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Abstract

We consider the non-equilibrium dynamics of a weakly interacting Bose gas tightly confined to
a highly elongated double well potential. We use a self-consistent time-dependent Hartree–Fock
approximation in combination with a projection of the full three-dimensional theory to several
coupled one-dimensional channels. This allows us to model the time-dependent splitting and
phase imprinting of a gas initially confined to a single quasi one-dimensional potential well and
obtain a microscopic description of the ensuing damped Josephson oscillations.
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1 Introduction

Over the last decade and a half quasi-one-dimensional Bose gases have provided a key platform
for experimental studies of non-equilibrium evolution in isolated one-dimensional many-particle
quantum systems, see e.g. [1–16]. This has been an important driver of intense theoretical activities
aimed at understanding non-equilibrium dynamics in paradigmatic models in D = 1, see [17–22]
for recent reviews on the subject. A very nice aspect of the cold atom experiments is that they
provide quantum simulators for low dimensional quantum field theories. For example trapped
single-component Bose gases are well described [23] by the Lieb-Liniger model [24] of a non-
relativistic complex scalar field. At low energy densities effective field theory descriptions [25, 26]
can apply surprisingly well even out of equilibrium [27–30]. This has led to novel applications of
Luttinger liquid theory and its variants such as the study of full distribution functions of quantum
observables [31–40]. By modifying the experimental setups it is in principle possible to engineer
particular perturbations to Luttinger liquid theory. An important example is given by a system
of two tunnel-coupled repulsive Bose gases [41–44], which gives rise to a low-energy description in
terms of a Luttinger liquid and a sine-Gordon quantum field theory [45]. The sine-Gordon model
is a paradigmatic relativistic quantum field theory that has attracted a huge amount of attention
over the last four decades. It has the attractive feature that it is exactly solvable [46–48] and has
a number of known applications in the solid state context, see e.g. [26, 49–53]. Motivated by the
experimental realization via two tunnel-coupled Bose gases the non-equilibrium dynamics of the
sine-Gordon model has been explored by a number of groups and methods [54–66].

Given that the sine-Gordon description only applies in an appropriate scaling limit a crucial
question is how close the experiments are to this regime. In equilibrium correlation functions
obtained from time-of-flight measurements of the boson density were found to be in good agreement
with classical field simulations of the sine-Gordon model [11]. In non-equilibrium situations like
the ones studied in Refs. [10, 14, 15] the situation is much less clear. In these experiments two
elongated Bose gases are prepared in a quantum state characterized by a phase difference between
the two gases. A tunnel coupling between the gases is then applied, which induces Josephson-
like oscillations of density and phase. These oscillations quickly damp out and the distribution
function of the phase is seen to narrow. Various studies based on the sine-Gordon model have so
far failed to account for these observations [62,65,66]. In particular, taking into account Gaussian
fluctuations on top of the solution of the classical field equations in a self-consistent way produces
only very weakly damped Josephson-like oscillations [62,66]. Given this state of affairs it is natural
to question whether the experiments are in the right regime for a sine-Gordon based description to
apply. In the experiments one deals with three dimensional bosons in a time-dependent confining
potential. An obvious question is how good the low-energy projection to two one-dimensional Bose
gases is in the experimentally relevant parameter regime. Another important issue is that the initial
state that is prepared after splitting the gas and imprinting a phase difference is in fact not known,
as the splitting process has so far only been modelled in a qualitative phenomenological way [67,68],
or via methods that rely on a two-mode approximation [69], a classical field approximation [70]
or a restriction to the transverse direction only [69]. In order to start addressing these questions
we return to the drawing board and consider a gas of weakly interacting bosons subject to a
tight harmonic potential in the z-direction, a time-dependent double well potential V⊥(y, t) in the
y-direction and a shallow harmonic potential in the x-direction. This leads to the Hamiltonian

H3D(t) =

∫
d3 ~r Ψ̂†( ~r )

[
−∇

2

2m
+
mω2

x

2
x2 + V⊥(y, t) +

mω2
z

2
z2

]
Ψ̂( ~r )

+
1

2

∫
d3 ~r d3 ~r ′ Ψ̂†( ~r ′)Ψ̂†( ~r )Û( ~r − ~r ′)Ψ̂( ~r )Ψ̂( ~r ′) , (1)
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where ~r = (x, y, z) is the 3D coordinate and Û( ~r ) is the effective interaction potential

Û
(
~r
)

=
4πas

m
δ3
(
~r
)
. (2)

We will always consider elongated gases with ωx � ωz and refer to the x-direction as the longi-
tudinal, and the remaining coordinates ~r ≡ (y, z) as the transverse directions. In order to make
contact with the experiments of Ref. [14] we use

V⊥(y, t) =
m

2

(
c1

c2

)2
(
y2 − c2

2

(
I2(t)− I2

c

))2

I(t) + Ic
+ F (t)y , (3)

with the values c1 = 2π · 2.52 kHz, c2 = 2.17µm and Ic = 0.4. For I(t) = Ic, V⊥ is a quartic
potential with a flat bottom and for I > Ic, it develops a double well structure. The term F (t)y
is used to imprint a phase difference between the gases in the two wells (a precise description of
what we mean by this is given below). The precise form of the functions I(t) and F (t) is given in
Sec. 5.1, cf. Eqs. (54) and (55).

The idea is to use (1) to describe the splitting of the gas, the phase imprinting and finally the
subsequent non-equilibrium dynamics, but to take advantage of the fact that (i) interactions are
weak; (ii) the confinement is tight in the y- and z-directions. The combination of these two allows
us to project the full three dimensional theory to a small number of one-dimensional channels

Hproj(t) =

a−1∑

a=0

∫
dx ψ̂†a(x, t)

[
− 1

2m

∂2

∂x2
+
mω2

2
x2 + εa(t)

]
ψ̂a(x, t)

+

∫
dx

a−1∑

a,b,c,d=0

Γabcd(t) ψ̂
†
a(x, t)ψ̂

†
b(x, t)ψ̂c(x, t)ψ̂d(x, t), (4)

The resulting Hamiltonian is time-dependent but retardation effects are negligible. Some comments
on the projection procedure are provided in Appendix A. We stress, that as a result of working
with the instantaneous basis of single-particle eigenstates of −∂2

y/2m+ V⊥(y, t) our effective one-

dimensional field operators ψ̂†a(x, t) have an explicit time dependence. After working out how to
obtain Hproj(t) from (2) we proceed as follows:

1. We treat the interactions in a time-dependent self-consistent Hartree–Fock approximation
(SCHFA). As we are dealing with an effective one-dimensional system we do not allow for
the formation of long-range order. The resulting approximation is quite different from Gross-
Pitaevskii theory (see e.g. [71–73]). The main attraction of the SCHFA is that it can be
implemented straightforwardly, while its main limitation is that it treats interaction effects
in a rather crude way. However, it is nonetheless expected to provide a good description
as long as the interaction strength is sufficiently weak and the energy density in the system
is not too low. We first identify a corresponding parameter regime and then model the
Josephson oscillations experiments in this regime.

2. We start with a confining potential that forms a single elongated well and initialize our
system in a thermal low-temperature state.

3. We evolve the state under a time-dependent transverse potential V⊥(y, t) that models the
splitting and phase imprinting protocols used in the experiments. This provides us with a
characterization of the “initial state” used in the Josephson-like oscillation experiments.

4. Finally we consider the non-equilibrium evolution of the split, phase-imprinted state. We
observe damped Josephson-like oscillations.
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This paper is organized as follows. In Sec. 2, we describe the low-energy projection used to
arrive at the Hamiltonian (4), and the rationale for considering one-dimensional field operators
carrying explicit time-dependence. In Sec. 3, we introduce the observables relevant to experiment,
and connect them to the Green’s functions of one-dimensional field operators that are computed
in this paper. Sec. 4 introduces the self-consistent time-dependent Hartree–Fock approximation,
and the resulting nonlinear partial differential equations that govern the time-evolution of the
experimentally relevant Green’s functions. Sec. 5 describes how the initial state of the system is
modelled by preparing a gas in a thermal state of a single well and splitting it by a deformation
of the trapping potential. The time-dependent definition of the one-dimensional field operators
is shown to be an important tool in enabling this model for the preparation sequence. In Sec.
6, numerical results are presented for the time-evolution of experimentally relevant observables
after the preparation stage. Density-phase oscillations are observed to be strongly damped over
timescales that are comparable to those seen in the experiment.

