product. These operations can remain efficient whether the high-order tensor represented
implicitly by the network has hundreds, thousands, or even an infinite number of indices.

Describing tensor networks can be difficult when using traditional notation: one must
come up with distinct names for indices and it can be hard to see the connectivity pattern
of the network. An elegant alternative is tensor diagram notation [7]. In diagram notation,
tensors are shapes and indices are depicted as lines emanating from them. Connecting two
index lines means they are contracted or summed over. For example, the following diagram
is equivalent to the traditional expression below it:

∑
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Diagram notation is enormously helpful for expressing tensor networks, as it emphasizes
key aspects of tensor algorithms while suppressing implementation details such as the
ordering of tensor indices. It is just as rigorous as traditional index notation.

ITensor, short for intelligent tensor, is a software library inspired by tensor diagram
notation. Its goal is enabling users to translate a tensor diagram into code without rein-
troducing concepts not expressed by tensor diagrams. For example, when summing two
ITensors the only requirement is that they have the same set of indices in any order; the
ITensor system handles all other details of performing the sum.

Two “philosophical” principles guided the design of ITensor. The first was that in using
the library, any implementation details which are not a part of the conceptual algorithms
should be kept hidden from the user as much as possible. Not having to think about these
details allows one to focus more clearly on the essentials. A key early insight was that this
principle could apply to the ordering of indices in an ITensor. In typical tensor software,
the user is constantly thinking about the order of the indices. However, tensor diagrams
do not have any index ordering, just labels that keep track of the relevant information.
Thus ITensors have the ordering of their indices abstracted away as an implementation
detail, using “intelligent” indices that retain their identity. The second key principle is that
the software should allow one to interact with it at a variety of levels. At a high level, for
calculations done in a standard way one can call functions encapsulating a sophisticated
algorithm (say, the density matrix renormalization group, DMRG) without understanding
much of the implementation details. At an intermediate level, one can gain flexibility by
working with moderately sophisticated routines, such as for adding MPS. And finally, to
do something more novel, one can work at the lower level of individual ITensors. This
multilevel access mandated that ITensor be a library, not a single executable program with
complicated input files.

These initial principles led to other interesting design choices over time. One conse-
quence of having intelligent tensor indices as distinct data objects (of type Index) is that
they can store extra information about themselves. A key use case is indices which have
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internal subspaces labeled by conserved quantum numbers (symmetry group representation
labels). Storing this information in the Index objects ensures that when contracting two
quantum number conserving ITensors, both are guaranteed to use the same ordering of the
subspaces for storing their data. Another consequence is that dense and sparse ITensors
can be of the same type and have essentially the same interface, because the implementa-
tion can inspect the indices and internal storage type to determine the actual ‘type’ of any
ITensor. Thus users can write very generic code that works for any type of ITensor.

The design choice to have an ITensor manage its own index ordering is by no means
an obvious one. Benefits of ITensor’s intelligent index system include making addition of
ITensors A and B as simple as writing the code A+ B for tensors with the same indices,
or automating the application of operators to matrix product states (MPS). A system to
automate anti-commuting “fermionic” tensor algebras is currently in development which
heavily relies on the intelligent index system to keep track of index ordering. Calculations
where multiple tensor diagrams have many of the same indices is another example where
intelligent indices makes code simpler and less error prone. An example is taking the
gradient of a tensor network, which simply involves removing that tensor from the network.
But possible drawbacks of the intelligent index approach include occasional extra lines of
code to manipulate index properties and some loss of control over low-level details of
tensor operations when using very high-level features. However we do offer more advanced
features that give complete control over such details.

Most tensor libraries, in contrast, choose to expose the ordering of tensor indices to
users who must manage this ordering manually [8]. Such interfaces always give users fine-
grained control over details that can affect performance, but can put more of a burden
on the user to ensure correctness. While ITensor does not require users to think about
the index ordering, it can be manually controlled when needed by calling functions such
as permute to explicitly permute indices into a specified memory ordering. In tensor
contractions, the index ordering of the output tensor can be controlled by supplying it
through an in-place contraction function.

Another contrast between ITensor and other tensor libraries relates to how networks
consisting of many tensors are handled. In many libraries, higher-level network interfaces
are offered by supplying temporary text labels for indices [9–11] or by placing tensors
into a graph or network structure and specifying contracted indices through the graph
topology [12, 13]. Because ITensors have persistently labeled indices, any collection of
ITensors with unique indices already specifies a graph. We are currently taking advantage
of this property of ITensors to offer higher-level tensor network abstractions and make use
of it in our upcoming automatic differentiation tools.

ITensor was first implemented in C++ and extensively developed and refined through
three major releases over ten years. 1 Recently, ITensor has been fully ported to the Julia
language and most new features are being developed there. 2 In what follows we show
examples in Julia, though we emphasize that the high-level C++ and Julia interfaces are
quite similar (see the Appendix for full code examples in each language). Both versions
are full implementations of ITensor in each language: the Julia version is not a wrapper
around the C++ version.

The goal of this article is to provide a high-level overview of the ITensor system, its
design goals, and its main features. Much more information including detailed documen-
tation of the ITensor interface, code examples, and tutorials can be found on the ITensor
website: https://itensor.org.

1ITensor Github Repository (C++): https://github.com/ITensor/ITensor
2ITensor Github Repository (Julia): https://github.com/ITensor/ITensors.jl
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2 Interface Examples

We first introduce ITensor by giving examples as an informal overview. In later sections,
we will discuss many more details of the individual elements making up the ITensor system
such as “intelligent” tensor indices, tensor factorizations, and block sparse ITensors.

2.1 Installing ITensor

Julia features a built-in package manager that makes installing libraries simple. To install
the ITensor library, all a user has to do is issue the following commands, starting from
their terminal:

� �
$ julia
julia> ]
pkg> add ITensors� �

The julia command starts an interactive Julia session and typing ] enters package man-
ager mode. The command add ITensors downloads and installs all the dependencies of
the ITensors.jl package then finally the ITensor library itself.3

2.2 Obtaining Help

Once ITensor is installed, the built-in Julia documentation system can be used to query
ITensor functions and types. For example

� �
julia> using ITensors
julia> ?
help?> Index� �

will give the output

� �
search: Index indexin IndexStyle IndexLinear ...

An Index represents a single tensor index with fixed
dimension dim. Copies of an Index compare equal unless
their tags are different.

...� �
and additional information describing the Index type and its constructors.

2.3 Basic ITensor Usage

To begin using the ITensors package in a Julia session or script, input the line
3The reason the Julia library is called “ITensors” and not ITensor is to keep the module name from

conflicting with name of the ITensor type.
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� �
using ITensors� �

Before creating an ITensor, one first creates its indices. The line of code

� �
i = Index(3)� �

creates a tensor Index of dimension 3 and assigns this Index object to the reference i.
Upon creation, this Index is stamped with an immutable, unique id number which allows
copies of the Index to be compared and matched to one another. A portion of this id is
shown when printing the Index, with typical example output of the command @show i

being:

� �
i = (dim=3|id=804)� �

After making a few Index objects i,j,k,l one can define ITensors:

� �
A = ITensor(i)
B = ITensor(j,i)
C = ITensor(l,j,k)� �

Because matching Index pairs can automatically recognize each other through their id
numbers, tensor contraction can be carried out as:

� �
D = A * B * C� �

The * operator finds all matching indices between two ITensors and sums over or contracts
these indices. The i Index is summed in the first contraction above and j in the second,
leaving D with indices l and k. The ITensor product operator “*” can also be used for
outer products and scalar products, and is discussed in more detail in Section 4.

2.4 Setting ITensor Elements

Setting an element of an ITensor A = ITensor(i,j,k) is done by

� �
A[i=>2,j=>3,k=>1] = 0.837� �

which assigns the value 0.837 to the element of A for which index i has the value 2, j
has value 3, and k has value 1. (Note that in Julia, the built-in notation x=>y makes a
Pair(x,y) object.) ITensor indices are 1-indexed, similar to Julia arrays.

Because the Index objects are provided along with their values, they can be passed in
any order. Thus the following lines of code
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� �
A[i=>2,j=>3,k=>1] = 0.837
A[k=>1,i=>2,j=>3] = 0.837� �

have exactly the same effect on the ITensor A.
To create an ITensor with normally-distributed random elements instead of specific

values, one can use the constructor

� �
T = randomITensor(i,j,k)� �

to make a real-valued random tensor or

� �
T = randomITensor(ComplexF64,i,j,k)� �

to construct a complex-valued random ITensor.

2.5 Matrix Example

To illustrate the usefulness of the ITensor approach involving Index objects and the *
operator, consider a pair of order-2 tensors (matrices)

� �
A = ITensor(i,j)
B = ITensor(k,j)� �

In a typical matrix or tensor library, to contract A with B and sum over their shared index
j, one would need to write code similar to

� �
C = A * transpose(B)� �

Note that the above line is not ITensor code!
Within ITensor, all one needs to do is to write

� �
C = A * B� �

and the * operator handles the transposition of B automatically. If B is redefined with the
ordering of its indices reversed, the operation A * B continues to give the correct result.
This type of behavior makes ITensor applications robust to changes in the code that may
modify the ordering of tensor indices or the layout of tensors in memory.

2.6 Summing ITensors

ITensors can be added and subtracted as long as they have the same set of indices. Even
if the indices are in a different order, addition always works straightforwardly because the
ITensor system is able to internally deduce the data permutation required:
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� �
A = randomITensor(i,j,k)
B = randomITensor(k,i,j)
C = A + B� �

ITensors may also be subtracted and multiplied by scalars, including complex scalars,
for example:

� �
D = 4*A - B/2
F = A + 3.0im * B� �
2.7 Priming Indices

Sometimes it is not desirable to contract all of the indices shared between two tensors.
Consider two ITensors

� �
A = ITensor(i,j)
B = ITensor(i,j)� �

and say we want to contract only over the index j leaving the i indices uncontracted.
A convenient way to achieve this while still using the * operator is to prime one of the

i indices

� �
Ap = prime(A,i)� �

The ITensor Ap has the same elements as A but has indices (i',j). When contracting Ap
with B, now only the j indices will match or compare equal, so it will be the only Index
contracted

� �
C = Ap * B
hasind(C,i) == true
hasind(C,i') == true� �

Diagrammatically we can notate the above contraction as:

=
Ap

i' j ii' i

BC *
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2.8 Compiling ITensor

Although the experience of using Julia is similar to using an interpreted language, it is
actually a just-in-time compiled language.

The initial compilation time when Julia first encounters new functions or types can be
large in a new Julia session, though there is ongoing work to provide ahead-of-time compi-
lation tools for Julia. To reduce just-in-time compilation overhead, we offer a convenient
way for users to compile most of the ITensors.jl code ahead of time with the following
commands within an interactive Julia session:

� �
julia> using ITensors
julia> ITensors.compile()� �

The compilation process can take many minutes, but only has to be performed once each
time the ITensors.jl library is upgraded to a new version. After the command is run, it will
suggest command-line arguments that can be passed to the julia language program that
will load a precompiled ITensors.jl system image when running Julia. Running ITensor
code this way typically reduces startup times to only a few seconds.

2.9 Online Code Examples

For more extensive and frequently updated examples of ITensor code, including full ap-
plications, we include an set of examples as part of our source code distribution at the
following link: ITensor Code Examples.

