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Abstract

We show how Newton-Cartan geometry can be generalized to String Newton-Cartan ge-
ometry which is the geometry underlying non-relativistic string theory. Several salient
properties of non-relativistic string theory in this geometric background are presented
and a discussion of possible research for the future is outlined.
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1 Introduction10

Starting from classical mechanics, there are at least three interesting ways to extend the theory11

each of which introduces a constant of nature that is absent in classical mechanics: (1) at large12

velocities with respect to the velocity of light c the theory extends to special relativity; (2) at13
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Figure 1: The Bronstein cube shows how classical mechanics can be extended in three
different ways to (1) special relativity, (2) quantum mechanics and (3) Newtonian
gravity. Combining two of these extensions leads to general relativity, quantum field
theory or NR quantum gravity. Ultimately, combining all three extensions leads to
relativistic quantum gravity.

small distances certain physical quantities get quantized in units of the reduced Planck’s con-14

stant }h corresponding to quantum mechanics and (3) a gravitational force can be introduced15

via Newton’s constant G leading to Newtonian gravity. There are two well-known ways to16

combine two of these extensions: (1) extending classical mechanics with high velocities and17

gravity leads to general relativity and (2) extending classical mechanics to high velocities and18

small distances leads to quantum field theory. Logically speaking, however, there is a third19

way, namely extending classical mechanics to small distances and gravity. This would lead20

to a theory of non-relativistic (NR) quantum gravity. Finally, the maximal extension to high21

velocities, small distances and gravity leads to the long sought for theory of quantum gravity.22

This situation can nicely be summarized via the the so-called Bronstein cube [1] in Figure 1.23

Usually, the issue of finding a consistent theory of quantum gravity is approached either by24

adding gravity to quantum field theory or by quantizing general relativity. The Bronstein cube25

suggests a third way to approach this issue: can quantum gravity be viewed as the relativistic26

extension of a self-consistent NR theory of quantum gravity? This leads to the related question27

of how essential relativity is in constructing a theory of quantum gravity or, put differently,28

whether one can take in a consistent way the NR limit of quantum gravity. Motivated by this29

we wish to address the following intriguing question:30

can one define a consistent NR theory of quantum gravity?

This question can be asked for each approach to define a consistent theory of quantum31

gravity: is relativity essential for the construction, yes or no? String theory is one approach to32

define a theory of quantum gravity. In this talk we wish to discuss the definition of a NR string33

theory including its underlying geometry and some of its basic properties. In particular, we will34

show how the geometry corresponding to NR string theory can be viewed as a generalization35

of the well-known Newton-Cartan (NC) geometry that underlies NC gravity.36
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2 From NC Gravity to String NC Gravity37

The independent fields of D-dimensional NC geometry are given by (a = 1, · · · , D− 1)38

{τµ, Eµ
a, Mµ} . (1)

Here, τµ is the time-like Vierbein acting as the clock function and Eµ
a is the spatial Vierbein39

acting as the ruler. The charge corresponding to the gauge field Mµ is a central charge in the40

Galilei algebra thereby extending it to the Bargmann algebra. These gauge fields transform41

under (local) spatial rotations with parameters λa
b, Galilean boosts with parameters λa and42

central charge transformations with parameter σ as follows:43

δτµ = 0 ,

δEµ
a = λa

b Eµ
b +λaτµ ,

δMµ = ∂µσ+λa Eµ
a .

(2)

The spin-connection fields ωµ
ab corresponding to spatial rotations and ωµ

a corresponding to44

Galilean boosts are functions of τµ , Eµ
a and Mµ.45

In NC gravity one cannot define a single non-degenerate metric for the full spacetime like46

the Riemannian metric in general relativity. Instead, one defines two degenerate metrics47

τµν = τµτν and hµν = EµaEνbδ
ab (3)

that are invariant under the Bargmann transformations (2). Here Eµa is the projective inverse48

of Eµ
a which, unlike the spatial Vierbein, is invariant under Galilean boosts. This means that49

the combination50

Eµ
aEν

bδab (4)

is not invariant under Galilean boosts and, for this reason, cannot be used as a metric. In order51

to make a boost-invariant combination one often considers the combination52

Hµν = Eµ
aEν

bδab +Mµτν +Mντµ .