2 Time-dependent projection to one-dimensional channels

We start from the 3D Hamiltonian (1) with δ-interactions (2),

H3D =

∫
d3 ~r Ψ̂†( ~r )

[
D̂x + D̂y(t) + D̂z +

2πas

m
Ψ̂†( ~r )Ψ̂( ~r )

]
Ψ̂( ~r ), (5)

where we have defined D̂u = −∂2
u/2m+mω2

uu
2/2 for u = x, z, and

D̂y(t) = − 1

2m

∂2

∂y2
+ V⊥(y, t) . (6)

The 3D Bose field Ψ̂( ~r ) satisfies the usual bosonic commutation relations. We use a double
well potential of the form (3) for V⊥(y, t) throughout this paper, where the phase imprinting is
implemented by the imbalance potential F (t)y. To arrive at an effective 1D model, we expand the
3D field operator in an instantaneous basis of single-particle eigenstates of the quadratic part of
the Hamiltonian

Ψ̂( ~r ) =
∑

a,b,c

χa(x)Φb(y, t)Ξc(z)b̂a,b,c(t) =
∑

b,c

Φb(y, t)Ξc(z)
ˆ̃
ψb,c(x, t) (7)

Here the single-particle eigenstates fulfil

D̂xχa(x) = ωx
(
a+

1

2

)
χa(x) ,

D̂y(t)Φb(y, t) = εb(t)Φb(y, t) ,

D̂zΞc(z) = ωz
(
c+

1

2

)
Ξc(z) , (8)

and we have defined canonical 1D Bose field operators by

ˆ̃
ψb,c(x, t) =

∑

a

χa(x)b̂a,b,c(t) , [
ˆ̃
ψb,c(x, t),

ˆ̃
ψ†b′,c′(x

′, t)] = δb,b′δc,c′δ(x− x′). (9)

At this stage we are dealing with an infinite number of Bose fields. We now exploit the fact that
the single-particle eigenvalues ωz(c + 1/2) and εb(t) constitute very large energy scales for c ≥ 1
and b ≥ ā, and that interactions are weak. This allows us to truncate the expansion of the 3D Bose
fields (7) to a small, finite number of channels. The rationale for working with explicitly time-
dependent single-particle states rather than working in a fixed basis is that a subset chosen to span
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the low-energy subspace of the free part of the Hamiltonian (5) at t = 0 will in general only span
the low-energy subspace at later times if we include a large number of channels. This would make
the truncation much less efficient. Let us now give the details of the truncation procedure outlined
above. If ωz � ωx, we expect the dynamics to be frozen into the lowest single-particle eigenstates
in the z-direction. We can then project to the corresponding low-energy subspace by truncating
the expansion (7) to the c = 0 term. In the y-direction, the double well V⊥(y, t) gives rise to more
states in the low-energy sector than just the ground state. We therefore need to retain multiple
single-particle eigenstates Φb(y, t). These wave functions are explicitly time-dependent eigenstates
of the double well operator D̂y(t) from Eq. (6), with eigenvalues εa(t). If these eigenvalues show
a gap above energy εa−1(t) that is large compared to all other energy scales in the problem for
all times, the expansion (7) can be truncated at a = a. The resulting projection of the 3D field
operator to the low-energy sector then reads

Ψ̂( ~r ) ≈ Ξ0(z)

a−1∑

a=0

Φa(y, t)ψ̂a(x, t) , (10)

where we have defined

ψ̂a(x, t) ≡ ˆ̃
ψa,0(x, t) , (11)

which satisfies [ψ̂a(x, t), ψ̂
†
b(x
′, t)] = δabδ(x− x′) for all times. When starting from the 3D Hamil-

tonian (5), inserting the projected operator (10) and integrating in the y, z-directions leads to a
model for a species of bosons,

H
(a)
1D (t) =

a−1∑

a=0

∫
dx ψ̂†a(x, t)

[
− 1

2m

∂2

∂x2
+
mω2

2
x2 + εa(t)

]
ψ̂a(x, t)

+

∫
dx

a−1∑

a,b,c,d=0

Γabcd(t) ψ̂
†
a(x, t)ψ̂

†
b(x, t)ψ̂c(x, t)ψ̂d(x, t) , (12)

with coupling constants that are given by overlap tensors

Γabcd(t) = as

√
2πωz
m

∫
dy Φ∗a(y, t)Φ

∗
b(y, t)Φc(y, t)Φd(y, t) . (13)

Corrections to (12) will be negligible as long as the following conditions hold:

• Interactions are small. This holds by construction.

• The initial occupation numbers Tr[ρ(0) b†a,b,c(0)ba,b,c(0)], where ρ(0) is the density matrix at
time t = 0, are very small for c > 0 and b ≥ ā. We ensure that this is the case by working
with an initial thermal density matrix at a sufficiently low energy density compared to εā(t).
Experimentally this condition could be fulfilled by making V⊥(y, t) sufficiently tight.

• The transverse potential is changed slowly enough so that Tr[ρ(t) b†a,b,c(t)ba,b,c(t)] remain very
small for c > 0 and b ≥ ā. This provides a (rather obvious) restriction on the experimental
protocol.

In equilibrium it is straightforward to evaluate the corrections to (12) and we outline the necessary
steps in Appendix A. Perturbatively integrating out the high-energy channels above some cutoff
generates all two, four and six boson interactions between the low-energy channels allowed by
particle conservation. The interactions are very slightly retarded and non-local in space (the
corresponding scales are set by the cut-off energy) but are negligible compared to the terms retained
in (12). An analogous analysis can be in principle be carried out in the time-dependent situation of
interest here, but as we don’t require the corrections we do not follow this line of enquiry further.
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2.1 Connection to previous literature

For time-independent double-well potentials with a very high tunnel-barrier, the lowest two single-
particle eigenstates Φ0,1(y) are approximately given by symmetric and anti-symmetric combina-
tions of wave packets gL,R(y) that are localized in the left and right wells

Φ0,1(y) = (gR(y)± gL(y))/
√

2 . (14)

We can then define left- and right-localized one-dimensional Bose operators ψ̂L,R ≈ (ψ̂0± ψ̂1)/
√

2.
Inserting these definitions into Eq. (4) with a = 2 leads to the model

H1D → HLL

[
ψ̂L

]
+HLL

[
ψ̂R

]
− ε1 − ε0

2

∫ L

0
dx
(
ψ̂†L(x)ψ̂R(x) + h.c.

)
, (15)

of two Lieb-Liniger Hamiltonians

HLL

[
ψ̂
]

=

∫
dx ψ̂†(x)

[
− 1

2m

∂2

∂x2
+
mω2

2
x2

]
ψ̂(x) + g

∫
dx ψ̂†(x)ψ̂†(x)ψ̂(x)ψ̂(x) , (16)

connected by a tunnel-coupling term. The coupling constant of the Lieb-Liniger model is given by

g =

∫
dx g∗L(x)g∗L(x)gL(x)gL(x) =

∫
dx g∗R(x)g∗R(x)gR(x)gR(x) . (17)

All other overlap tensors involving four combinations of gL,R(x) vanish if the two wells are separated
by a high tunnel barrier, so that the only coupling between the left and right gases is given by
the tunneling term proportional to (ε1 − ε0)/2. Eq. (15) is the Hamiltonian that is studied in
most of the literature, following Ref. [45]. In this paper, we will instead focus on the more general
Hamiltonian (12).

2.2 Three channel model

So far we have kept the number ā of one-dimensional channels in our theory arbitrary. In practice
it turns out to be sufficient to work with ā = 3 in order to accommodate the experimental situation
realized in the Vienna group. The trapping geometries in these experiments are chosen so as to
strongly suppress the occupation of the second excited level (a = 2). By including this suppressed
level in our simulations and staying close to the experimental energy scales and trapping frequencies
we can therefore ensure that we are in a regime where the occupation of the (time-dependent) third
single-particle excited level can be safely neglected. The energy scales relevant to this reasoning
are displayed in Fig. 1. This figure shows that at t = 0, the single-particle energy of the third
level, which is neglected in our simulations, differs from the single-particle ground state energy by
ε3(0) − ε0(0) ≈ 2.5 kBT . This means that it is reasonable to neglect the occupations of the third
and higher levels at t = 0. For later times, there are two requirements to be able to keep neglecting
these levels. Firstly, we rely on the interactions being weak, and secondly, we need the change in
V⊥(y, t) to be slow enough.