3 Index Objects

A core concept of the ITensor system is that tensor indices carry information beyond just
their dimension. Mathematically, this corresponds to the notion that an index labels the
basis of a vector space, and that two vector spaces may be different from each other despite
having the same dimension.

The notion that a tensor index corresponds to a specific vector space is encoded in the
unique id number assigned to an Index object when it is constructed:

� �
i = Index(4)
@show i # prints: i = (dim=4|id=577)� �

Printing an Index as in the code above shows a portion of the (64 bit) id number.4

Because a new id is assigned each time an Index is constructed, other separately con-
structed Index objects will not compare equal to i even if they have the same dimension

� �
j = Index(4)
j != i # true

4As a technical note, the Index id numbers are generated randomly, but collisions are highly improbable
because of the 64-bit length of the ids. Random id generation has many advantages over sequential,
including using ITensor for parallel algorithms and reading ITensors from files and mixing these ITensors
with newly generated ones.
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� �
In other words, comparison operations (==,!=) require two Index objects to have the same
id for them to compare equal.

To enrich the Index system one may also add tags to indices

� �
s = Index(3,"s,Site")� �

The Index s above has a dimension 3, as well as two tags "s" and "Site". For efficiency
reasons, tags can have a maximum of eight characters and indices can have a maximum of
four tags. These maximum values are currently hard-coded into the library and may be
increased in the future as use cases arise that require longer tags or more tags.

Tags can serve multiple purposes: helping to identify Index objects when printing them;
collecting subsets of indices sharing a common tag or tags; and preventing certain Index
pairs from contracting with each other. This last use of tags extends the rule for Index
comparisons: for Index objects to compare equal they must have the same tags as well as
the same id number.

As discussed in the previous section, one other way to prevent Index objects from
comparing equal is to change their prime level. Every Index carries an integer prime level
which defaults to zero.

� �
i = Index(2,"i")
@show plev(i) # plev(i) = 0� �

A copy of Index i but with a prime level of 1 can be created by calling

� �
ip = prime(i)
@show plev(ip) # plev(ip) = 1� �

or for convenience by writing

� �
ip = i'� �

Two copies of the same Index which have different prime levels do not compare equal

� �
i == i' # false
i == i'' # false� �

Because both primes and tags can be used to prevent Index objects from comparing
equal to each other and being contracted by the * operator, some experience is needed to
choose the best approach. Primes are useful when indices are only distinguished temporar-
ily; it is easy afterward to call noprime(T) on an ITensor to reset the prime levels of all of
its indices. On the other hand, tags should be used when there is some application-specific
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understanding of why certain indices are distinguished. For example in the case of a tensor
network with a square lattice structure, where all indices linking the tensors together may
describe the same vector space, we might use the tags "x=-1", "x=0", "x=1", . . . to label a
unique horizontal position in the lattice and the tags "y=-1", "y=0", "y=1", . . . to specify
a unique vertical position. This is particularly useful in applications involving translational
invariance, where many copies of the same Index can appear in different contexts and it
can become cumbersome to distinguish them by prime levels alone.

4 The ITensor Product Operator (∗)

Just as tensor diagrams unify many concepts, the ITensor product operator * likewise
unifies many operations into a single operation:

• The * product of ITensors with no indices in common computes an outer product.

• The * product of ITensors with all the same indices computes an inner product,
resulting in a scalar ITensor.

• Otherwise, for a pair of ITensors having just some indices in common, the * operator
computes a tensor contraction.

A simple example of an outer product is the product of two vectors which do not share
a common index:

� �
v = ITensor(i)
w = ITensor(j)
x = v * w� �

ji

=
v

ji

wx *

Using the * operator to compute an inner product results in a scalar ITensor with no
indices as in the following example (note that the indices do not need to be in the same
order for the result to be correct):

� �
A = ITensor(i,j,k)
B = ITensor(k,i,j)
C = A * B� �
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= A

B
C *

The scalar function can be called to convert a scalar ITensor into a real or complex
number

� �
x = scalar(C)� �

or alternatively one can call x = C[].
Finally, to illustrate the case of a tensor contraction where only some of the indices are

summed, we can use the following example which was also shown at the beginning of this
article:

� �
T = ITensor(i,j,k)
M = ITensor(k,n)
R = T * M� �

=
T * MR

In the diagram above, we have omitted the names of the indices to emphasize the typical
user experience: all that a user needs to know to get a correct result in the above example
is that T and M share one Index. Keeping track of the ordering of the uncontracted indices,
which become the indices of R, is not necessary.

Besides contracting regular tensors, the * operator can also be used in conjunction with
specially constructed tensors to manipulate tensor indices. One example of such a special
tensor type is a delta tensor, also known as a copy tensor, which has all diagonal elements
equal to one and other elements equal to zero, and is often shown as a solid black circle in
tensor diagrams. In the ITensor library, a delta tensor uses special diagonal-sparse storage
internally, not only to save memory but also to ensure that the contraction of delta tensors
with other tensors is performed using specially optimized routines.

A delta tensor can be used to replace an Index with another Index of the same dimen-
sion:

� �
A = ITensor(k,j)
A = A * delta(k,i)
@show hasind(A,i) # true� �
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= i k ji j

AA δ *

or to duplicate (or split) an index as follows:

� �
B = ITensor(k)
B = B * delta(k,i,j)� �

j
i =

B

k

B *

i

j
δ

Note that in Julia, one can use the unicode character δ to write the code above as
B = B * δ(k,i,j).

Another example of a special tensor type is a combiner ITensor. When contracted with
another ITensor, a combiner merges multiple indices into a single Index.

� �
T = ITensor(i,j,k)
C = combiner(i,j)
cT = C * T� �

i j k= T

c

C
*

c k

cT

The Index c shown in the diagram above can be retrieved by calling combinedind(C) on
the combiner ITensor. Alternatively one can call commonind(C,cT) to retrieve this Index,
since it is the one that the combiner and cT will necessarily have in common.

Taking the product with the conjugate of the combiner reverses this operation.
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= cT
ci j k

dag(C)
*k

T

i j

Like delta tensors, combiners also use a special storage type with a negligible memory
footprint and optimized contraction algorithms for combining and uncombining indices.

The action of a combiner on a tensor is conceptually identical to the concept of per-
muting and reshaping a multi-dimensional array, at least for the case of dense ITensors.
For quantum number conserving or symmetric ITensors, combiners can perform additional
steps like grouping multiple copies of a quantum number together in the combined In-
dex, or managing anticommutation properties in the case of the upcoming ITensor fermion
system.

5 Tensor Decompositions

Many commonly used tensor network decompositions are built from matrix decompositions
such as the QR and singular value decompositions (SVD) known from linear algebra.
Despite being defined in terms of matrices, these factorizations can be straightforwardly
defined for tensors too. All that is needed is a mapping from a tensor to a matrix, defined
by specifying a certain group of indices as row indices and the rest as column indices, then
treating each group as a single larger index when computing the decomposition. ITensor
automates the tedious and error-prone process of converting tensors to matrices and back,
providing a tensor-level interface for various decompositions.

Consider an ITensor T with indices i,j,k. We can compute a QR decomposition of T
by just specifying that i,k are the row indices as follows:

� �
T = randomITensor(i,j,k)
Q,R = qr(T,(i,k))� �

k
=

Q

i ji j

RT
k

*

A new Index is generated by the qr function which links the Q tensor to the R tensor as
shown above. This makes it straightforward to recover the tensor T just by using the *
operator:
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� �
Q*R ≈ T # true� �

(In Julia, the ≈ operator is overloaded to compute the relative difference between the two
sides of an equation, and return true if it is below a prescribed threshold.) Note that
when computing the product Q*R one does not need to know any details of the new Index
introduced by the factorization, such as whether it is the first or second index of R, or its
dimension. However, in situations where one wants to retrieve this Index, a convenient
way to do it is as follows:

� �
q = commonind(Q,R)� �

where the commonind function returns the first Index found that is shared by the two
ITensors.

The SVD plays a key role in tensor network calculations, and is implemented as

� �
W = randomITensor(i,j,m,k)
U,S,V = svd(W,(j,i))
U*S*V ≈ W # true� �

k
=

U

i
j

SW
k

*

m

V*

i m
j

In the example above, j,i were specified as the row indices, leaving m,k as the column
indices.

An important feature of certain decompositions such as the SVD is that they allow
controlled truncation of the tensors resulting from the factorization. By default, ITensor
decompositions do not truncate, though they do always compute the “thin” version of a
decomposition when available. A truncated decomposition can be computed by specifying
truncation keyword arguments. In the following example

� �
U,S,V = svd(W,(j,i);cutoff=1E-8,maxdim=10)� �

the truncation will be determined by summing the squares of the singular values from
smallest to largest until the truncation error reaches 10−8 while also ensuring that the
maximum number of singular values kept is less than or equal to 10.
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6 Tensor Storage Layer

A powerful feature of ITensor is that ITensors can have a wide variety of storage formats
while offering the same user interface. Users can mix sparse and dense tensors together in
calculations and manipulate any kind of tensor using identical high-level code.

In most cases users do not set the storage type manually; instead special storage types
occur automatically when using other features: after computing the singular value decom-
position of an ITensor, the singular values are returned as an ITensor with diagonal-sparse
storage; constructing an ITensor from indices with quantum number subspaces makes the
storage automatically block sparse.

Importantly, because the storage types used by an ITensor are distinct types, each one
can use the most optimal memory layout possible, and performance-critical algorithms
such as tensor contraction and factorization can be specialized for each storage type or
combination of storage types. For this purpose, we take full advantage of Julia’s multiple
dispatch mechanism to organize specialized algorithms into separate code pathways to
keep the library code simple. These optimizations are hidden from the user, who can just
contract ITensors together using the * operation and automatically get the best possible
performance available.

Some of the most common storage types available in ITensor are:

• Dense storage: this is the default storage type when constructing an ITensor from
regular Index objects and setting elements. The Dense storage type is parame-
terized over its element type, so that Dense{Float64} (real-valued dense storage)
and Dense{ComplexF64} (complex-valued dense storage) are actually different stor-
age types. The type used to hold the data for Dense storage can also be changed
through a second, optional type parameter, to types such as Vector{Float64} or
SubArray{Float64}.

• Diagonal storage: diagonal-sparse tensors occur naturally in algorithms such as the
singular value decomposition and eigenvalue decomposition. In such settings, all of
the diagonal elements can be different and so an array of the diagonal elements is
stored. A special case of diagonal storage is uniform diagonal storage, where all of
the elements of the diagonal are constrained to be the same. For this special storage
only the value of the repeated, identical diagonal element is stored and specially-
optimized contraction algorithms are invoked. If the uniform diagonal value is equal
to 1.0 then such a diagonal tensor can be used to replace one Index with another
under the contraction or * operation, or as a “copy” or “delta” (δ) tensor as used in
certain tensor network algorithms.

• Combiner storage: This storage type uses essentially no memory and stores no ten-
sor components. Rather, it stands for a tensor which conceptually merges two
or more indices into one larger index. A combiner tensor C can be created as
C = combiner(i,j,k) where i,j,k are the indices one wants to combine together.
Contracting the combiner ITensor with an ITensor having these indices results in a
new ITensor where the indices are merged into the Index cind = combinedind(C).
The new combined Index is created automatically by the combiner.