However, this combination is not invariant under central charge transformations. Neverthe-53

less, it is used in the construction of a NR particle action coupled to NC gravity in such a way54

that the central charge gauge field Mµ couples to the particle via a Wess-Zumino (WZ) term55

of the form56

Mµ ẋµ (5)

where xµ(τ) is an embedding coordinate. This leads to a particle Lagrangian that is invariant57

under central charge transformations up to a total derivative. We will often call the symmetric58

tensor Hµν the transverse metric and τµν the longitudinal metric. 1
59

The central charge gauge field Mµ of NC gravity has a precursor in general relativity as an60

Abelian gauge field M̂µ to be added to general relativity. The only difference is that the Poincaré61

algebra does not get modified by the gauge field M̂µ. This gauge field plays a crucial role in62

constructing NR limits without divergencies. For instance, starting from the Klein-Gordon63

Lagrangian coupled to general relativity one can only obtain the Schrödinger Lagrangian cou-64

pled to NC gravity as a NR limit provided one extends general relativity with a fluxless Abelian65

gauge field M̂µ that couples to a complex Klein-Gordon scalar. Similarly, one can only define66

1Strictly speaking, the metric Hµν is only transverse in the absence of the terms containing the central charge
gauge field Mµ.
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a NR limit of a relativistic particle coupled to general relativity without divergencies provided67

the relativistic particle couples to M̂µ via a WZ term of the form68

M̂µ ẋµ . (6)

It is instructive to give some details here. To define the NR limit we first express the Rie-69

mannian metric of general relativity and the gauge field M̂µ in terms of the NC fields (1) and70

a contraction parameter ω. Next, after substituting these expressions into the action of the71

relativistic particle coupled to general relativity, we take the limit ω →∞. This leads to a72

divergence linear in ω coming form the kinetic term that is cancelled by a similar divergent73

term coming from the WZ term by expressing M̂µ in terms of the NC fields as follows:74

M̂µ =ωτµ +
1
ω

Mµ . (7)

Given the fact that a vector field only couples via a WZ term to a particle, it is clear that75

one cannot apply the same procedure to define the NR limit of a string. In this case, it is the76

Kalb-Ramond 2-form gauge field B̂µν that couples to the relativistic string via a WZ term of77

the form78

εαβ∂αxµ∂β xνB̂µν , (8)

where ∂α (α = 0,1) is the derivative with respect to the world-sheet coordinates σα and79

xµ(σα) are the string embedding coordinates. It turns out that taking the NR limit of a string80

leads to a divergence quadratic in ω coming from the kinetic term. To cancel this quadratic81

divergence we cannot work with a NC geometry since that contains only one clock function82

τµ and there is no way to express the Kalb-Ramond field in terms of this single clock func-83

tion. To cancel the quadratic divergence coming from the kinetic term we need two so-called84

longitudinal Vierbeine τµ
A (A= 0,1) and write85

B̂µν =ω
2εABτµ

Aτν
B + Bµν , (9)

where Bµν is the NR Kalb-Ramond field. This leads to a new so-called String Newton-Cartan86

(SNC) geometry that is characterized by two special directions instead of the single Newto-87

nian time direction in NC gravity. The difference between particles and strings is that a particle88

sweeps out a one-dimensional time direction whereas a sting sweeps out two directions lon-89

gitudinal to the string: one time direction and one spatial direction, see Figure 2.90

time

particle (closed) string

time

space

Figure 2: A particle (left) sweeps out a one-dimensional time direction whereas a
string (right) sweeps out two directions: one time and one spatial direction.

Ignoring central extensions the algebra underlying the SNC geometry is the so-called string91

Galilei algebra where we distinguish between the two directions A = 0,1 longitudinal to the92
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string and the remaining directions a = 2, · · ·D− 1 transverse to the string. We thus have93

D flat indices→

¨

2 longitudinal indices A

D-2 transverse indices a
(10)

with the following symmetries and generators:94

longitudinal translations HA (11a)

transverse translations Pa (11b)

string Galilei boosts GAb (11c)

longitudinal Lorentz rotations JAB (11d)

transverse spatial rotations Jab (11e)

This string Galilei algebra is extended to a so-called enhanced string Galilei algebra with two95

types of non-central 2 generators:96

ZA and ZAB with ZA
A = 0 . (12)

Ignoring matter fields, like the Kalb-Ramond 2-form field, the independent string NC fields are97

98

{τµA, Eµ
a, Mµ

A} (13)

For the construction of a NR string action we need both a longitudinal metric τµν and a trans-99

verse metric Hµν which are the following generalizations of the particle case given in eqs. (3)100

and (5), respectively:101

longitudinal metric: τµν ≡ τµAτν
BηAB ,

transverse metric: Hµν ≡ Eµ
aEν

bδab +
�

τµ
AMν

B +τν
AMµ

B
�

ηAB .