3 Measurements and Green’s functions

3.1 Measured operator in time of flight

The Bose gases in the double well can be probed through matter-wave interferometry [31, 74, 75].
After a tunable time t0 spent in the double well, the Bose gases are released by turning off the
trapping potential. This causes them to expand and overlap in three-dimensional space, and
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(ε1(t)− ε0(t))/kBT
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(ε3(t)− ε0(t))/kBT

(ε4(t)− ε0(t))/kBT

Figure 1: Time-dependent energies εj(t) of the lowest eigenstates of the transverse single-particle
Hamiltonian (6), using the double well potential defined in and below Eq. (3). The energies are
displayed via their difference with ε0(t), in units of kBT , with T = 60 nK.

eventually their combined density is measured by absorption imagining after a “time of flight” t1.
The theoretical description of this measurement process in the framework of a low-energy theory
description is described in detail in Ref. [38] in the simpler case when two transverse single-particle
states, given by Gaussian wave packets in the left and right wells respectively, are kept in the
projection to an effectively one-dimensional model. We will briefly recapitulate this construction,
before expanding it to the case of more than two levels that are not perfectly localized in the wells.
The absorption imagining can be thought of as a von-Neumann measurement of the boson density
at time t0 + t1

ρ̂tof(r) = Ψ̂†(r)Ψ̂(r) . (18)

The density operator is diagonal in the position eigenbasis {|r1, . . . , rN 〉} which implies that the
measurement outcomes are particle positions

∑N
j=1 δ(r− rj) and the associated probability distri-

bution is
P (r1, . . . , rN ; t0 + t1) = 〈r1, . . . , rN |%(t0 + t1)|r1, . . . , rN 〉 , (19)

where %(t0 +t1) is the density matrix of the system at time t0 +t1. The moments of this probability
distribution are

Mn(r1, . . . , rn) = Tr
[
%(t0 + t1) Ô†(r1, . . . , rn)Ô(r1, . . . , rn)

]
,

Ô(r1, . . . , rn) = Ψ̂(r1) . . . Ψ̂(rn) . (20)

The density matrix at time t is given by

%(t) = U(t, 0)%(0)U†(t, 0) , U(t, t0) = T exp
(
− i
∫ t

t0

dt′H3D(t′)
)
. (21)

In the Heisenberg picture we have

Mn(r1, . . . , rN ) = Tr

[
%(0)

(
Ô(H)(r1, . . . , rn, t0 + t1)

)†
Ô(H)(r1, . . . , rn, t0 + t1)

]
, (22)

where the Heisenberg-picture field operators are given by

Ψ̂(H)(r, t) = U†(t, 0)Ψ̂(H)(r, 0)U(t, 0) . (23)

The approach of Ref. [75] is to relate the quantum state of the system after time-of-flight to the
state at the time of trap release by assuming that interactions are negligible during the time of
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flight. This is a reasonable assumption since the gas, which is no longer constrained and expands
in 3D, very quickly becomes highly dilute. The free, transverse expansion is then effectuated by
the evolution operator

U(t1 + t0, t0) ≈ e−it1(P̂ 2
x+P̂ 2

y+P̂ 2
z )/2m . (24)

This allows us to relate the Heisenberg picture field operators at times t0 + t1 and t0

Ψ̂(H)(r, t0 + t1) =

∫
d3r′ G0(r− r′, t1) Ψ̂(H)(r′, t0) , (25)

where G0(r, t) is the Green’s function of the non-interacting boson Hamiltonian describing the
free expansion. Now we exploit the fact that the initial density matrix ρ(0) involves only the
low-energy sector, i.e. states in which only very few transverse modes are occupied. This allows us
to project the field operators Ψ̂(H)(r, t0) and concomitantly the operators Ô(H)(r1, . . . , rn, t0 + t1)
in the expression (22) for the moments Mn to the low-energy description

Ψ̂(H)(r, t0) ≈ Ξ0(z)
∑

a∈S
ga(y, t)ψ̂

(H)
a (x, t) , (26)

where S is some set of indices labeling single-particle states ga(y, t) in the transverse direction.

The equations of motion of the Heisenberg picture operators ψ̂
(H)
a (x, t) are derived below in section

4. In [38], this set S = {L,R} refers to single-particle states with no explicit time-dependence that
are localized in the left and right wells, respectively. In the following we will focus on the average
over many absorption images

M1(r) = Tr
[
%(0) ρ̂

(H)
tof (r, t0 + t1)

]
. (27)

Carrying out the convolutions we obtain

ρ̂
(H)
tof (r, t0 + t1) ≈ |Ξ0(z, t1)|2

∑

i,j∈S
Aij(y, t0, t1)

∫
dx′dx̃G∗(x− x′, t1)G(x− x̃, t1)

×
(
ψ̂

(H)
i (x′, t0)

)†
ψ̂

(H)
j (x̃, t0) . (28)

Here we have defined

Aij(y, t0, t1) = g∗i (y, t0, t1)gj(y, t0, t1), i, j ∈ S ,

gj(y, t0, t1) ≡
∫
dy′

√
m

2πit1
exp

(
i
m

2t1
(y − y′)2

)
gj(y

′, t0) , (29)

and an analogous expression is obtained for Ξ0(z). The higher moments Mn>1 can be related to
expectation values in the low-energy description in the same way.

In many works [44, 75] it is assumed that the longitudinal expansion has little effect (even
though it can be straightforwardly taken into account in a low-energy field theory framework in
some cases [38]). This assumption is based on the state at the time of trap release: since the
gas is spatially very constrained in the transverse directions, its momentum distribution in these
directions is much broader than in the longitudinal direction. As a result, the time scale for
expansion in the longitudinal direction far exceeds that for the transverse directions. If the time of
flight t1 is short, this suggests the approximation of neglecting longitudinal expansion altogether,
replacing the free evolution operator (24) by

U(t1 + t0; t0) ≈ e−it1(P̂ 2
y+P̂ 2

z )/2m . (30)

8
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This results in a simplified expression for the operator ρ̂
(H)
tof

ρ̂
(H)
tof (r, t1, t0) ≈ |Ξ0(z, t1)|2

∑

i,j∈S
Aij(y, t0, t1)

(
ψ̂

(H)
i (x, t0)

)†
ψ̂

(H)
j (x, t0) . (31)

We will use this approximate expression in much of the remainder of this work.

3.2 Green’s functions of interest

In what follows, we will derive equations of motion for the Green’s functions of the 1D Bose fields,
defined as

Cij(x, x
′, t) ≡ 〈ψ̂†i (x, t)ψ̂j(x′, t)〉 . (32)

Solving these numerically gives us access to the expectation value of ρ̂
(H)
tof (r, t0 + t1) as well as

averages of Fourier-transformed quantities like (41). In order to connect to the experimental
works [10,14,15] we have to account for the fact that the data extracted from absorption imaging
has been analyzed in terms of the number/phase representation for an effective two-channel model.
Denoting the corresponding Bose field operators by ψ̂L,R we can define averages of the relative
density and phase via

ϕ(x, t) = Arg 〈ψ̂†L(x, t)ψ̂R(x, t)〉 ,
n(x, t) = 〈ψ̂†L(x, t)ψ̂L(x, t)〉 − 〈ψ̂†R(x, t)ψ̂R(x, t)〉 . (33)

In order to connect to these quantities we need to express ψ̂L,R in terms of operators in our three-
channel model. As interactions are weak this transformation can be taken to be linear. To be
specific let us work with an effective three-channel model, i.e. ā = 3. We then carry out a change
of basis such that

ψ̂α(x, t) =

2∑

j=0

c
(α)
j (t)ψ̂j(x, t), α = L,R, e. (34)

We have introduced a third, “excited” boson species ψ̂e to be able to span the full space of 3
transverse levels. The set of labels used in Eq. (26) thus becomes S = {L,R, e}, so that Eq. (26)
is equivalent to Eq. (10) under the identifications

Φj(y, t) =
∑

α=L,R,e

c
(α)
j (t)gα(y, t), j = 0, 1, 2. (35)

The transformation matrices c
(α)
j (t) are chosen with orthonormal rows and columns, so that they

translate between the basis of single-particle eigenstates Φ0,1,2(y, t) of the transverse operator D̂y(t)
and another basis that contains left- and right-localized wave functions gL,R(y, t) as well es a third
wave function, ge(y, t).

In [38], the wave functions gL,R(y, t) were simply given by (anti)symmetric combinations of Φ0

and Φ1. However, the presence of the third wave function ge(y, t) now creates ambiguity, meaning

that the c
(α)
j (t) can be defined in multiple ways. We will give two options here.