• Block sparse storage: Block sparse storage is automatically used when an ITensor is
created from Index objects with quantum number subspaces. This is an important
case for quantum physics calculations, where the sparsity enforces symmetries or
conservation laws and allows calculations to be performed more efficiently. The
block sparse and quantum number system is discussed in more detail in Section 8.
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An important consideration for block sparse storage is that the overhead of managing
the layout of blocks and movement of blocks within algorithms must be kept very low
in order to benefit from the efficiency of the tensor sparsity. Currently, the ITensor
block sparse storage holds all of the non-zero tensor elements in a single, contiguous
array and keeps a dictionary mapping block indices such as (2,1,7) to offsets in the
array.

• GPU storage: GPU (graphics processing unit) storage is an experimental feature
supported by the ITensorGPU.jl package. An ITensor with GPU storage stores its
elements in GPU memory, and calls specialized routines for operations including
tensor contraction and tensor factorizations. Taking advantage of the parallel pro-
cessing capabilities of GPUs can give speedups ranging from two to a hundred times
the speed of CPU calculations. Because different storage types are handled automat-
ically behind the same ITensor interface, GPU ITensors can take advantage of the
same set of high-level algorithms available in the ITensor library written originally
for regular tensors stored in host memory.

• Empty Storage : ITensors support a special storage type EmptyStorage which is used
to represent an ITensor which is numerically zero but without incurring the cost of
allocating any memory. Calling a constructor such as ITensor(i,j,k) results in an
ITensor with empty storage.

Another feature of the empty storage type is that it can be used as a convenient
workaround for specifying a complicated set of tensor indices in advance. A key
example is when summing a set of tensors which are known to have the same indices
as each other, but where the user does not want or need to explicitly work with these
indices. In such cases, a default-initialized ITensor (which will have empty storage)
can be used as a “universal zero” tensor which can be summed with any other tensor,
for example:

� �
i = Index(2)
V = [randomITensor(i), randomITensor(i)]
T = ITensor()
for A in V

T += A
end� �

The flexibility of the ITensor storage system will let us explore other interesting possi-
bilities in the future. Some planned extensions include IdentityStorage storage which
represents an identity map from one collection of indices to another, UnitaryStorage
storage representing a unitary map, and storage types which handle common operations
such as conjugation in a lazy or delayed manner.

An important direction we plan to pursue is further sparsity patterns, including fully
general sparsity. Technically, general sparsity is already handled by the ITensor block
sparse system in the limit of all block sizes set to 1, and we have already observed speedups
from representing sparse tensors in this limit. However, we plan to expose generally sparse
tensors more explicitly and possibly handle them in a more optimized way.

Lower-precision floating-point data is already supported by our storage layer, and can
significantly speed up calculations such as when using GPU hardware. Also we have
experimental support for more exotic numerical types such as tropical numbers, thanks to
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contributions by Jin-Guo Liu [14]. More systematic handling of numerical types such as
integer, boolean, or nonnegative tensor elements is a planned future direction.

Given the usefulness of the flexible storage type system in ITensor, we plan to formalize
and carefully document the steps for users to make their own custom storage types. Because
of the dynamic nature of the Julia language, such types can be fully defined outside of the
ITensor library itself yet be treated as first-class storage types for ITensors.

7 High Level Features: MPS and MPO Algorithms

To make ITensor a productive system for rapidly prototyping tensor network algorithms,
it provides the most common and well-developed tensor network formats and algorithms.
The two most well developed formats are the matrix product state (MPS) tensor network
[4, 15, 16], also known as the tensor train [6], and the matrix product operator (MPO)
tensor network [17,18].

Algorithms included with the core ITensor library include summation of MPS and
MPO; truncation of MPS and of MPO; optimization of MPS through the DMRG algo-
rithm; and multiplication of an MPS by an MPO. These algorithms offer a high degree of
customizability: the multiplication of an MPS by an MPO can be performed using at least
three different algorithms (selected by a keyword argument), with each algorithm offering
tradeoffs in terms of scaling, performance, and controllability. The DMRG code offers
different modes, including finding the ground state (dominant eigenvector) of an implied
sum of multiple MPOs or finding excited states (sub-dominant eigenvectors).

Throughout this section, code examples will use strings denoting local operators such
as "Sz", "S+", or "S-" or strings denoting states of the local Hilbert space such as "Up"
and "Dn". The way ITensor is able to know the appropriate definition of these operators
and states is through a flexible and extensible system of mapping operator and state names
to tensors and tensor elements.

7.1 OpSum and AutoMPO

A very useful and popular feature of ITensor is the OpSum/AutoMPO system. An OpSum
is a type that lets users input sums of products of local linear operators in a domain-specific
language and AutoMPO is the backend system for “compiling” these sums to MPO tensor
networks. Constructing sums of local operators is particularly important for physics appli-
cations, where one studies Hamiltonian operators. A typical example being the Heisenberg
Hamiltonian:

H =
N−1∑
i=1

~Si · ~Si+1 =
N−1∑
i=1

Szi S
z
i+1 +

1

2
S+
i S
−
i+1 +

1

2
S−i S

+
i+1 . (1)

This particular Hamiltonian can be exactly written as an MPO of bond dimension 5, [18]
but the construction is technical and tedious to program by hand. The AutoMPO system
automates the construction of this Hamiltonian MPO from the OpSum object:

� �
function heisenberg_mpo(N)
# Make N S=1/2 spin indices
sites = siteinds("S=1/2",N)

# Input the operator terms
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os = OpSum()
for i=1:N-1
os += "Sz",i,"Sz",i+1
os += 1/2,"S+",i,"S-",i+1
os += 1/2,"S-",i,"S+",i+1

end

# Convert these terms to an MPO
H = MPO(os,sites)

return H
end

H = heisenberg_mpo(100)� �
Comparing the lines of code in the for loop above to the Hamiltonian definition in Eq. (1)
one can observe a close similarity.

The AutoMPO system is powerful. Following a major enhancement of the backend
code by Anna Keselman based on Ref. [19], AutoMPO can accept terms with more than
two local operators and local operators separated by arbitrary distances, and uses an SVD-
based compression algorithm to obtain a nearly-optimal MPO bond dimension.

We are working on or envision many useful extensions to this system:

• Improved compression techniques based on better-scaling algorithms generalized from
techniques used for non-local Hamiltonians arising in quantum chemistry [20].

• Compiling exponentials of OpSums into quantum circuits using Trotter-Suzuki de-
compositions.

• Extensions to infinite, translation-invariant systems, including truncation methods
developed for infinite MPOs like the ones introduced in Ref. [21].

• Generalizations to other tensor network topologies, such as tree tensor networks
(TTNs) and projected entangled pair operators (PEPOs).

• Converting OpSums corresponding to interacting fermionic Hamiltonians to free
fermion approximations using mean field approximations like Hartree-Fock, which
could then be used by free fermion formulations of tensor networks [22] 5.

7.2 DMRG Algorithm

One of the most heavily used high-level algorithms included with ITensor is the density
matrix renormalization group (DMRG) [3,23]. The DMRG algorithm computes low-energy
states of quantum systems, or in mathematical terms, dominant eigenvectors of very large
Hermitian linear operators.

The main inputs to a DMRG calculation is a Hamiltonian Ĥ and an initial guess Ψ
(i)
0

for its ground state Ψ0. The ITensor DMRG implementation works generically for any
Hamiltonian which can be represented as an MPO tensor network, so that the same code
can be applied not only to one-dimensional systems, but also quasi-two-dimensional sys-
tems and systems with long-range interactions. By taking advantage of the OpSum system
discussed above, users can rapidly set up DMRG calculations of complicated Hamiltonians.

5ITensorGaussianMPS.jl is a package for constructing tensor networks of free fermion states.
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Given a Hamiltonian MPO constructed as in Section 7.1 above, one can prepare an
initial product state, a schedule of sweeps (DMRG algorithm iterations) and accuracy
parameters, then run the DMRG algorithm:

� �
# Prepare initial state MPS
state = [isodd(n) ? "Up" : "Dn" for n=1:N]
psi0_i = MPS(sites,state)

# Do 10 sweeps of DMRG, gradually
# increasing the maximum MPS
# bond dimension
sweeps = Sweeps(10)
setmaxdim!(sweeps,10,20,100,200,400,800)
setcutoff!(sweeps,1E-8)

# Run the DMRG algorithm
energy,psi0 = dmrg(H,psi0_i,sweeps)� �

For Hamiltonians defined as the sum of different sets of terms Ĥ = Ĥ1 + Ĥ2 + Ĥ3 one
can run a DMRG calculation as:

� �
energy,psi0 = dmrg([H1,H2,H3],psi0_i,sweeps)� �

where H1,H2,H3 are separate MPOs. Instead of summing these MPOs explicitly, which
can be costly and inaccurate, the algorithm loops over them internally as if they were
summed. This technique can be helpful in applications such as quantum chemistry where
Hamiltonians can become large and complex, yet have a nearly block diagonal MPO form
if represented as a single MPO. Expressing a Hamiltonian as a sum of MPOs also has the
advantage that parts of the DMRG algorithm, like forming the environment tensors and
diagonalizing the local effective Hamiltonian, become trivially parallelizable [24]. In initial
tests we found that this parallelization is very effective and can be used in conjunction with
block sparse parallelism, which we plan to make available as a feature in future versions of
ITensor.

To compute an excited state of a Hamiltonian (sub-dominant eigenvector) with ITensor
DMRG having first computed both the ground state MPS psi0, and first excited state
psi1, say, one provides [psi0,psi1] as an extra argument to DMRG, meaning that the
next state computed should be constrained to be orthogonal to these previous ones:

� �
energy,psi2 = dmrg(H,[psi0,psi1],psi2_i,sweeps)� �

In the implementation of this particular DMRG routine, projectors onto the previous states
psi0 and psi1 are effectively added to the Hamiltonian times an “energy penalty", pushing
up the energy of these states in the eigenvalue spectrum so they are no longer part of the
low-energy subspace [25]. Other techniques for computing excited states are planned in
the future, such as the quasiparticle MPS ansatz [26, 27].
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7.3 MPS and MPO Operations

Far from being black-box software for performing calculations with MPS, ITensor provides
many elementary building blocks for creating custom algorithms involving MPS, MPOs,
and other tensor networks built from these components such as projected entangled pair
states (PEPS).

The most elementary interface to MPS and MPO tensor networks involves retrieving
and updating individual factor tensors making up the network. An MPS is a factorization
of a tensor psi of the following form

ψs1s2···sN =
∑
{α}

As1α1
As2α1α2

As3α2α3
· · ·AsNαN

, (2)

where we have omitted an explicit site-label j on each A tensor for compactness. The
factor tensor Asjαj−1αj on site j can be obtained as

� �
A = psi[j]� �

and updated as

� �
psi[j] = new_A� �

To analyze the properties of an MPS, one is often interested in expected values of local
operators. To compute the expected value of an operator at every site and return an array
of the results, one can use the function expect. For example, calling

� �
avgSz = expect(psi,"Sz")� �

on an MPS psi will compute 〈ψ|Ŝzj |ψ〉 for every site j and return an array of the results,
where here we use the example of the spin Ŝz operator as our local operator.