3 An Action for the NR Bosonic String102

We are now in a position to construct the action of NR string theory in a general SNC gravity103

background. For flat spacetime the action was already given a long time ago and reads [2,3]104

Sflat = −
1

4πα′

∫

d2σ
�

∂ xa ∂ x bδab +λ∂ X +λ∂ X
�

(14)

with105

X = x0 + x1 , X = x0 − x1 (15)

and similar for the Lagrange multipliers λ , λ̄. A special feature of NR string theory is that the106

(perturbative) spectrum only contains winding strings along the compact x1 direction [2].107

The presence of the Lagrange multipliers can be understood as the result of taking the NR108

limit of the relativistic string action in Polyakov form. 3 This is best understood by comparing109

2We call a generator non-central if it only has non-zero commutators due to its index structure.
3The presence of the Lagrange multipliers can alternatively be understood by taking the NR limit in an Hamil-

tonian formulation.
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to the particle and considering the following relativistic particle action coupled to general110

relativity in Polyakov form:111

SPol. = −
1
2

∫

dτ
¦

−
1
e

Êµ
Â ẋµ Êν

B̂ ẋνηÂB̂ +M2e− 2M M̂µ ẋµ
©

.

Here e is the worldline Einbein and M is a mass parameter. Expanding the general relativity112

fields in terms of the Newton-Cartan background fields one encounters the following quadratic113

divergence that is not cancelled by the vector field in the Wess-Zumino term:114

SPol.(ω
2) = −1

2

∫

dτ
1
e
ω2
�

τµ ẋµ −me
�2

. (16)

It should be noted that this is an artefact of the Polyakov formulation. In the Nambu-Goto115

formulation there is no quadratic divergence left. The quadratic divergence given in (16) is116

not fatal. The reason for this is that it is the square of something and therefore can be re-117

written, using a Lagrange multiplier λ as follows:118

SPol.(ω
2) = −1

2

∫

dτ
1
e

¦

λ(τµ ẋµ −me)−
1

4ω2
λ2
©

. (17)

Written in this form, the limit that ω→∞ can be taken and one ends up with the following119

NR Polyakov action:120

SPol.(N.R.) = −1
2

∫

dτ
1
e

¦

ẋµ ẋνHµν +λ
�

τµ ẋµ −me
�

©

. (18)

Integrating out the Lagrange multiplier λ one finds that121

e =
τµ ẋµ

m
. (19)

Substituting this back into the Polyakov action (18) one obtains the following NR particle122

action in Nambu-Goto form:123

SN.G.(N.R.) = −
m
2

∫

dτ
ẋµ ẋν

τρ ẋρ
Hµν . (20)

One can now take a similar limit of the relativistic Polyakov string. We thus find the fol-124

lowing expression for a NR string in a (matter-coupled) SNC background [4,5]: 4
125

SSNC = −
T
2

∫

d2σ
�p

−hhαβ ∂αxµ∂β xνHµν + ε
αβ
�

λ eατµ + λ̄ēατ̄µ
�

∂β xµ
�

−
T
2

∫

d2σεαβ∂αxµ∂β xνBµν +
1

4π

∫

d2σ
p

−h R
�

Φ− 1
4 ln G

�

, (21)

where T is the string tension, σα are the world-sheet coordinates, hαβ = eα
aeβ

bηab is the126

worldsheet metric with Zweibeine eα
a, R(2) is the Ricci scalar defined with respect to hαβ and127

xµ(σ), µ= 0,1, · · · , D−1 are the string embedding coordinates. The action (21) also describes128

the coupling to the background Kalb-Ramond field Bµν and the dilaton Φ. Furthermore, λ129

and λ are two world-sheet Lagrange multiplier fields whose equations of motion allow us to130

4For other recent work on non-relativistic strings in a curved background, see [6–12].
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solve for the world-sheet metric hαβ up tp a scale factor α(x) in terms of the pullback of the131

longitudinal metric τµν as follows:132

hαβ = α(x)∂αxµ∂β xντµν . (22)

As mentioned in the previous section, the so-called transverse metric Hµν is given in terms of133

the SNC background fields by 5
134

Hµν = Eµ
aEν

bδab +
�

τµ
AMν

B +τν
AMµ

B
�

ηAB . (23)