Choice 1: Following Ref. [38], we simply choose



c

(L)
0 c

(R)
0 c

(e)
0

c
(L)
1 c

(R)
1 c

(e)
1

c
(L)
2 c

(R)
2 c

(e)
2


 (t) =

1√
2




1 1 0
1 −1 0

0 0
√

2


 ∀ t . (36)

9



SciPost Physics Submission

Choice 2: Since the double well is centered around y = 0, we find the vector c
(L)
j (t) by minimizing

∫∞
0 dy |gL(y, t)|2 subject to the constraint

∑
j |c

(L)
j (t)|2 = 1. This fixes gL(y, t) as the single-particle

wave function in the space spanned by Φ0,1,2(y, t) with the smallest possible probability for the

particle to be found at y > 0, i.e. in the right well. Mutatis mutandis for c
(R)
j (t). The third

vector c
(e)
j (t) is then defined as the orthogonal complement of the vectors c

(L)
j (t) and c

(R)
j (t). The

experimentally relevant parameters for the double well potential are given below Eq. (3), with
0.5 ≤ I ≤ 0.6 for the oscillation stage. For most of these values choices 1 and 2 lead to very similar

values of c
(j)
j (t) and for I ≥ 0.55, the values are practically indistinguishable. We will therefore

present results for the much simpler Choice 1, and comment on the changes that occur for Choice
2 wherever they are relevant.

Using Choice 1 and Eq. (33), the average relative density and phase (33) are given by

ϕ(x, t) ≡ ArgCLR(x, x, t)

= Arg
1

2
[C00(x, x, t)− C01(x, x, t) + C∗01(x, x, t)− C11(x, x, t)] , (37)

n(x, t) ≡ 〈n̂(x, t)〉 = CLL(x, x, t)− CRR(x, x, t) = 2ReC01(x, x) . (38)

Another quantity of experimental interest is the mean interference contrast, which we define as

C(x, t) =
2 |CLR(x, x, t)|

|CLL(x, x, t) + CRR(x, x, t)| . (39)

3.3 Experimental data analysis and its relation to Green’s functions

As discussed above the average over many absorption images gives access to

〈ρ̂(H)
tof (r, t1 + t0)〉 ≈ |Ξ0(z, t1)|2

∑

i,j∈{L,R,e}

Aij(y, t0, t1)
〈 (
ψ̂

(H)
i (x, t0)

)†
ψ̂

(H)
j (x, t0)

〉
(40)

in the three-channel model. We refer to Eq. (28) for the case when longitudinal expansion is taken
into account. We will now show that the phase ϕ(x, t0) of interest in Eq. (37) can be extracted
from M1(r) by taking a suitable partial Fourier transform

Fq
[
〈ρ̂(H)

tof (r, t1 + t0)〉
]

=

∫
dy e−iqy〈ρ̂(H)

tof (r, t1 + t0)〉 . (41)

In the simpler case of gases whose transverse single-particle states are given by Gaussian wave
packets in the left and right wells respectively the choice q = md/t1, where d is the distance
between the wells’ minima, gives access to the relative phase, see e.g. Ref. [38].

It is important to check how this situation is affected by the presence of the third channel and
by the fact that the localized single-particle states are not given by perfect Gaussian wave packets.
Studying the amplitudes Aij numerically for a given double well potential, we can establish which
terms in (40) contribute at the wave vector Q = md/t1 for a realistic potential in the three channel
model. As shown in Fig. 2, ALR has a marked peak in Fourier space around q = md/t1. The
diagonal terms ∼ Aii only contribute around q ≈ 0. The terms ∼ ALe and ∼ ARe do contribute at
higher wave vectors, but their Fourier transforms both become very small around |q| = md/t1 for
all values of the double well (3) we consider. Moreover, the occupation of the “excited” transverse
wave function ge(y, t) is much smaller than that of the wave functions gL,R(y, t). For these reasons,
the Fourier transform (41) at q = md/t1 is well approximated by (in the sense of taking expectation
values of powers of the operator in states that belong to the low-energy subspace)

Fq
[
〈ρ̂(H)

tof (r, t1 + t0)〉
] ∣∣∣∣
q=md/t1

∝ CLR(x, x, t0) , (42)

10
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whose argument then provides the relative phase of interest

ϕ(x, t0) = ArgF (y)
q

[〈
ρ̂

(H)
tof (r, t1, t0)

〉] ∣∣∣∣
q=md/t1

≈ ArgCLR(x, x, t0) . (43)

If on the other hand one works with a trapping potential where ALe and ARe do not have small

1.5 1.0 0.5 0.0 0.5 1.0 1.5
q

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
q(

)
| q(g*

LgR)|
| q(g*

Lge)|
| q(g*

LgL + g*
RgR)|

q = md/t1

Figure 2: Fourier transformed products of single-particle wave functions after time-of-flight
gL,R(y, t1) occurring in Eq. (31), for the parameters given below Eq. 3 with I = 0.5. The cross
term g∗L(y, t1)gR(y, t1) (green) shows a peak around q = md/t1, whereas g∗L(y, t1)ge(y, t1) (cyan)
becomes small there. The same can be said about the other cross terms involving ge. This allows
to extract ϕa(x) using Eq. (43).

Fourier components at q = md/t1 and if the occupation of ge(y, t) is not small, the identification
(42) might fail. Another likely scenario is that the value of |q| = md/t1 cannot be established to
sufficient precision. In such cases, Eq. (40) shows how different boson bilinears contribute to the
measured density after time-of-flight, using numerical evaluations of the amplitudes Aij(y, t0, t1).

Our way of extracting the relative phase from the average over many absorption images should
be contrasted to the way in which the experiments [10,14,15] have been analyzed. In these works
a value for a relative phase φ(x, t0) is extracted for each (typical) absorption image by fitting the
observed density profile to an expression of the form

ρtof(r, t1 + t0) ≈ |f(y, z, t1)|2
(
1 + cos

(
φ(x, t0) + ydm/t1

))
, (44)

where f(y, z, t1) is a Gaussian envelope. The data is then analyzed in terms of the average φ(x, t0)
over many shots. An interesting open question is to establish the precise relation between φ(x, t0)
and ϕ(x, t0) extracted from the average over many images.

4 Hartree–Fock time evolution

Having established how Green’s functions are related to averages over experimental measurements,
we now consider their time evolution. We do so in the Heisenberg picture, indicated with a
superscript (H), and consider the equations of motion for the 1D field operators,

i
d

dt
ψ̂(H)
a (x, t) =

[
ψ̂(H)
a (x, t), H

(a,H)
1D (t)

]
+ iU †(t)

∂

∂t
ψ̂a(x, t)U(t) . (45)

11
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Here U(t) is the time-evolution operator

U(t) = T exp
(
− i
∫ t

0
dt′H

(ā)
1D (t′)

)
, (46)

and the additional, explicit time-derivative is nonzero due to the time-dependent definition of
ψ̂a(x, t), via the corresponding eigenstates Φa(y, t) of the transverse potential V⊥(y, t). In order to
work out the last term on the right hand side of (45) we revert to the expansion of the Bose field
into channels without projection (7)

0 =
∂Ψ̂( ~r )

∂t
=

∂

∂t

∑

b,c

Φb(y, t)Ξc(z)
ˆ̃
ψb,c(x, t). (47)

Using the orthonormality of the single-particle wave functions we obtain

∂

∂t
ˆ̃
ψbc(x, t) =

∞∑

d=0

B∗cd(t)
ˆ̃
ψcd(x, t), Bab(t) = −

∫
dyΦa(y, t)Φ̇

∗
b(y, t) . (48)

Using our assumption that the transverse potential is varying sufficiently slowly in time we can
project these equations to our model with ā transverse channels

U †(t)
∂

∂t
ψ̂a(x, t)U(t) ≈

ā−1∑

b=0

B∗ab(t)ψ̂
(H)
b (x, t). (49)

Physically, this term in the equation of motion (45) keeps track of transitions a → b to different
levels due to time-dependence in V⊥(y, t). In what follows, we will drop the superscript (H) and
fix a = 3.

We now make the Hartree–Fock approximation for the interaction term,

ψ̂†a(x, t)ψ̂
†
b(x, t)ψ̂c(x, t)ψ̂d(x, t)→

Cac(x, x, t)ψ̂
†
b(x, t)ψ̂d(x, t) + Cbd(x, x, t)ψ̂

†
a(x, t)ψ̂c(x, t) (50)

+Cad(x, x, t)ψ̂
†
b(x, t)ψ̂c(x, t) + Cbc(x, x, t)ψ̂

†
a(x, t)ψ̂d(x, t) .