Another common quantity of interest is the two-point correlation function of a pair of
local operators acting at distant sites i and j. Using the example of a spin system again,
let us say we are interested in the correlation matrix given by Cij = 〈ψ|Ŝ+

i Ŝ
−
j |ψ〉. This

correlation matrix can be efficiently computed as:

� �
C = correlation_matrix(psi,"S+","S-")� �

The correlation_matrix function accepts optional keyword arguments such as a smaller
range of sites over which to compute the correlation matrix, versus the whole system. It
also automatically ensures correct results for fermionic operators such as "Cdag" and "C"

(spinless fermion ĉ and ĉ† operators).
An important technical step involving an MPS is bringing it into an orthogonal form,

where all of the factor tensors to the left or right of the center tensor at a site j are
equivalent to partial isometries (i.e. either their rows or their columns are orthogonal). To
bring an MPS into orthogonal form efficiently in ITensor, one calls:
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� �
orthogonalize!(psi,j)� �

where we follow the convention adopted in Julia programming that functions whose name
end with ! may modify their first argument. An interesting feature of ITensor MPS objects
is that they store information about which tensors are known to be orthogonal, so that
calling orthogonalize!(psi,j) repeatedly for the same value of j does no extra work,
and shifting the orthogonality center of an already partially orthogonalized MPS can be
done with the minimum amount of computation.

Another fundamental operation is truncating an MPS: computing another MPS of a
smaller bond dimension which is as close to the original MPS as possible. For MPS such
a truncation can be done optimally through various deterministic algorithms. Truncating
an MPS psi in ITensor can be done by calling:

� �
truncate!(psi;maxdim=500,cutoff=1E-8)� �

where for the sake of example we have shown specific values of the two most commonly used
truncation parameters. The maxdim parameter sets an upper limit on the bond dimension
of the MPS after the truncation, whereas the cutoff parameter allows the new bond
dimension to be determined adaptively as long as the resulting truncation error remains
below the value provided. Using a cutoff can allow the bond dimension to fall below the
maxdim when possible while still ensuring an accurate approximation of the original MPS.

ITensor supports arithmetic involving MPS and MPOs to be performed using the add
function. Performing exact sums can lead to quickly growing costs, so that one normally
truncates the result by providing a truncation-error cutoff. For example, to add two MPS
psi and phi one can call:

� �
eta = add(psi,phi;cutoff=1E-10)� �

and similarly for adding two MPOs. Currently this method uses a particular backend
algorithm known as the “density matrix” algorithm [28] but other backends will be available
in the future to select through an optional keyword argument.

Algorithms such as time-evolving quantum states or contracting two-dimensional “PEPS”
tensor networks can be formulated in terms of products of an MPO with MPS or with an-
other MPO. To approximately multiply an MPS psi by an MPO W, one can call the
function

� �
Wpsi = contract(W,psi;maxdim=50)� �

with example parameters controlling the truncation shown. The product of two MPOs R
and W can also be computed:

� �
RW = contract(R,W;cutoff=1E-9)� �
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Importantly, these functions provide multiple backend algorithm implementations with
various tradeoffs in terms of the cost, accuracy, and control offered. For example, to select
the accurate yet expensive “naive” algorithm for multiplying an MPS by an MPO one may
call

� �
Wpsi = contract(W,psi;method="naive")� �

8 Quantum Number Block Sparse ITensors

An important technique used in state-of-the-art physics calculations is enforcing constraints
on tensors arising from conserved quantities. These are quantities such as total particle
number or total spin along an axis which are conserved due to symmetries of the Hamil-
tonian operator. The value of each conserved quantity is known as a quantum number.

Quantum number conservation can be important since physical systems commonly
respect symmetries such as rotational symmetry or particle number conservation symmetry,
making it necessary for simulations to conserve these to be comparable to experimental
results. Just as importantly, conserving quantum numbers allows calculations to run much
faster and use less memory because of a block sparse structure that is naturally imposed
on the tensors in a tensor network [29]. A detailed discussion of structures imposed by
symmetries on tensors and tensor networks is given in Refs. [29–31].

The power of the ITensor approach to conserving quantum numbers is that quantum
number conserving ITensors offer nearly the same interface as regular, dense ITensors.
Algorithms can be written generically for dense ITensors and automatically work for the
symmetric case too, as long as tensors are correctly conjugated using the dag function,
which would be necessary to use to obtain correct results with complex-valued tensors
anyway.

The design of the ITensor quantum number (QN) system is that QN information is
stored in Index objects in a fixed order. This information is queried when an ITensor is
constructed to determine whether the storage should be block sparse, as well as the layout
of the blocks, and which blocks are allocated. When such ITensors are summed, contracted,
or factorized, optimized routines are used and the QN information is propagated to the
indices of the resulting ITensor.

Currently ITensor only supports quantum numbers arising from symmetries under
Abelian groups such as U(1) or Zn, which are ubiquitous in physics. We are also in the
planning stages of support for non-Abelian symmetries such as SU(2) in a future version
of ITensor, but the remainder of this section will discuss only the Abelian case.

As an illustrative example of ITensor’s QN system, say we have defined two indices
with information about their QN subspaces:

� �
i = Index(QN(0)=>2,QN(1)=>3;tags="i")
j = Index(QN(1)=>2,QN(2)=>1;tags="j")� �

The Index i has a total dimension of 5 because it has two subspaces, one carrying a
quantum number QN(0) and of dimension of 2; the other carrying a quantum number
QN(1) and of dimension 3. Similarly j has a total dimension of 3, coming from its two
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subspaces.
Using these indices, we can define an ITensor T in the usual way as

� �
T = ITensor(i,j)� �

where initially this ITensor will have Empty storage (see Sec. 6), and thus an as-yet un-
specified pattern of non-zero blocks. Then, we set an element of T as

� �
T[i=>3,j=>1] = 31.0� �

Note that this element corresponds to the QN(1) subspace of i and the QN(1) subspace of j,
for a combined “QN flux” of flux(T) == QN(2). (Mathematically the flux corresponds to
the overall irreducible representation under which the tensor transforms. More intuitively,
it describes whether a tensor is a source or sink of quantum numbers and by how much.)
When setting any further elements, only those elements of T consistent with a flux QN(2)

will be allowed to be non-zero. This constraint imposes a block-sparse structure on T, since
most values of the indices combine to form fluxes other than QN(2) and thus remain zero.
Only allowed blocks consistent with the total flux are stored in memory. Block-sparse
computations can then be much more efficient than with dense tensors because fewer non-
zero elements have to be handled and the presence of disjoint blocks allows major parts of
calculations to be performed in parallel.

For the rest of this section, we discuss in more detail the different types composing the
QN block sparse ITensor system.

8.1 QN Objects

Block-sparse ITensors arise from vector spaces which are a direct sum of smaller subspaces.
In physics calculations, these subspaces are associated with different quantum numbers. In
ITensor, sets of quantum numbers are stored in QN objects as a collection of name-value
pairs, where the value is always an integer. Different values may be combined according
to the usual rules of integer addition and subtraction, possibly modulo some other integer
N . (For the case of quantum numbers arising from non-Abelian symmetries, these rules
must be generalized.)

QN objects carrying a single quantum number, such as total z-component spin "Sz",
may be constructed as:

� �
q0 = QN("Sz",0)
q1 = QN("Sz",1)� �

QNs may be added, subtracted, and compared:

� �
q0 + q1 == QN("Sz",1) # true
q1 + q1 == QN("Sz",2) # true� �

QN objects can also carry multiple quantum numbers as follows:
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� �
a = QN(("N",0),("Sz",0))
b = QN(("N",1),("Sz",-1))� �

Because the quantum numbers are named, they can be provided to the QN constructor
in any order and are sorted internally. For convenience when there is only one quantum
number, its name can be omitted; this is equivalent to choosing the name to be the empty
string.

Some quantum numbers of physical systems obey a ZN addition rule. A key example
is fermion parity, which is only conserved modulo two in systems such as superconductors.
A ZN addition rule for a quantum number can be specified by providing N as the third
entry of the tuple defining that quantum number:

� �
p0 = QN("P",0,2)
p1 = QN("P",1,2)
p1 + p1 == QN("P",0,2)� �

The 2 following the quantum number values above specifies that the "P" quantum number
obeys Z2 addition.

The reason quantum numbers have names and are not just distinguished positionally
is that having names allows QNs containing different quantum numbers to be combined
automatically and correctly. This becomes important when different local physical spaces
(such as spin versus particle degrees of freedom) are defined separately, then combined or
mixed later. Key examples of physical models combining two otherwise separate types of
physical spaces are the Hubbard-Holstein model, where electron sites are intermixed with
boson sites, or the Kondo model mixing electron sites with spin sites.

8.2 QN Index

As discussed above, the block-sparse structure of quantum number conserving tensors arises
from the direct-sum structure of the vector spaces over which they are defined. To specify
additional information about direct-sum subspaces, an Index object can be constructed
from QN-integer pairs, as follows:

� �
i = Index(QN("N",0)=>1,

QN("N",1)=>3,
QN("N",2)=>2; tags="i")� �

where we note that (a=>b) == Pair(a,b) is built-in Julia notation for constructing a
pair of values a and b.

In the example above, the Index i has three subspaces, of dimensions 1, 3, and 2 re-
spectively. Therefore the total dimension of i is six, or dim(i) == 6. The subspaces are
associated with the quantum numbers QN("N",0), QN("N",1), and QN("N",2) respec-
tively.

A crucial aspect of QN Index objects not yet discussed is that they have an Arrow

direction, which can be Out or In, with Out being the default. Mathematically, the
direction of an Index says whether it is covariant (In) or contravariant (Out) and expresses
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how the Index transforms under the symmetry group action. A physicist might view an
Out arrow as denoting a “ket” index and an In arrow as a “bra” index. The arrows of QN
indices play two important roles in working with QN ITensors:

• A pair of QN indices must have opposite arrow directions to be contracted.

• When computing the QN flux of an ITensor block, QNs corresponding to an Out

Index are added and QNs corresponding to an In Index are subtracted.

Examples of these arrow and flux rules will be given in the next section on QN ITensors.

8.3 QN ITensor

Constructing an ITensor from QN Indices makes it a QN ITensor, with a block sparse
storage type. In addition to the block sparse real and complex storage types, there are also
diagonal block sparse storage types which are usually obtained from factorizations such as
the SVD of block sparse ITensors.

In most respects, working with QN ITensors is quite similar to working with dense
ITensors. Operations like adding QN ITensors or multiplying them by scalars work in a
straightforward way. However, one small but important difference from dense ITensors
arises when contracting QN ITensors: matching QN indices must have opposite arrow
directions to be contracted. This rule is important for consistent bookkeeping of QN flux
under Hermitian conjugation of ITensors. But because computing the Hermitian conjugate
dag(T) of a QN ITensor T is defined to reverse all of the arrows of its indices, code which
is already written correctly for complex, dense ITensors (with proper use of dag to handle
complex conjugation) will automatically be correct in terms of QN conservation too.