The definition of G occurring in the string sigma model action (21) in terms of Hµν and τµ
A

135

is given by136

G = det Hµν det
�

τρ
AHρστσ

B
�

. (24)

Finally, the lightcone components τµ ,τµ of τµ
A and eα , ēα of eα

a are defined in [4,5].137

Upon integrating out the Lagrange multipliers, one can show that the string action is in-138

variant under Galilean boosts with parameters λAA′ , non-central charge transformations with139

parameters λA and second non-central charge transformations with parameters σA
B (with140

σA
A = 0):141

δτµ
A = 0 ,

δEµ
A′ = −λA

A′τµ
A , (25)

δMµ
A = Dµ(ω)λ

A+λA
A′Eµ

A′ +σA
Bτµ

B .

Here Dµ(ω) is the Lorentz-covariant derivative with respect to the longitudinal Lorentz rota-142

tions. Note that the gauge field corresponding to the second non-central charge transformation143

does not occur in the string action. The invariance under the first non-central charge transfor-144

mations is valid provided that the following zero torsion constraint holds: 6
145

D[µ(ω)τν]
A = 0 . (26)

Part of this constraint contains the spin-connection field ωµ
AB, enabling one to solve this con-146

nection field in terms of τµ
A and its derivative. The remaining part is a geometric constraint147

given by the projection of (26) that does not contain the spin-connection:148

εC
(Aτ[µ

B)∂ντρ]
C = 0 . (27)

An important feature of the NR action (21), which is absent in the relativistic case, is that149

the action is invariant under certain Stückelberg symmetries of the background fields implying150

that some of the components only occur in special combinations. A similar thing happens for151

the NR Nambu-Goto particle coupled to a vector gauge field Bµ:152

SNG(N.R.) = −
m
2

∫

dτ
¦ ẋµ ẋν

τρ ẋρ
Hµν − Bµ ẋµ

©

, (28)

in which case the Stückelberg symmetries are given by153

Hµν→ Hµν +
1
2

�

τµCν +τνCµ
�

, Bµ→ Cµ . (29)

5Note that this metric is strictly speaking transverse only in the absence of the second term.
6At the classical level there is another way to achieve invariance of the action under the first non-central charge

transformations by assigning to the Kalb-Ramond field an extra central charge transformation that is proportional
to the torsion [12].
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In terms of the Stückelberg-invariant combinations the NR particle action (28) reads154

SNG(N.R.) = −
m
2

∫

dτ
¦ EA′EB′δA′B′

τ
+τ(H00 − B0) + EA′(H0A′ − BA′)

©

, (30)

where we have used flat indices and where we have defined155

τ≡ ẋµτµ , EA′ ≡ ẋµEµ
A′ . (31)

Similarly, one finds that, after integrating out the Lagrange multipliers, the NR string action156

(21) is invariant under the following (infinitesimal) Stueckelberg symmetries, with parameters157

Cµ
A, given by158

δBµν = (Cµ
AτB
ν − Cν

Aτµ
B )εAB , δmµ

A = −Cµ
A . (32)

This Stueckelberg symmetry is a reducible symmetry in the sense that the transformation rule159

(32) of Bµν is formally invariant under a gauge symmetry, with singlet parameter C , given by160

δCµ
A = εABτµB C . (33)

4 Discussion161

Once the action for the NR string in a curved background has been constructed several research162

directions become possible. Following the techniques of [13, 14] we have constructed a NR163

version of the T-duality rules [4,5]. A remarkable consequence of this T-duality is that taking164

the T-dual along the spatial direction of the string leads to a string theory that looks relativistic165

but in fact, due to the presence of a null-isometry, is non-relativistic. The (one-loop) beta166

functions of the string sigma model, leading to field equations of the background fields, have167

been calculated both for the closed string [15, 16] as well as for the open string [17]. An168

intriguing consequence of the Stueckelberg symmetries mentioned in section 3 is that there169

are less equations of motion than in the relativistic case. The missing equations of motion are170

precisely in the same representation as the Stueckelberg parameters. 7
171

An interesting future research direction is to generalize the results of [19] on superstrings172

in a flat background and of [18] on superstrings in a special curved background to superstrings173

in a general curved background and to see what the geometry is that one is ending up with.174

This would open the way to start discussing NR D-branes and NR holography from the per-175

spective of a NR gravity theory in the bulk. We hope to come back to these interesting research176

equations in the nearby future.177
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