Using the symmetry of Γabcd(t) the truncated Heisenberg equation (45) then yields the self-
consistent equations

d

dt
Cab(x, x

′, t) = i
(
D̂x − D̂x′ + εa(t)− εb(t)

)
Cab(x, x

′, t)

+ 4iG∗ac(x, t)Ccb(x, x
′, t)− 4iGbc(x

′, t)Cac(x, x
′, t) , (51)

describing the time evolution of the Green’s functions of interest, namely Cab(x, x
′, t) with a, b =

0, . . . , a− 1. The HF approximation is equivalent to neglecting all higher connected n-point func-
tions other than these Green’s functions. The self-consistency of the HF scheme is implemented
by the effective potentials

Gbc(x, t) =

2∑

a,d=0

Γabcd(t) Cad(x, x, t) +
i

4
B∗bc(t) , (52)

with B(t) given by Eq. (49).
The system of Eqs. (51) can be solved numerically. In our implementation, we use a mixed

implicit-explicit method for the propagation in time, employing a Crank–Nicholson scheme for the
terms linear in Green’s functions and a first order forward Euler method for the nonlinear terms.
We work on a 2D square spatial grid of linear size 250µm, using 1000 × 1000 grid points and
approximating spatial derivatives by fourth order finite differences. We have checked convergence
with respect to the grid size as well as the time step, which is 0.015 ms in the figures presented
below. At each time step during the preparation sequence, the matrix B(t) given by Eq. (49) is
computed for the lowest a eigenfunctions corresponding to the potential V⊥(y, t).

12
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4.1 Quality of the SCHF approximation in equilibrium

An important question is how well we expect the HF approximation to work. It is well known [79]
that at sufficiently low temperatures, 1D Bose gases form a quasi-condensate which is not well
captured in the HF approximation. Specifically, the 1D boson density develops a central density
peak which is underestimated by HF calculations. To make this precise we consider the simpler
case of the Lieb–Liniger model in a harmonic trap V‖(x), where we can compare finite-temperature
HF computations to results using Yang–Yang thermodynamics combined with the Local Density
Approximation (YY+LDA). The LDA method is expected to provide highly accurate results in the
appropriate parameter regime and its application to the Lieb–Liniger model have been described
in detail in [78]. It has been successfully tested in experimental settings [80] and we will use it to
compute the quantities

∆1 =

∫
dx
(
〈ψ†(x)ψ(x)〉YY+LDA − 〈ψ†(x)ψ(x)〉HF

)
/NHF , (53)

∆2 =

∫
dx

(√
〈(ψ†(x))

2
(ψ(x))2〉

YY+LDA
−
√
〈(ψ†(x))

2
(ψ(x))2〉

HF

)
/NHF ,

with NHF =
∫
dx 〈ψ†(x)ψ(x)〉HF. The expectation values 〈·〉HF are computed by the methods

of Sec. 5.2 and using Wick’s theorem. The expectation values 〈·〉YY+LDA, on the other hand, are
computed by numerically solving the thermodynamic Bethe Ansatz equations at finite temperature
[81], using a chemical potential that is slowly varying in space µ(x) = µ0 − V‖(x). For ∆2, the
Hellman-Feynman theorem must be used in addition [78]. The criterion for LDA to be applicable
[78] can be checked a posteriori, and is found to be satisfied everywhere away from the boundaries
of the gas for our parameters.

A comparison between HF and YY+LDA for density profiles ρ0 = 〈ψ†(x)ψ(x)〉 of a single
gas is presented in Fig. 3. We see that while the HF approximation works quite well overall, it
does underestimate the central peak. This failure occurs above a certain particle number, and
the number where this cross-over occurs decreases with temperature. We will therefore work at a

(a)
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x(µm)

0.0

0.2
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ρ
0
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)
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Figure 3: Comparison between density profiles of a single gas in a harmonic longitudinal potential
with ωx = 2π · 12.5 Hz, computed in Yang–Yang thermodynamics with LDA (red), versus HF
(blue), at T = 60 nK. For a low particle number (panel (a), N = 99), the correspondence is good,
whereas for N = 986 (b), the central density peak is underestimated in HF.

relatively high temperature of T = 60 nK in what follows. To make sure our particle number does
not exceed the cross-over where HF fails, we have plotted ∆1,2 for a range of particle numbers and
longitudinal trapping frequencies in Fig. 4. This allows to monitor the quality of HF in the initial
state for the parameters of our simulation. In particular, in the regime where ∆1 is small the value
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of ∆2 provides an indication of the strength of connected 4-point correlations, which vanish in HF.
For T = 60 nK and N . 200, Fig. 4(b) shows it to be small. We note that our self-consistent
Hartree–Fock results can in principle be improved upon for weak interactions and small particle
numbers using only the self-consistently determined Green’s function 〈ψ†(x)ψ(x)〉HF, combined
with perturbation theory. Rather than simply using Wick’s theorem to compute the expectation
values 〈·〉HF occurring Eq. (53) in terms of 〈ψ†(x)ψ(x)〉HF, one could include perturbative correc-
tions to this results, working in powers of the interaction strength and performing contractions
using the self-consistently determined Green’s function 〈ψ†(x)ψ(x)〉HF. We have checked the first
order term and observed that it brings the result closer to the YY+LDA result for small particle
numbers (N . 300), whereas the correction starts to diverge for larger particle numbers.

25 50 100 200 400 800
N

-0.2

0.0

0.2 ∆1

∆2

Figure 4: Errors ∆1,2 between HF and YY+LDA from Eq. (53) for T = 60 K. The colors correspond
to ω‖ = 2π · 7.5 Hz (green), ω‖ = 2π · 10 Hz (cyan), ω‖ = 2π · 12.5 Hz (blue) and ω‖ = 2π · 15 Hz
(red).

5 Initial state and gas splitting

5.1 Preparation sequence

We now have an equation of motion at hand for the relevant Green’s functions that enter ob-
servables. Starting from an appropriate initial state, we can thus simulate the effect of the gas
splitting, phase imprinting and free evolution performed in the experiments [10,14,15]. We imple-
ment these manipulations through the functions I(t) and F (t) which are present in the definition
(3) of V⊥(y, t). We distinguish a number of stages:

1. A single gas is prepared in a thermal state. The transverse confining potential is a single
well with a flat bottom, given by (3) with I = Ic and F = 0.

2. We raise the double well barrier over some time tr by increasing I linearly from Ic to Imax.
At t = tr we are left with a split gas and a high tunnel barrier.

3. We raise one of the wells over a time timp by increasing F (t) linearly from 0 to Fmax > 0.
Physically, this imprints a phase difference between the wells.

4. We remove the imbalance between the wells by tuning F (t) back down to zero in time timp.

5. Finally we lower the tunnel barrier somewhat to enable tunneling on the relevant time scales,
by decreasing I from Imax to If in a time tlow.
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In order to achieve these steps, we choose the functions I(t) and F (t) from Eq. (3) as

I(t) =





Ic + (Imax − Ic)
t
tr
, if t < tr ,

Imax , if tr ≤ t < tr + 2timp ,

Imax + (If − Imax)
t−tr−2timp

tlow
, if tr + 2timp ≤ t < tr + 2timp + tlow ,

If , else ,

(54)

and

F (t) =





0 , if t < tr ,
t−tr
timp

, if tr ≤ t < tr + timp ,

1− t−tr−timp

timp
, if tr + timp ≤ t < tr + 2timp ,

0 , if tr + 2timp ≤ t ,

(55)

with tr = 5 ms, timp = tlow = 2 ms, Ic = 0.4, Imax = 0.58 and If = 0.5.

5.2 Numerical determination of the initial state

At stage 1, the system is initialized in a thermal state of the Hamiltonian (12), subject to the HF
condition (50). This state is determined as follows. We expand the field operators as

ψ̂a(x) =
∑

a,α χα(x)Φa(y)b̂aα , (56)

where χα are real eigenfunctions of the harmonic oscillator potential in the x-direction, and we
keep nm + 1 such modes. The Hamiltonian (12) subject to (50) can then be written as

H
(a)
1D (0) =

a−1∑

a,b=0

nm∑

α,β=0

haα,bβ b̂
†
aαb̂bβ, (57)

with the tensors

haα,bβ = δa,bδα,β [ωx (α+ 1/2) + εa(0)] + 4

a−1∑

c,d=0

nm∑

γ,δ=0

Γabcd(0)Γαβγδ

〈
b̂†cγ b̂dδ

〉
,

Γαβγδ =

∫
dxχα(x)χβ(x)χγ(x)χδ(x) . (58)

Reshaping haα,bβ and diagonalizing the resulting matrix numerically yields a canonical transfor-
mation

b̂aα =
∑

bβ Paα,bβ .ĉbβ (59)

The new creation and annihilation operators diagonalize the HamiltonianH
(a)
1D (0) =

∑
aαEaαĉ

†
aαĉaα.