Having discussed all of the types involved in the QN ITensor system, let us discuss
some examples which integrate all of these elements. An example motivated by physics is
the Hilbert space of a single “hard-core” boson: a type of particle which cannot share an
orbital or site with another boson. Such bosons can be used to model atoms which have
large, short-range repulsive interactions. The Hilbert space of a single hard-core boson is
spanned by two basis states |0〉 and |1〉, representing no particle and one particle. Along
with these basis states, one can define the elementary operators a, a†, n, which lower, raise,
or measure the number of particles:

a|1〉 = |0〉
a†|0〉 = |1〉
n|0〉 = 0

n|1〉 = |1〉 (3)

Diagrammatically the equation a|1〉 = |0〉 can be expressed as

1

a
= 0

where in the diagram note that the tensors now have arrows on their indices, with con-
tracted indices having opposite arrow directions (In versus Out). Within ITensor, we can
represent the Hilbert space of this boson as an Index

26



SciPost Physics Codebases Submission

� �
s = Index(QN("N",0)=>1,

QN("N",1)=>1;
tags="Boson")� �

This Index is the representation in code of the index lines

1

a
= 0

in the a|1〉 = |0〉 diagram
above. By default, Index objects have an Out arrow direction meaning a contravariant
index.

We can next construct the operator a as the following ITensor

� �
a = ITensor(s',dag(s))
a[s'=>1,s=>2] = 1.0� �

The first line constructs a as an ITensor with indices s' and dag(s) with elements all zero,
and the second line sets the only non-zero element of a. We can visualize the resulting
tensor as follows

[ [00

1

0 1

0

1

0
s'

dag(s)

a =

The small, red labels above denote the subspaces of the Index s by labelling them according
to the value of the "N" quantum number. We can also see the single non-zero element
corresponding to the (1,2) entry of the tensor and having the value 1.0.

A key point about the example of the ITensor for the a operator is that the only element
stored in memory is the one shown above. All other entries shown in light gray are assumed
zero and not stored in memory. To see why this is the case, let us label each block of the
a tensor (or any tensor having the same indices as a) by its quantum number flux:

[ [0

1

0 1

0

0

-1

+1

0
s'

dag(s)

The non-zero element of the tensor a is in the block with flux QN("N",-1) and physically
means this operator always reduces the particle number by 1. Because the convention in
ITensor is that QN-conserving ITensors must have a well-defined flux, only blocks with the
same flux are stored in memory and the rest are assumed to be zero and not stored. In
contrast, the n operator has a flux of zero, and therefore will have two allowed blocks: the
blocks labeled 0 and shown in blue in the diagram above.
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Unlike the examples above, general QN-conserving ITensors will have many blocks
which can be non-zero, and having block sizes greater than 1×1. Summations, factoriza-
tions, and especially contractions of general block sparse tensors can be much faster than
for dense tensors with the same index dimensions, not only because the zero (unallocated)
blocks can be skipped over, but also because operations on non-zero blocks can be per-
formed in parallel. Both the Julia and C++ implementations of ITensor use multi-core
parallelism within their block sparse tensor contraction algorithm, with speedups of up to
5× observed in practical physics applications, though the speedups vary depending on the
application.

Finally, all other operations available for dense tensors work for QN-conserving ITensors
too, with exactly the same interface. This includes the use of combiner ITensors, factoriza-
tions such as the SVD and QR, and higher-level algorithms involving matrix product states
and operators. For further reading on how various tensor operations can be implemented
while respecting Abelian group symmetries and related quantum numbers, see Ref. [29].

9 NDTensors Library

Early on in the design of the ITensor library, a conscious decision was made to separate the
high-level ITensor interface, involving “intelligent” Index objects and related features, from
the lower-level parts of the code focusing on efficient contraction routines and sparse tensor
storage layouts. With the port of the ITensor library to Julia, we have taken this design
one step further by making the lower-level part of the library a separate submodule6 known
as NDTensors (N -Dimensional Tensors) which can be used and developed separately from
ITensors.jl7.

Some of the goals of developing NDTensors as a separate module include:

• Separating low-level NDTensors algorithms from high-level ITensor logic simplifies
and modularizes the code and prevents bugs.

• Encouraging more community contributions to the ITensor project, since some com-
munity members may find the NDTensors interface and features more familiar and
appealing, and may not prefer to work with the ITensor layer when making contri-
butions.

• Other software besides ITensor could eventually use NDTensors as a backend, which
would promote community efforts to improve tensor software and share resources.
Fully realizing this possibility would require releasing it as a separate library in the
future, which we plan to do.

9.1 Basic Interface

The NDTensors library is a full-featured, standalone library emphasizing generic, high-
performance algorithms and support for a variety of sparse tensor types. Unlike the ITensor
library, NDTensors has a more traditional interface where users must keep track of the
ordering of tensor indices. For example, one can construct a dense tensor with dimensions
3, 7, 4 as

6By a module and a submodule we mean a separate namespace for defining types and methods.
7At the time of writing this paper, the NDTensors library can only be installed by installing the ITensors

library for convenience of developing the libraries in tandem, however we plan to split it off so it can be
installed seperately from ITensors in the near future.
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� �
using ITensors.NDTensors

T = Tensor(3,7,4)� �
which by default is filled with all zeros and then set its elements as

� �
T[1,2,1] = 1.23
T[3,2,3] = -0.456� �

Tensor objects are 1-indexed, similar to Julia arrays. A tensor with complex entries can
be constructed as

� �
T = Tensor(ComplexF64,5,4,3)� �

Contracting two Tensors is done by specifying temporary labels for tensor indices;
matching labels indicate two indices are contracted while unique labels denote uncontracted
indices. In the following example:

� �
A = randomTensor(3,7,2)
B = randomTensor(4,2,3)
C = contract(A,(-1,1,-2),B,(2,-2,-1))� �

the label -1 of the first index of A matches the -1 label of the third index of B, so those
two indices are contracted with each other. Likewise the third index of A and second of
B share the label -2 and are contracted. The use of negative integers to label contracted
indices is not required, but is just a convention to make the code more readable.

9.2 Block Sparse Tensors

NDTensors provides sparse tensor types as well. An important example is block sparsity.
One way to construct a block sparse tensor is as follows:

� �
blockdims = ([2,2],[2,3])
nzblocks = [(1,2),(2,1)]
A = randomBlockSparseTensor(nzblocks,blockdims)� �

The code above specifies that the tensor A has two indices of dimension 4 (= 2+2) and
5 (= 2+3) respectively, with the first index having two subspaces of dimensions 2 and 2
and the second index having two subspaces of dimensions 2 and 3. Thus A has four blocks
overall, because its two indices each have two subspaces. The array nzblocks lists which
blocks of A can be non-zero and will be actually allocated in memory, with each tuple
giving a subspace number for each index. We can visualize a typical result for the tensor
A as follows:
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0
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[

where the zeros shown in light gray are only assumed and not actually allocated in memory.

9.3 Generic Index Types

A crucial feature of NDTensor is that tensors are allowed to represent their indices not
just as a collection of integers or block dimensions (specifying each the dimension of each
index), but as any object providing a certain index interface. This generic design allows
seamless interoperation between the NDTensors library and the ITensor library, as well as
making it easy to provide features such as tensor slicing.

For dense and diag storage, essentially all that is required of the container inds rep-
resenting the indices of a Tensor is that one can call the function dim on its nth element.
Examples of valid inds objects are collections of integers, collections of ITensor Index

objects (provided an overload of the method dim is provided), Dims objects provided by
the Julia Base library for indexing built-in Julia tensors, and BlockDims objects defined
by NDTensors for indexing block sparse tensors. By default, the strides are determined by
the dimensions of the indices, but can be overloaded if needed such as for tensor slicing
applications. Unless an explicit set of indices is provided, Tensor objects default to us-
ing the Dims type (a tuple of integers) to represent its indices and BlockSparseTensor

objects default to using BlockDims. For block sparse storage types, an overload of the
blockdim function is required for any block index, which is used to query the size of a
specified block in a specified dimension.

9.4 Tensor Contraction Backend

Tensor contractions are often the computational bottleneck of tensor network algorithms.
Thus implementing it as efficiently as possible is critical for performance.

For contracting two dense tensors, NDTensors currently uses a strategy of permuting
and reshaping the tensors into matrices, so that the contraction maps to a matrix multi-
plication8. The motivation behind this strategy is that BLAS libraries such as Intel MKL
offer such high performance that the extra overhead of permuting the tensors is worth-
while. It is also important to note that the tensor permutation has a sub-leading scaling
relative to the matrix multiplication, so that in the limit of large tensors the computation is
dominated by the BLAS dgemm or zgemm routines. Though this strategy is a common one
for tensor libraries, its implementation in NDTensors is done carefully to ensure that every
case where permutation can be avoided is taken advantage of. Also if two equivalent strate-
gies exist to permute the contracted tensors to matrices where one of the permutations is
trivial, the code chooses to permute the smaller of the two tensors.

8This is sometimes referred to as the Transpose-Transpose-GEMM-Transpose (TTGT) [32] approach
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The case of block sparse tensor contraction reduces to doing a set of smaller, dense
tensor contractions on various pairs of blocks from the tensors being contracted 9. Thus
it is built on top of the dense contraction layer of NDTensors, but also offers an excellent
opportunity to exploit parallelism, since contraction of the blocks can be done indepen-
dently, although one does have to handle cases where multiple block pairs contribute to the
same block of the resulting tensor. By exploiting multi-core parallelism for the same algo-
rithm within the C++ implementation of ITensor we have observed speedups of 2−3× for
DMRG and related MPS calculations (depending on the sparsity and block sizes involved,
which varies strongly based on the symmetries used), and up to 5× for tree tensor network
calculations. More recently, we have implemented the same kind of multi-core parallelism
in the block sparse contraction algorithm in NDTensors using Julia’s native multithread-
ing and have seen similar speedups to those we see in the C++ implementation that uses
OpenMP.

Looking ahead, a key improvement to NDTensors will be to offer support for more
advanced tensor contraction algorithms that have been recently developed. These algo-
rithms build on sophisticated research into BLAS software, where it was realized that
modern BLAS implementations could apply to the case of tensors of arbitrary order, and
not just matrices. The two implementations of this type we are aware of are TBLIS [34]
and TCL/GETT [32]. These libraries significantly reduce, if not totally eliminate, the per-
mutation overhead inherent to the permute-to-matrix strategy discussed above, offering
superior performance to the default contraction algorithm of C++ ITensor and NDTen-
sors [35]. We currently have an experimental feature in the Julia version of ITensors.jl
that provides TBLIS as an optional contraction backend, and have seen speedups over
our current contraction code, particularly when contracting larger tensors. We plan to do
benchmarks using this TBLIS backend for more sophisticated algorithms like DMRG in
the near future.

10 Other Features of ITensor

The ITensor library has many other features which are important for productive program-
ming, developing new algorithms or treating new problem domains, but whose precise
details are somewhat beyond this high-level introduction. In this section we briefly high-
light these features.