Assuming the ĉ’s to have thermal occupation numbers with respect to this Hamiltonian then gives

〈
b̂†cγ b̂dδ

〉
=
∑

aα

P †cγ,aαPaα,dδ

e(Eaα−µ)/kBT − 1
, (60)

which combined with (58) forms a self-consistent system of equations. We proceed by iteration:

starting from an initial guess
〈
b̂†cγ b̂dδ

〉
0
, which we take to be thermal with respect to the non-

interacting Hamiltonian, we diagonalize haα,bβ and compute (60) with the resulting P and E.
Reinserting into (58) leads to the next iteration, and we repeat until convergence is reached.
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A major hurdle in the above procedure is presented by the overlap tensor Γαβγδ. As we use
nm = 1000 modes, this tensor is too large to store numerically. However, using known identities
for Hermite polynomials [77], we can write (58) as

Γαβγδ =
√
mωx

2nm∑

p=0

ApαβA
p
γδ , (61)

Apαβ =

min(α,β)∑

m=0

Bpm
αβ , (62)

where the tensors Bpm
αβ are 0 if α+ β − 2m− p is odd and/or negative, and otherwise given by

Bpm
αβ =

m!√
α!β!

2m√
2α+β

(
α

m

)(
β

m

)
(α+ β − 2m)! (−1/2)

1
2

(α+β−2m−p)
√
p! ((α+ β − 2m− p)/2)!

. (63)

The considerably smaller tensors Apαβ can now be separately contracted with other terms in (58),
leading to a great memory gain. Even so, evaluating and storing the tensors (63) is still a very
slow process for nm = 1000. We therefore make a simplifying assumption: we set

Apαβ → 0 if |α− β| > Λ (64)

for some Λ, which we choose to be 40 in our numerics. To see how this is justified, we note that
the Hamiltonian (57)-(58) implies the relation

[ωx (α+ 1/2) + εa(0)− Eaα]Paα,aα =

= 4
∑

b,c,d

∑

β,γ,δ

Γabcd(0)Γαβγδ
∑

cγ

P †cγ,cγPcγ,dδ

e(Eaα−µ)/kBT − 1
Pbβ,aα

(65)

on the canonical transformations P for all a, a, α, α. The assumption (64) is therefore valid if the
Paα,bβ become very small whenever |α − β| & Λ. This is reasonable since the weak interactions
are not expected to couple harmonic oscillator modes that have widely different numbers of nodes.
We check a posteriory that this assumption is consistent and well within the range set by Λ. We
have also checked the assumption explicitly for the case of nm = 400. Finally, we have verified that
the Green’s functions resulting from the above procedure remain time-independent when they are
propagated in time under (51) with a time-independent potential V⊥(y, 0).

The above procedure yields a set of Green’s functions Cij(x, y) which characterize the state
of the system at t = 0. In the central region of the trap, with |x| < 3µm, we find exponential
decay of the Green’s functions Cii(x,−x) for the parameters presented in Sec. 6.1. The associated
correlation length is roughly 0.5µm.

6 Josephson oscillations

We are now in a position to model the full experimental sequence. To do so, we first fix the values
for various constants and parameters.

6.1 Experimental parameters

The transverse potential V⊥(y, t) is described by Eq. (3) and its time evolution follows Sec. 5.1
with tr = 4 ms, timp = 2 ms and tlow = 2 ms. This means that after a time tr +2timp + tlow = 11 ms,
the confining potential becomes time-independent, and the 1D field operators lose their explicit
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time-dependence as a result. We consider a temperature of 60 nK and take the transverse confining
potential in the z-direction to be harmonic with ωz = 2π ·1.7 kHz. The s-wave scattering length and
atomic mass for the experimental system of 87Rb atoms [15] are as ≈ 5.2 nm and m ≈ 1.4 ·10−25kg,
respectively. This fixes all parameters in the problem.

6.2 Assessment of time-dependent truncation errors in a toy model

In our full model, the initial thermal state contains three different transverse levels which mutually
interact. An example of the resulting initial density profiles is given in Fig. 5(a), with occupation
of the higher levels being suppressed as expected thanks to their larger energy cost. For t > 0, the
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Figure 5: (a) Initial density profiles of levels 0, 1, 2 at T = 60 nK, ωx = 2π · 12.5 Hz and N = 259.

(b) Time evolution of Green’s functions Cii = 〈ψ̂†i ψ̂i〉 for the quantum mechanical problem of
noninteracting bosons in a double well. This corresponds to the PDE (51) in the absence of x-
dependence and with Γijkl = 0. We compare the problem with truncation index a = 3 (as in the
full model, solid curves) to results for a = 15 (dotted curves). The latter is chosen by looking for
convergence in a. The initial conditions match the peak densities from panel (a) at t = 0 and a
vertical log-scale is chosen to highlight changes in C22.

occupations can change in a way that is both due to interactions and to the non-adiabaticity of
the deformation of V⊥(y, t). The latter is modelled by the additional term (49) in the equations
of motion (45), which are truncated at a = a = 3. To assess the error made in this truncation, we
briefly consider the quantum mechanical problem of bosons in a double well V⊥(y, t). We discard
the x-direction and set interactions to zero, so that the problem is given by Eq. (51) in the absence
of x-dependence and with Γijkl = 0. This problem can be integrated numerically for any value of
the truncation index a. Results for a = 3 (as we use in the full model) and a = 15 are compared
in Fig. 5(b). The lines remain close, showing that the truncation error has a very small effect on
transitions induced by the time-dependence of V⊥(y, t).

6.3 Characterization of the quantum state after the preparation sequence

In our Hartree–Fock approximation, the state of the system at time t is fully determined by the
Green’s functions Cij(x, y, t), with i, j = 0, . . . , a− 1. Having these at hand thus allows us to give
a full, quantitative description of the state of the system after the splitting and phase imprinting
procedure, at the level of Hartree–Fock. This is a major improvement beyond existing, more
phenomenological [67, 68] or approximate [69, 70] methods. As an illustration of the ability of
our method to provide the full Green’s functions, we plot C00(x, y, t) and |C01(x, y, t)| at time
t = tr + 2timp + tlow = 11 ms, that is, after the preparation sequence (see Fig. 6). One sees that
the Green’s functions are strongly peaked around the main diagonal. To further illustrate their
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behavior, it is therefore instructive to plot the diagonal (Fig. 7) and anti-diagonal (Fig. 8) of the
Green’s functions of interest.
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Figure 6: Sample pictures for the Green’s functions at time t = tr+2timp+tlow = 11 ms, that is, after
the preparation sequence. The parameters are as described in Section 6.1, with ωx = 2π · 12.5 Hz,
T = 60 nK and N = 259 particles.
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Figure 7: The spatial diagonal of Green’s functions Cij(x, y) of interest, with the same parameters
as in Fig. 6.

An equivalent way to express the same Green’s functions is through the occupation numbers

M
(ab)
α,β ≡

〈
b̂†aαb̂bβ

〉
, (66)

where b̂†aα creates a particle in instantaneous eigenstate ξα(x)Φa(y, t), as defined via Eq. (56). As
the occupation numbers are strongly suppressed away from the diagonal, we display this diagonal
(Fig. 10) and the anti-diagonal pertaining to α + β = 20 (Fig. 9) for all occupation numbers of
interest.

In a nutshell, the preparation sequence described above provides us with an initial state char-
acterized by very short-ranged correlations. In the centre of the trap the correlation length is
roughly 0.5µm, in line with the correlation length at t = 0.
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Figure 8: The spatial anti-diagonal of Green’s functions Cij(x, y) of interest, with the same pa-
rameters as in Fig. 6.
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Figure 9: Anti-diagonal cut of occupation numbers M
(ab)
α,β , defined in Eq. (66). The cut corresponds

to α = 10 + γ and β = 10− γ. The chosen parameters are the same as in Fig. 6.
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α,β , defined in Eq. (66). The

chosen parameters are the same as in Fig. 6.
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6.4 Damping of density-phase oscillations

By monitoring the observables from Sec. 3, we can follow the relative density and phase between
the gases. As soon as the barrier is lowered (step 5. in Sec. 5), oscillations in the relative density
and phase can be observed, cf. Fig. 11(a), with an offset of a quarter period between the two.
Importantly, the amplitude shows an initial period of damping, for all particle numbers we have
considered. The mean interference contrast C(x, t), on the other hand, shows only very limited
time-dependence. We have fitted the density-phase oscillations at the center of the trap between
t = 11 ms and t = 35 ms to

ϕ(t) = e−t/τ sin (ωt+ ϕ0) , (67)

and extracted the damping time τ and frequency ω. We stress that this is by no means a full
description of the phase oscillations but merely a phenomenological formula to quantify the time
scale τ of the damping observed in the early oscillation stage of the HF simulation. The dependence
of this damping time τ on N is displayed in Fig. 11(b), whereas the dependence of the frequency
ω on N is displayed in Fig. .12. There is a range of values of N for which the damping time as
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Figure 11: (a) oscillations of relative density n and phase ϕ in the center of the trap (x = xc) for
T = 60 K, N = 259 and ωx = 2π · 12.5 Hz. ϕ̃ denotes the relative phase computed using Choice
2 from Sec. 3. The mean interference contrast C(x, t) from Eq. (39) is also plotted, and is almost
constant in time. (b) Big colored dots: damping times extracted from a fit with Eq. (67). Black
dots: damping times reported in [10]. Inset: reproduction of Fig. (4), showing errors ∆1,2 between
HF and YY+LDA from Eq. (53) for T = 60 K.

a function of N is in qualitative agreement with the power-law dependence reported in [10, 14].
For N ∼ 300, the behavior suddenly changes. This transition coincides with the breakdown of HF
in the initial state: around this particle number, the errors ∆1,2 between HF and YY+LDA from
Eq. (53) start to increase to significant values. This is displayed in the inset to Fig. 11(b). We
thus conjecture that the deviation of τ(N) from a power law for N & 300 is due to a breakdown
of HF in that regime.

A number of additional observations can be made.

• After showing a damped oscillatory behaviour up to times of t ≈ 40ms the Josephson oscil-
lations begin to increase again. This effect is not observed in the experiments, which as we
have stressed throughout have been performed in a different parameter regime not accessible
by HF. We note however, that the experiments focused on time scales of below 40 − 60ms,
so that it cannot be ruled out that at later times a reemergence of the oscillations occurs in
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Figure 12: Frequencies ω of density-phase oscillations at the center of the trap as a function of the
number of particles in the gas, N . The frequencies are extracted from a fit with Eq. (67). The
temperature of the initial state is 60 nK.

the experimentally relevant parameter regime as well. It would be interesting to repeat the
experiments for lower particle numbers in order to study this reemergence in detail.

• The frequency of density-phase oscillations is highest at the center xc of the trap in the
x-direction. Away from this point, the frequency is smaller, as displayed in Fig. 13(a). This
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Figure 13: Additional plots for the same parameters as Fig. 11(a). (a) relative phase at the trap
center (x = xc) and at positions x1 = xc + 25µm, x2 = xc + 37.5µm. (b) squared longitudinal size
(68) of left and right gases (red and green) as well as their average (black).

figure also shows that the damping during the first few periods is somewhat weaker at points
away from the trap center, where the gas density is smaller.

• The gas as a whole shows a breathing motion. This can be shown by studying the squared
longitudinal size of the left and right gas profiles,

〈
(x− xc)2

〉
t,i
≡
∫
dxCii(x, x, t) (x− xc)2 /

∫
dxCii(x, x, t), i = L,R . (68)

Fig. 13(b) shows that the squared longitudinal sizes of the left and right gases oscillate out of
phase with one another. On top of this, there is an overall breathing motion of the gas with
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a frequency that depends monotonously on ωx. This breathing gets damped over a timescale
that is large compared to the breathing period of the separate left and right gases.

• The time scale of the breathing motion of the gas is seen to coincide with the time at which
the Josephson oscillations reemerge after the initial oscillatory decay.

It is instructive to investigate the effect on the damping that various aspects of our set-up might
have. First, there are two possible definitions of left- and right-localized bosons ψ̂L,R, as described
in Sec. 3. As mentioned there, we stick to Choice 1 (cf. (36)) by default. Do our results, and
the observed damping in particular, change if we switch to Choice 2? Fig. 11(a) shows results for
Choice 2 in red. The curve is shown to lie very close to the blue curve, which was computed with
Choice 1. This behavior occurred for all performed simulations, showing that the choice between
Choices 1 and 2 does not significantly affect our results.

Second, we can investigate the effect of the second excited level, by turning off the corresponding
couplings (13), setting Γ2jkl = 0 for all permutations of indices. This completely shields the lowest
two levels 0 and 1, and hence the relative density and phase (37), from any effects which level 2
might have. The resulting curves for ϕ fall on top of the curves for nonzero interaction with the
second excited level, as exemplified by Fig. 14(a). We conclude that the effect of the additional
boson species on the damping is negligible.

Third, we can study the effect of the longitudinal potential on the damping. This effect turns
out to be very significant. In Fig.11(b), we see that the τ(N)-curves are shifted upwards as the
strength of the potential is decreased. A weaker potential thus leads to a decrease in the damping
effect. This suggests that in a box potential, the damping effect might be completely absent
(within the SCHF approximation). We have therefore performed the same simulations in a box
potential, by imposing hard wall boundary conditions at x = xc±L/2 on the PDE (51). Fig. 14(b)
shows a representative result, with parameters that are chosen to closely match those of Fig. 11(a).
In particular, the bulk density is chosen to match the peak density from the initial condition of
Fig. 11(a). The result is striking: in the box, no damping is visible at all. In fact, a very slight
increase in the amplitude of the density-phase oscillations is observed.
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Figure 14: (a) the same curve as the phase ϕ from Fig. 11(a), presented alongside the same
quantity, but computed with Γ2jkl = 0 for all permutations of indices. (b) oscillations of relative
density n and phase ϕ for the same parameters as Fig. 11(a) but in a hard-wall box potential of
size L = 80µm. The bulk density is chosen to match the peak density from the initial condition
of Fig. 11(a)
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7 Beyond self-consistent Hartree–Fock

The main attraction of the self-consistent Hartree–Fock approximation is its simplicity. However,
it is not expected to provide a quantitatively accurate account of the non-equilibrium dynamics and
it would be interesting to improve on it. A good way forward would be to implement the second
Born approximation [82] following Refs. [83, 84]. The two significant complications compared to
these works are the absence of translational invariance and the explicit time-dependence of the
Hamiltonian during the splitting and phase imprinting sequence. As a first step we consider the
non-equilibrium evolution after the phase imprinting, which is described by a time-independent
Hamiltonian (12)

H1D =

a−1∑

a=0

∫
dx ψ̂†a(x)

[
− 1

2m

∂2

∂x2
+
mω2

2
x2 + εa

]
ψ̂a(x)

+

∫
dx

a−1∑

a,b,c,d=0

Γabcd ψ̂
†
a(x)ψ̂†b(x)ψ̂c(x)ψ̂d(x) . (69)

We now expand in harmonic oscillator modes notation

ψa(x) =
∑

j

χj(x)ba,j , (70)

and substitute this back into the expression for the Hamiltonian. Introducing a multi-index

k ≡ (a, j) , ba,j = b(k) , (71)

we can rewrite the Hamiltonian in a very compact form

H1D =
∑

k

ε(k)b†(k)b(k) +
∑

k1,k1,k3,k4

V (k1,k2,k3,k4) b†(k1)b†(k2)b(k3)b(k4). (72)

Here we have defined

ε(k) = εa + εj , V (k1,k2,k3,k4) = ΓabcdΓ̄ijkl , (73)

where Γabcd and Γ̄ijkl are given by (13) and (58) respectively and k1 = (a, i), k2 = (b, j), k3 = (c, k)
and k4 = (d, l). The second Born approximation for the single-particle Green’s function

G(k,p, t) = 〈Ψ(t)|c†(k) c(p)|Ψ(t)〉 , (74)

can then be derived by generalizing the steps given in [84,85] to the case at hand. This results in
the following set of equations of motion

∂G(k,p, t)

∂t
= i
(
ε(k)− ε(p)

)
G(k,p, t)

+ 2i
∑

q1,...,q4

Y (k,p; q1, . . . , q4)eitE(q1,...,q4)G(q1, q3, 0)G(q2, q4, 0)

−
∫ t

0
ds

∑

q1,...,q4

K(k,p; q1, . . . , q4|t− s) G(q1, q2, s)G(q3, q4, s)

−
∫ t

0
ds

∑

q1,...,q6

L(k,p; q1, . . . , q6|t− s) G(q1, q2, s)G(q3, q4, s)G(q5, q6, s) , (75)
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where E(k1, . . . ,k4) = ε(k1) + ε(k2)− ε(k3)− ε(k4) and the integral kernels are given by

Y (k,p;k1,k2,k3,k4) = Γ(k1,k2,k3,k)δk4,p + Γ(k1,k2,k,k4)δk3,p

− Γ(p,k2,k3,k4)δk1,k − Γ(k1,p,k3,k4)δk2,k, (76)

L(k,p; q1, . . . , q6|t) = 8
∑

p

X(k,p; q1, q3, q6,p;p, q5, q2, q4|t)

+ 16
∑

p

X(k,p; q1, q3, q2,p;p, q5, q4, q6|t) ,

K(k,p; q1, q2, q3, q4|t) = 8
∑

k1,k2

X(k,p;k1,k2, q2, q4; q1, q3,k1,k2|t) ,

X(k,p; q1, q2, q3, q4;k1,k2,k3,k4) = Γ(q1, q2, q3, q4)eiE(q1,q2,q3,q4)Y (k,p;k1,k2,k3,k4)

− {qj ↔ kj}. (77)

The set of integro-differential equations (75) is clearly much more difficult to solve numerically than
the self-consistent Hartree–Fock equations. The time integration is crucial at short times, while
for sufficiently late times (75) ought to be reducible to a matrix quantum Boltzmann equation [84].
Integrating (75) is beyond the scope of this paper, but some general comments are in order. It is
clear that in order to be able to integrate (75) numerically only a limited number of different k
modes can be retained. Hence one should focus on the case where the longitudinal confinement is
fairly tight. In this (experimentally readily accessible) case interaction effects beyond the SCHF
approximation can be analyzed through (75).