10.1 Writing and Reading ITensor Objects with the HDF5 Format

One important feature is that nearly every type involved in a tensor network, from Index
objects to IndexSet’s to ITensors, MPS, and MPOs can be written to and read from HDF5
files. The HDF5 format is a widely used and standardized format for writing large datasets
and heterogenous data. It offers portability across operating systems with different binary
formats; metadata and a file-system structure for organizing and retrieving data; and
efficient use of memory including compression of numerical data. ITensor objects written

9Currently the default in ITensor is that block sparse tensors are contracted directly without first re-
shaping into a matrix. An alternative is to first permute and reshape the block sparse tensors into block
sparse matrices. With that strategy, degenerate quantum number blocks can be combined, leading to a
contraction involving a smaller number of larger blocks, which is advantageous for BLAS [33]. This alter-
native contraction strategy can be enabled with the experimental ITensors.enable_combine_contract()
function which enables a global flag. Currently we find that neither of the two strategies (contracting ver-
sus combining then contracting) is better in every situations, and it depends on details like the quantum
numbers, sparsity and order of the tensors being contracted.
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� �
using ITensors
import ITensors: op #allows overloading of ITensors.op

op(::OpName"Sz",::SiteType"S=3/2") = [
+3/2 0 0 0
0 +1/2 0 0
0 0 -1/2 0
0 0 0 -3/2

]

op(::OpName"S+",::SiteType"S=3/2") = [
0 sqrt(3) 0 0
0 0 2 0
0 0 0 sqrt(3)
0 0 0 0

]

op(::OpName"S-",::SiteType"S=3/2") = [
0 0 0 0

sqrt(3) 0 0 0
0 2 0 0
0 0 sqrt(3) 0

]� �
Listing 1: Overloads of the ITensors.opmethod which define custom mappings of operator
names to ITensors for Index objects having the tag "S=3/2".

to HDF5 files can be both written to and read from both the C++ and Julia versions of
ITensor, allowing users with large C++ codes to use the new Julia version for tasks such
as performing analysis of simulation results.

10.2 Defining Custom Local Hilbert Spaces

An important feature for physics applications is the ability to define custom “degrees of
freedom” or local Hilbert spaces and associated local operators to allow users to implement
their own systems of interest within high-level tools like OpSum. ITensor includes built-in
definitions for only a handful of common cases such as S = 1/2 and S = 1 spin degrees
of freedom, spinless and spinful fermions, and the Hilbert space of the t−J model. But
physics applications of ITensor often call for other definitions, such as of local Hilbert
spaces for bosons, higher spin moments such as S = 3/2, and more exotic degrees of
freedom such as ZN parafermions. Users may also want to extend built-in Hilbert space
types by defining additional local operators. The C++ version of ITensor already lets
users define custom local Hilbert spaces and operators, but due to limitations of the C++
language the customization process has remained cumbersome and users have often had
trouble mastering the necessary tasks of defining C++ types, constructors, and methods.

Fortunately, in the Julia version of ITensor we have been able to streamline the process
of defining and using custom Hilbert spaces. The key innovation is that certain Index tags
can be designated as special by defining associated “site types”. For example, say a user
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wants any Index carrying the tag "S=3/2" to be interpreted as a S = 3/2 spin (the Index
should also have the appropriate dimension of 4). Practically this means we want systems
such as OpSum to know how to make the appropriate local operators such as "Sz", "S+",
and "S-" which act on the Hilbert space of this Index. To tell ITensor how these operators
should be defined, a user can create overloads of the ITensors.op! method which accept
a special type: SiteType"S=3/2". Examples of such overloads are shown in Listing 1 and
can be defined outside the ITensor library in user code. The notation SiteType"S=3/2"

is a convenient Julia macro syntax which is used to create a unique type parameterized
by a string. Creating types out of values allows one to effectively overload functions over
different values, even though technically functions can only be overloaded over different
types.

After defining these functions, the following code will return "Sz", "S+", and "S-"

operators as ITensors given an Index s which has the "S=3/2" tag

� �
s = Index(4,"S=3/2") # make an Index with the tag "S=3/2"
Sz = op("Sz",s)
Sp = op("S+",s)
Sm = op("S-",s)� �

The ITensor library reads the tags of the Index passed as the second argument to op,
then checks if any of these tags have an associated SiteType overload of ITensors.op.
If exactly one tag and operator name pair does have an ITensors.op method defined
for it, such as the ::SiteType"S=3/2", ::OpName"Sz" overload in Listing 1 above, then
that overload is called to produce the operator corresponding to the requested name as
an ITensor. Users can also overload other functions which both construct and return the
operator ITensor, giving more control over the whole process.

What makes this system powerful is that the same op method and its overloads are
called by the OpSum system and various MPS and MPO constructors within ITensor
library code. So after defining the SiteType"S=3/2" overloads of the op! or op functions
above, the following code “just works” and correctly makes an MPO of the Heisenberg
Hamiltonian for an N -site system of S = 3/2 spins:

� �
sites = [Index(4,"S=3/2,n=$n") for n=1:N]

os = OpSum()
for j=1:N-1
os += "Sz",j,"Sz",j+1
os += 1/2,"S+",j,"S-",j+1
os += 1/2,"S-",j,"S+",j+1

end

H = MPO(os,sites)� �
Various special tags with associated SiteType operator definitions can even be mixed
together in Index arrays like the sites array above, permitting easy setup of calculations
for mixed systems such as spin chains of alternating S = 1/2 and S = 1 sites or models of
alternating spin and boson sites.
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10.3 DMRG Observer System

The DMRG code within ITensor is the most heavily used high-level feature of the library
due to the continued popularity and staying power of the DMRG algorithm. Although
ITensor’s implementation of DMRG prints some useful details about the results of each
sweep, such as the estimated energy (dominant eigenvalue) and typical bond dimension of
the MPS being optimized, there are many situations where a user would like to customize
the code further, such as to measure local observables throughout each sweep.

To make this customization process as easy as possible, the ITensor DMRG code accepts
an optional observer keyword argument which allows users to pass any object which is a
sub-type of AbstractObserver. This type should also have an overload of at least one of
the methods measure! and checkdone! defined for it too. These methods can be defined
in any way the user sees fit and have minimal requirements. Both are called by the ITensor
DMRG code at each step of the DMRG algorithm.

The measure!method gets passed a variety of properties describing the current state of
the DMRG calculation, such as the number of the current sweep and location of the site(s)
of the MPS whose local tensors are currently being optimized, and even the entire MPS
itself. A customized measure! function can use this information to produce a detailed
snapshot of how the optimization is proceeding. One such use of the observer system in
the past was to make animated movies of a DMRG calculation to be used in lectures.

The checkdone! method can be defined if the user wants to set some criterion for
the DMRG calculation to stop before all of the requested sweeps have been performed.
Example criteria could include some measure of convergence, such as the energy variance,
or an external signal from the user.

11 Applications of ITensor

ITensor has been cited in approximately 450 research articles from 2009 to 2021.10 Below
we highlight papers which show the diverse applications of ITensor. We expect to see
ever wider applications in the future as tensor network algorithms become more powerful
for two- and three-dimensional systems, ab-initio Hamiltonians, and long-time dynamics
[36,37], and as more applications of tensor networks are developed in applied mathematics,
computer science, and machine learning [38–40].

11.1 Equilibrium Quantum Systems

The most common application area of tensor networks and the ITensor software to date
has been equilibrium quantum systems. A common starting point for understanding equi-
librium systems is through their ground state, and the DMRG algorithm which launched
the field of tensor networks is primarily a ground state finding method. More recently,
tensor network methods have been extended to study finite-temperature systems. Another
important area of development in the field has been extending DMRG and MPS methods
to handle ab initio systems such as in quantum chemistry, where details of continuum,
atomic physics must be treated.

An excellent example of a ground-state study using ITensor is that of Keselman and
Berg [41], who used ITensor’s DMRG algorithm to compute properties of a one-dimensional
model of superconducting electrons. A detailed study of properties of finite-size systems,
including of quantities at the edge of open systems, supports the existence of a topological

10List of papers citing ITensor: https://itensor.org/papers
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state of matter even in the absence of a gap in the excitation spectrum.
The state-of-the-art efficiency of ITensor’s DMRG codes makes it a powerful tool for

studying two-dimensional systems as well. DMRG remains one of the leading methods
for studying two-dimensional quantum systems even though it scales exponentially in the
transverse system size. In Refs. [42,43], Kallin, Gustainis, Johal, Stoudenmire, Melko, et al.
used a combination of exact diagonalization, numerical linked cluster methods, and ITensor
DMRG to obtain entanglement entropies associated with sharp corners in the subsystem
geometry for various quantum systems at their critical points. Based on the numerical
results, a conjecture was put forward for a universal scaling of this corner entanglement
which was afterward supported by field theoretic methods [44].

An exemplary study using ITensor DMRG for a two-dimensional system of strongly-
correlated electrons is the work by Venderley and Kim [45], who studied the hole-doped
Hubbard model on the triangular lattice, finding a transition from p-wave to d-wave super-
conductivity as the strength of on-site interactions increase.

ITensor has also been used for studying continuum electronic systems such as quantum
chemistry calculations of hydrogen chains [20, 46, 47]; for finite-temperature studies, pri-
marily in the context of the minimally entangled typical thermal state (METTS) algorithm
[48–51]; and for calculations involving PEPS two-dimensional tensor networks [52,53].

11.2 Dynamics of Quantum Systems

Dynamical behavior of quantum systems or quantum systems out-of-equilibrium is cur-
rently an active research area, where the flexibility and customizability offered by ITensor
has been an excellent fit. Such customizability is important because there are many al-
gorithms available for time-evolving quantum states [54], most of which are not totally
black-box and require some care to use well. Frontier research problems also involve a va-
riety of settings, such as closed versus open systems, or evolution via Hamiltonians versus
circuits, as well as a wide range of measurements to be made of the state.

One paper typifying the use of ITensor for dynamics research, blending numerical results
with theoretical predictions, is that of Alba and Calabrese Ref. [55], who showed that for
integrable systems, such as the XXZ spin chain, one can accurately predict the entanglement
entropy at both short and long times.

Nahum, Ruhman, Vijay, and Haah used ITensor in Ref. [56] to simulate dynamics of
quantum states evolved by random unitary circuits, supporting their prediction that the
growth of entanglement entropy is governed by the KPZ universality class related to the
classical statistical physics of surface growth.

Schreiber et al. used ITensor to simulate the dynamics of cold atom experiments in
Ref. [57], obtaining good agreement with experimental observations of the difference be-
tween the number of atoms in even versus odd minima of the external potential.

A rather different application of dynamical tensor network methods are as “solver” sub-
routines for the dynamical mean field theory (DMFT) algorithm, which can treat infinite-
size systems in two and three dimensions. A novel DMFT solver based on fork tensor
network states was proposed and demonstrated using ITensor by Bauernfeind, Zingl, et al.
in Ref. [58], allowing DMFT methods to achieve greater resolution for electron spectral
functions and other benefits.

11.3 Other Application Areas

Historically tensor network methods have mainly been developed and applied within con-
densed matter physics. But the recent decade has seen a major broadening in applica-
tions of tensor networks inside and outside of physics. These newer applications range
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from studying holographic dualities between physical theories [59, 60] to computing high-
dimensional integrals in applied mathematics [38,61].

An area where tensor network methods are becoming increasingly important is quantum
computing, where they can be used to perform efficient classical simulations of quantum
devices. Tensor networks offer important advantages such as linear scaling with the number
of qubits. The library PastaQ (available at github.com/GTorlai/PastaQ.jl) uses ITensor
as a backend to offer tensor network methods not only for quantum simulation, but also
optimization of quantum circuits, tomography of quantum systems and quantum processes,
and more.

A rather different application area of tensor networks is applied mathematics and ma-
chine learning. Here tensor decomposition methods have found many different uses, from
compressing weight layers of neural networks [39], to recovering missing or corrupted data
using partial information [62]. Machine learning is an area where ITensor has potential
to be used much more in the future, and ITensor has already been used to investigate
new models and algorithms for machine learning, including supervised [63, 64] and unsu-
pervised [65] learning using models parameterized by tensor networks, and to investigate
generalization of these models by studying synthetic data [66].

12 Benchmarks of ITensor Performance

To ensure that ITensor offers state-of-the-art performance, we next present benchmark re-
sults of ITensor implementations of typical tensor network algorithms and operations. One
goal is comparing the performance of the C++ versus Julia implementations of ITensor,
as Julia is a relatively new language whose potential for high performance computing has
not yet been fully verified in every domain. Other goals of the benchmarks include testing
the scaling of algorithm implementations of ITensor and showing the relative benefits of
multithreading. Finally, we discuss benchmarks of ITensors versus other tensor network
libraries, which we make available as an online resource, since all of the libraries involved
are frequently updated and continually optimized.

All benchmarks shown here were carried out on a single workstation with four Intel
Xeon Gold 6128 (Skylake) 3.4 GHz CPUs with six cores each. Times shown are “wall” or
actual time, not CPU time. The BLAS and LAPACK distribution used for both the C++
and Julia calculations was Intel MKL. For the Julia ITensor benchmarks we used version
0.2.0 of ITensors.jl running on Julia version 1.6.1. The benchmarks presented below are
publicly available at: https://github.com/ITensor/ITensorBenchmarks.jl.

Before we present the benchmarks, here are the high-level conclusions we draw from
them:

• At least for the domain of tensor network algorithms, Julia is very competitive with
C++ as a high-performance programming language.

• Some ITensor algorithms, especially those involving block sparse tensors, are cur-
rently fastest in the Julia implementation due to recent optimization efforts made
there. Though most of these optimizations can be carried out in C++ too, the
productivity of the Julia language and its superior libraries and tooling makes opti-
mizations easier to identify and implement.

We again emphasize that the Julia version of ITensor is written entirely in the Julia
language, without needing to perform any low-level operations in systems languages such
as C++ as is often necessary in languages like Python to achieve high performance. Of
course certain external libraries we use, such as BLAS and LAPACK, are written in other
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languages such as Fortran, but such libraries are standard and widely used by many tensor
libraries including both the C++ and Julia implementations of ITensor.

12.1 Comparison of Julia and C++ Implementations of ITensor

First we present a set of benchmarks comparing the performance of the C++ and Julia
implementations of ITensor on seminal tensor network algorithms.

As a first comparison between the C++ and Julia implementations of ITensor, a simple
but powerful tensor network algorithm is the tensor renormalization group (TRG) [67,68],
which computes properties of classical statistical mechanics models at finite temperature
through a decimation procedure. Each step of TRG essentially consists of contracting four
tensors together into a single tensor, then performing a truncated factorization of that
tensor. Below we present benchmarks of the TRG algorithm in the C++ and Julia version
of ITensor, using dense tensors only, and showing calculations with 1, 4, and 8 threads
used by the BLAS library within the tensor contraction steps and for different maximum
bond dimensions used during the truncation steps:

From the results, we can see that the C++ and Julia implementations have very similar
performance, with the C++ version performing slightly better at bond dimension 40 and
the Julia version performing better at bond dimension 50. The BLAS and LAPACK
threading is clearly effective for speeding up these contraction-dominated calculations.

Another algorithm used to study classical statistical models, as well as to contract infi-
nite PEPS tensor networks, is the corner transfer matrix renormalization group (CTMRG)
[69–71]. The CTMRG algorithm decimates a contracted network of tensors by absorbing
bulk tensors into boundary tensors and computing new boundary tensors at each step.
Below we show the benchmark results for CTMRG using dense tensors:
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Here the Julia implementation is consistently faster for a wide range of larger bond di-
mensions of the boundary tensors. Allowing the BLAS to use four threads gives a speedup,
but using eight threads gives little additional speedup. The relative performance as a
function of BLAS threads is similar between the C++ and Julia codes, showing how the
effectiveness of BLAS multithreading is dependent on the system studied and algorithm
used. Speedups of the Julia versus the C++ calculations are likely due to improved dense
tensor permutation libraries, specifically Strided.jl, used in the Julia version.

Now we turn to benchmarks of the density matrix renormalization group (DMRG)
algorithm. DMRG calculations are the most common application of the ITensor library.
We will also use DMRG as a setting to study the effect of conserving quantum numbers,
resulting in block sparse tensors.

First we benchmark the simplest application of DMRG: a one-dimensional spin chain,
with no quantum number conservation, that is, dense tensors:

The relatively better performance of the Julia version over the C++ implementation is
similar to that for CTMRG, which is sensible as the details of both algorithms are similar.
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Next we consider DMRG for the same system, but conservation of the total Sz spin
quantum numbers and taking advantage of the resulting tensor block sparsity:

The results above show that the handling of block sparse tensors is currently much
more efficient in the Julia version of ITensor versus the C++ version. This is the result
of an extensive recent optimization effort, using techniques such as storing the locations
of the non-zero blocks in a dictionary data structure instead of an array and optimizing
contractions of small blocks. An interesting contrast of block sparse calculations versus
dense calculations is that BLAS multithreading is much less effective in the block sparse
case, which is likely because many of the blocks are much smaller than the overall tensor
dimension, leading to smaller matrices being multiplied at the BLAS level.

Finally we benchmark the DMRG algorithm for a quasi-two-dimensional system treated
by wrapping an MPS on a cylinder. Here we use the example of the Hubbard model with
U/t = 8 and conservation of both the total Sz and particle number symmetries:
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While the Julia version also outperforms the C++ version for this system, the single-
threaded case is similar for both code versions, perhaps due to certain larger non-zero
tensor blocks.

A technique to sparsify the tensors more in the context of two-dimensional DMRG
calculations is to also conserve the momentum quantum number ky in the y-direction,
or periodic direction around the cylinder [72]. By using that technique in the following
benchmarks of the same two-dimensional Hubbard system, we can see that the overall time
needed is reduced and the better-optimized block sparse operations in the Julia version
give an even larger advantage:

Finally, the block-sparse structure of quantum-number conserving tensors gives an op-
portunity for performing contractions of the non-zero blocks in parallel. We offer mul-
tithreading over block-sparse tensor contractions in both the C++ and Julia versions of
ITensor. Turning on this feature and using different numbers of threads for 2D DMRG
calculations gives the following timings:
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where we see a speedup of between 1.5x to 2x compared to case using no block-sparse
threading. Though the single-threaded Julia implementation is slightly more efficient, the
multithreading is more effective in the C++ implementation, possibly because the native
Julia multithreading has a higher overhead than the OpenMP multithreading we use in
C++. We plan to investigate the discrepancy in more detail.

To conclude this section, we note that the C++ implementation of ITensor, including
both its tensor contraction routines and implementations of algorithm such as DMRG
are already highly optimized, nearing state-of-the-art performance. So the even better
performance of the Julia version of ITensor is a non-trivial outcome. The Julia version was
originally modeled on the C++ implementation, but recent optimization efforts supported
by Julia’s more productive programming environment currently put it well ahead.

12.2 Benchmarks of ITensor Versus Other Software

It is important to determine how the performance of ITensor compares to other leading
software. For this purpose, we have performed benchmarks comparing the Julia version of
ITensor to the TeNPy high-performance tensor network library, which is implemented in
a combination of Python and C++ with a Python interface [73].

However, because both ITensor and TeNPy are continually being optimized and devel-
oped, and due to subtleties of comparing different implementations of algorithms such as
DMRG, we have opted not to present a definitive set of benchmarks here, but rather to
host these on an external site where the results and underlying codes can be periodically
updated. The latest TeNPy and ITensor benchmarks can be viewed at the following link:
ITensorBenchmarks TeNPy and ITensor Comparisons.

To summarize the results of this ongoing benchmark effort, we found first of all a
number of implementation differences that can inform the design and default choices of each
library. For example, TeNPy by default uses a sparse representation of the Hamiltonian
which we found typically speeds up DMRG significantly, so we have now implemented
a similar capability in ITensor through a function called splitblocks, though whether
using leads to better performance depends on the system, so we have not currently made
it the default. Another difference is that TeNPy’s DMRG implementation (as of version
0.8.4) performs more Lanczos steps within each step of DMRG compared to ITensor, which
generally results in longer running times for a fixed number of DMRG sweeps. But this
number is only a default setting and can be adjusted by the user. Once the algorithmic
details and external dependencies (such as the BLAS library used) were made as similar
as possible, we found both libraries gave comparable performance.

In the future, we plan to not only expand the set of algorithms used in the benchmark,
but also to set up an automatic benchmarking system, and to include other software in
the comparisons.

13 Future Directions

Although the ITensor library already offers high performance and powerful features for
implementing any tensor network algorithm, many improvements and optimizations are
planned or already under way. Here we discuss the main features under development,
though some may take a different form when implemented.

A high-priority feature is support for automatic differentiation (AD). This technique
has been popularized for applications in machine learning and neural networks, but has
recently been demonstrated to work well for tensor networks too. For example, AD can be
used for state-of-the-art infinite PEPS calculations and for calculating critical properties
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of classical systems [74]. In addition, it has proven useful for optimizing tensor networks
with unitary/isometric constraints like quantum circuits, MERA, and gauged MPS [75–78]
as well as for computing excitations and structure factors of MPS and PEPS [79,80]. The
unique index system and generic high level interface makes ITensor ideal for defining dif-
ferentiation through a variety of ITensor operations. Julia’s ChainRules.jl [81,82] package
can be used to define basic reverse and forward mode differentiation rules independent
of the particular AD framework. In conjunction with source-to-source AD frameworks
available in Julia such as Zygote.jl [83] which has high coverage for differentiating through
most native Julia language features, a basic ITensor AD system involving differentiating
through a surprising number of ITensor operations can be written in only a few lines of
code. Our use of ChainRules will allow us to target next generation AD systems being
developed in Julia such as Diffractor.jl. Using this system, we have prototypes for using
AD to optimize a variety of tensor network applications, such as gradient optimization
of MPS, variational circuit optimization, and PEPS. We plan to extend our set of rules
and coverage of ITensor operations (for example better support for differentiating tensor
factorizations and MPS/MPO operations), incorporate high level support for using AD to
optimize ITensor networks with unitary constraints, etc. In addition, we are investigating
adding features for computing higher order derivatives of tensor networks using backends
like AutoHOOT [84].

Another high-priority feature is automatic support for fermionic Hilbert spaces. Sys-
tems of fermions are foundational for physics applications of tensor networks, and are the
most common type of system studied in condensed matter physics. Currently, the only
automatic support for fermions in ITensor is within the OpSum/AutoMPO system, which
relies on lookup tables of operator names designated as anti-commuting. That approach
works well for many matrix product state calculations, but leads to a confusing experience
for users when some parts of the library handles fermions automatically yet other parts
of the calculation require manually introducing Jordan-Wigner string operators, such as
when computing certain correlation functions or when using higher-dimensional networks
such as PEPS. We are therefore experimenting with a system that introduces fermionic
properties at the level of tensor indices, where index permutations result in a minus sign
if odd-parity QN subspaces undergo an odd-parity permutation. Our ambitious goal is for
calculations involving fermions to work with exactly the same code as for bosonic degrees
of freedom. Even if some manual steps are occasionally required, this new fermion system
could still be very useful.

Following the completion of the fermion system, support for other types of symmetries
and non-trivial vector spaces is an important future direction. In particular, support of
non-Abelian symmetries such as SU(2) will be a very powerful feature for variants of
the Heisenberg and Hubbard models and for electronic structure Hamiltonians such as in
quantum chemistry applications.

More sophisticated optimizations of tensor contraction sequences is another future di-
rection for ITensor. We currently have a backend for optimizing the contraction sequence of
ITensors, for example to determine that the optimal sequence of a contraction like A*B*C*D
is (A*(B*C))*D, based on the algorithm introduced in Ref. [85]. This can be enabled for
every contraction with a global flag or for a specific contraction with a keyword argument,
and additionally a custom sequence can be provided of the form [[1,[2,3]],4]. We
are also developing tools for visualizing tensor networks which are enabled by annotating a
tensor contraction with a macro, for example @visualize A*B*C*D. We plan to provide a
variety of backends, such as a text output and an interactive output based on Makie.jl [86].

We are also developing tools for visualizing tensor networks which are enabled by
annotating a tensor contraction with a macro, for example @visualize A*B*C*D. We
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plan to provide a variety of backends, such as a text output and an interactive output based
on Makie.jl [86]. This will make it easier to visualize a contraction sequence and debug
code. We would like to provide alternative contraction sequence optimization backends
like CoTenGra [87] which could be used to find contraction sequences for larger tensor
networks than our current implementation. In addition, we are investigating incorporating
general approximate contraction algorithms like those introduces in Refs. [88,89].

We soon plan to offer first-class support for infinite MPS and MPO algorithms, with
preliminary work nearly completed in the currently separate package ITensorInfiniteMPS.jl.
This will include the latest developments in obtaining dominant and sub-dominant eigen-
values and MPS eigenvectors of infinite MPOs, using algorithms such VUMPS [90] and
MPS tangent-space methods [27], as well as obtaining canonical forms of infinite MPS
and MPOs and applying infinite MPOs to infinite MPS [91]. This will all be offered with
the same level of convenience as the currently available finite MPS and MPO methods,
including an infinite version of OpSum/AutoMPO.

We plan to continue developing GPU support throughout the library. Currently, only
dense tensor operations can be performed on GPU, so an initial goal will be to support
block sparse tensor operations on GPU. More broadly, we plan to make GPU support a
first-class feature, with the eventual goal that most code written for ITensors on CPU
can work directly for ITensors on GPU with high performance and minimal user effort,
including code that uses automatic differentiation.

Last but not least, we hope to offer more high-level features for PEPS (two-dimensional
tensor network) calculations. Algorithms and methods for optimizing PEPS have reached a
point of maturity such that there are now a handful of essentially standard approaches, such
as variational iPEPS [74,92,93] and fixed-point methods for computing PEPS environment
tensors [71]. Many of these algorithms will be provided with ITensor in the future, and in
particular leverage tools we are developing for a general tensor network interface, automatic
differentiation, and contraction sequence optimization.

Acknowledgements

We thank Johannes Hauschild for many discussions about the TeNPy software and for
taking significant time to work with us to provide and develop benchmark codes. We thank
Nils Wentzell for providing expertise and help regarding a custom Python environment on
the Flatiron Institute computing cluster, as well as help designing the multithreading
strategy for threaded block sparse contractions.

Key contributors to ITensor include: Katharine Hyatt for developing a GPU-accelerated
backend for the ITensors.jl package; 11 Anna Keselman for contributing a major improve-
ment to the OpSum/AutoMPO system which handles long-range interactions and multi-
site operators; Thomas E. Baker for expanding and improving the ITensor documentation,
in particular the tutorials. Thanks to Jing Chen, Ying-Jer Kao, John Terilla, and Tyler
Bryson for discussions about automatically handling fermion signs. We also thank Jing-
Guo Liu for helping us to generalize the tensor contraction backend of ITensors.jl to handle
more arbitrary number types.

Significant contributions and bug fixes to the C++ version of ITensor were made
by Anna Keselman, Mingru Yang, Jack Kemp, Kyungmin Lee, Tatsuto Yamamoto, Ju-
raj Hasik, Benedikt Bruognolo, Jose Lado, Hoi Hui, Lars-Hendrik Frahm, Lucas Vieira,
Markus Wallerberger, Miles Chen, Yevgeny Bar-Lev, Jessica Alfonsi, Chuang Xi, and An-
drey Antipov. We would also like to thank Nils Wentzell, Alex Wietek, and Daniel Bauern-

11ITensorGPU: https://github.com/ITensor/ITensors.jl/tree/main/ITensorGPU

43

https://github.com/jcmgray/cotengra
https://github.com/ITensor/ITensorInfiniteMPS.jl
https://github.com/ITensor/ITensors.jl/tree/main/ITensorGPU


SciPost Physics Codebases Submission

feind for their help designing and testing block sparse multi-threading with OpenMP.
Significant features and bug fixes to the initial release of ITensors.jl (the Julia version

of ITensor) were contributed by Katharine Hyatt, Ori Alberton, Christopher White, Jan
Schneider, Alvaro Rubio-Garcia, Yiqing Zhou, Michael Abbott, Nicolau Werneck, Michael
Sven Ferguson, Nick Robinson, and Amartya Bose.

Funding information SRW acknowledges the support of the U.S. Department of Energy
under grant DE-SC0008696. ITensor was initiated through the generous support of the
DOE under award DE-SC0008696 and the NSF under award DMR-1812558, both of which
continue to support the efforts of Steven R. White and his group. We are grateful for
ongoing support through the Flatiron Institute, a division of the Simons Foundation.

A Full Code Examples

In addition to the code examples below, we include an extensive and growing set of exam-
ples as part of our source code distribution at the following link: ITensor Code Examples.

A.1 Contraction Example

To show a fully working example of contracting two ITensors with a complicated index
structure, consider the following code12:

� �
using ITensors

function main()
a = Index(3,"a")
b = Index(2,"b")
c = Index(4,"c")
d = Index(5,"d")
i = Index(2,"i")
j = Index(6,"j")

A = randomITensor(a,b,d,c)
B = randomITensor(i,d,j)

C = A * B

@show hasinds(C,a,b,c,i,j)

return C
end

main()� �
12Collections of indices can be made with a more compact syntax

a,b,c,d,i,j = Index.((3,2,4,5,2,6),("a","b","c","d","i","j")), which makes use of Julia’s
built in broadcast (.) syntax.
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The contraction computed by this code can be expressed by the following diagram:

ib

c

=

A

a

B*

d

j

ib

c j

a

C

Note that the Index tags such as "a","b","c", etc. are not required for this code to
function properly, but in this context are just for making the indices easier to identify
when printed.

The line of code

� �
@show hasinds(C,a,b,c,i,j)� �

shows the output of the hasinds function which checks that the ITensor C has all of the
indices a,b,c,i,j. The code above will output

� �
hasinds(C,a,b,c,i,j) = true� �
A.2 DMRG Example

The following code example shows the use of higher-level features of the ITensor Library
to compute the ground-state wavefunction of the S = 1/2 Heisenberg quantum spin chain
model using the density matrix renormalization group (DMRG) algorithm:
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� �
using ITensors

function main(N)
sites = siteinds("S=1/2",N)

os = OpSum()
for j=1:N-1
os += "Sz",j,"Sz",j+1
os += 1/2,"S+",j,"S-",j+1
os += 1/2,"S-",j,"S+",j+1

end
H = MPO(os,sites)

psi0 = randomMPS(sites; linkdims=10)

sweeps = Sweeps(5)
setmaxdim!(sweeps, 10,20,100,100,200)
setcutoff!(sweeps, 1E-11)

energy, psi = dmrg(H,psi0, sweeps)
println("G.S. energy = $energy")
return energy, psi

end

energy, psi = main(100)� �

A typical output of this code is:

After sweep 1 energy=-44.062476890249 maxlinkdim=10 time=4.819 
After sweep 2 energy=-44.123591549762 maxlinkdim=20 time=0.304 
After sweep 3 energy=-44.127657130701 maxlinkdim=79 time=1.631 
After sweep 4 energy=-44.127738543656 maxlinkdim=100 time=4.357 
After sweep 5 energy=-44.127739882502 maxlinkdim=139 time=5.997 
G.S. energy = -44.127739882501665

where note that the longer time in the first sweep includes compilation time. Brief expla-
nations of the major steps of the above code are:

• Construct an array of N = 100 Index objects corresponding to S = 1/2 spins (which
are dimension-2 Index objects labeled by the tag "S=1/2").

• Input the terms of the one-dimensional Heisenberg Hamiltonian into an OpSum object.

• Construct an MPO H out of the OpSum.

• Construct a random MPS psi0 of bond dimension 10.

• Create a Sweeps struct which indicates that five sweeps of the DMRG algorithm are
to be performed, with various maximum bond dimensions allowed for each sweep and
a truncation error cutoff of 10−11 throughout.
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• Run the DMRG algorithm, which returns the ground-state energy and ground-state
wavefunction MPS.

B ITensor Implementation and Interface in the C++ Lan-
guage

In this appendix, we give code examples for the C++ version of ITensor to show the
similarities to and differences from the Julia version.

B.1 C++ Contraction Example

Here we show the same example of contracting two ITensors with a complicated index
structure as in the previous Appendix section A.1. Consider the following code:

� �
#include "itensor/all.h"
#include "itensor/util/print_macro.h"
using namespace itensor;

int main()
{
auto a = Index(3,"a");
auto b = Index(2,"b");
auto c = Index(4,"c");
auto d = Index(5,"d");
auto i = Index(2,"i");
auto j = Index(6,"j");

auto A = randomITensor(a,b,c,d);
auto B = randomITensor(i,d,j);

auto C = A * B;

Print(hasInds(C,a,b,c,i,j));
}� �
By comparing to the Julia language example A.1, one can see that the C++ code above

is very similar with the main differences being the use of include statements to import
the library headers, the use of the C++ keyword auto on lines of code that result in the
definition of a new variable, and semicolons terminating each line of procedural code. The
last line uses a macro Print provided by ITensor, which has a similar behavior to the Julia
@show macro and which in this case generates the output:

� �
Print(hasInds(C,a,b,c,i,j)) = true� �
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B.2 C++ DMRG Example

Here we show the same example of a DMRG calculation as in the previous Appendix
section A.2. Consider the following code:

� �
#include "itensor/all.h"
using namespace itensor;

int main()
{
auto N = 100;

auto sites = SpinHalf(N,{"ConserveQNs=",false});

auto ampo = AutoMPO(sites);
for(auto j : range1(N-1))
{
ampo += "Sz",j,"Sz",j+1;
ampo += 0.5,"S+",j,"S-",j+1;
ampo += 0.5,"S-",j,"S+",j+1;
}

auto H = toMPO(ampo);

auto psi0 = randomMPS(sites,10);

auto sweeps = Sweeps(5);
sweeps.maxdim() = 10,20,100,100,200;
sweeps.cutoff() = 1E-11;

auto [energy, psi] = dmrg(H,psi0,sweeps,{"Quiet=",true});

println("G.S. energy = ",energy);
}� �
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By comparing to the Julia language example A.2, one can see that the codes are
again rather similar overall. Some key differences beyond the ones mentioned for the
contraction example include that the site Index arrays (“site sets”) in the C++ version
include quantum number information by default, which we turn off in this example, and the
dmrg routine outputs much more information by default, so we pass the named argument
{"Quiet=",true}. These two parts of the code highlight a custom named-argument
system developed for the C++ version of ITensor which could be more generally useful in
other C++ codes and which we plan to release as a separate library in the future.
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