8 Conclusions

In this work we have developed a microscopic theory for the non-equilibrium evolution of bosons
confined by a time-dependent quasi-one-dimensional trapping potential. Using that the transverse
confinement is tight we have projected the full three-dimensional theory to a finite number of
coupled, one-dimensional channels. By employing a time-dependent projection the number of
channels that need to be retained in experimentally relevant parameter regimes is very small:
three channels suffice. We then analyzed the resulting theory by means of a self-consistent time-
dependent Hartree–Fock approximation and showed how the resulting Green’s functions are related
to averages of experimentally measured quantities. The Hartree–Fock approximation is expected
to apply only for sufficiently weak interactions and sufficiently high energy densities. We have
tried to identify a corresponding parameter regime by comparing the SCHF approximation to
results obtained by combining the exact solution of the Lieb-Liniger model with a local density
approximation in the trapping potential. On the basis of these considerations we restricted our
initial states to temperatures of at least 60 nK and to particle numbers below ∼ 200. In this
parameter regime we expect the HF method to work well at least at short times, when the neglected
higher connected n-point functions have not had time to grow substantially.

Our method has a number of attractive features. First, it allows to include the effects of various
longitudinal potentials. Second, it can account for higher excited levels of the transverse confining
potential which are normally neglected. Finally, it allows us to model the gas splitting and phase
imprinting in a fully microscopic way. To our knowledge, such a model has not been presented
before, and one of our main results is a characterization of the quantum state of the system after gas
splitting and phase imprinting in terms of single-particle Green’s functions of the one-dimensional
channels. The second main result of our work is the description of the density-phase oscillations
that ensue after the splitting and phase imprinting. In particular we find that these are damped
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over a few oscillation periods. These damped oscillations agree with recent measurements [10,14,15]
in multiple ways. First, the damping time is inversely related to the number of particles, following
a curve compatible with [10]. Second, the oscillation frequency decreases away from the center of
the trap, as observed in [15]. We have shown that the coupling to the second excited level has very
little effect on the damping. On the other hand, the longitudinal trapping potential is seen to play
a very important role: the weaker the longitudinal trapping frequency, the weaker the damping.
In a hard wall box, no damping is observed at all within our Hartree–Fock approximation. This
suggests that damping effects are suppressed in this geometry for weak interactions. It therefore
would be very interesting to repeat the experiments [10,14,15] in a hard-wall box potential. Such
potentials are indeed under development [12, 16] and our model can serve as a direct theoretical
prediction for such setups.

The main limitation of our method is the way interactions are treated. In order to access the
parameter regime of the experiments [10, 14, 15], in which the particle number was significantly
higher than in our simulations, it is necessary to go beyond the SCHF approximation used here. A
significant improvement would be provided by the second Born approximation discussed in section
7, but this is much harder to implement numerically. Ideally one would want to employ a controlled
approximation scheme like [86,87] for our fully time-dependent problem.

Our work has several implications for attempts to describe Josephson oscillations in tunnel-
coupled one-dimensional Bose gases based on the sine-Gordon model. Firstly, our work suggests
that the experimental protocol for splitting and phase imprinting does not lead to a strong pop-
ulation of higher transverse levels as long as the effective temperature of the initial thermal state
is sufficiently low. This implies that a description in terms of a low-energy effective field theory
based on a sine-Gordon model with appropriate perturbations should apply. There are several
kinds of perturbations that should be considered. A key finding of our work is the strong effect
the longitudinal confining potential has on the damping of Josephson oscillations in the parameter
regime studied here. This suggests that the low-energy field theory calculations based on the sine-
Gordon model [62,64–66] should be extended to account for the longitudinal confinement. This is
certainly possible in the framework of the self-consistent time-dependent harmonic approximation
used in [62,66]. Apart from the confining potential there are other perturbations to the sine-Gordon
model that should be analysed. In particular one should consider the effects of the nonlinearities
that arise from the curvature terms in the kinetic energy of the split Bose gas. These are formally
irrelevant in equilibrium but could well play an important role in non-equilibrium dynamics.

Secondly, our characterization of the “initial state” after splitting and phase imprinting provides
very useful information on what initial states to consider in the sine-Gordon framework. In the first
instance one should consider Gaussian states with very short correlation lengths that reproduce the
single-particle Green’s functions reported here. Our microscopic modelling of the splitting process
enables us to provide the same kind of information also in previously studied cases without phase-
imprinting.
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A Low energy projection in equilibrium

For simplicity we consider a two-dimensional system with time-independent Hamiltonian

H =

∫
dx dy

{
Ψ†(x, y)

[
−∇

2

2m
+
mω2

2
x2 + V⊥(y)

]
Ψ(x, y) + c

(
Ψ†(x, y)

)2(
Ψ(x, y)

)2
}
. (78)

The quadratic part can be diagonalized by going to a basis of single-particle eigenstates

Ψ(x, y) =
∞∑

j,k=0

χj(x)Φk(y) bj,k . (79)

Here χj(x) are harmonic oscillator wave functions and Φk(y) are orthonormal eigenstates of the
Hamiltonian Hy

Hy = − 1

2m

d2

dy2
+ V⊥(y) , HyΦk(y) = εkΦk(y) . (80)

In terms of the new canonical Bose fields

Ψk(x) =

∫
dy Φ∗k(y)Ψ(x, y) , [Ψj(x),Ψk(x

′)] = δj,kδ(x− x′) (81)

the Hamiltonian becomes

H =

∫
dx

∞∑

k=0

Ψ†k(x) hk Ψk(x) +

∫
dx

∞∑

k1,k2,k3,k4=0

Vk1,k2,k3,k4Ψ†k1(x)Ψ†k2(x)Ψk3(x)Ψk4(x) . (82)

Here we have defined

hk =

[
− 1

2m

∂2

∂x2
+
mω2

2
x2 + εk

]
,

Vk1,k2,k3,k4 = c

∫
dyΦ∗k1(y)Φ∗k2(y)Φk3(y)Φk4(y) . (83)

The imaginary time path integral representation of the partition function is

Z(β) =

∫ ∞∏

k=0

Dψ∗k(τ, x) Dψk(τ, x) e−S[ψ∗n,ψn] , (84)

where

S[ψ∗n, ψn] =

∫ β

0
dτ

∫
dx

{ ∞∑

k=0

ψ∗k(τ, x)

[
∂

∂τ
+ hk

]
ψk(τ, x)

+
∞∑

k1,k2,k3,k4=0

Vk1,k2,k3,k4 ψ
†
k1

(τ, x)ψ†k2(τ, x)ψk3(τ, x)ψk4(τ, x) .

}
(85)

The situation we are interested in is where the eigenvalues εk of the transverse confining potential
constitute a large energy scale and the transverse level spacings |εk − εj | between highly excited
transverse states are large too. We can then “integrate out” the transverse degrees of freedom
above some cutoff Λ. Let us denote the first eigenvalue above Λ by εā, and rewrite the action as

S[ψ∗n, ψn] = S< + S> + Sint , (86)

where S< is the part of the action that only involve the fields Ψk, Ψ†k with 0 ≤ k < ā, S> the
quadratic part of the action that involves only fields with k ≥ ā, and Sint are the remaining quartic
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terms that mix channels below and above the cutoff and describe interactions between channels
above the cutoff. Defining

〈O〉> =

∫ ∞∏

k=ā

Dψ∗k(τ, x) Dψk(τ, x) O e−S> , (87)

we can eliminate the degrees of freedom above the cutoff using that we are dealing with weak
interactions. Up to second order in Sint we have the following expression for the low-energy part
of the action

Seff = S< + 〈Sint〉> −
1

2

[
〈S2

int〉> − 〈Sint〉2>
]
. (88)

The first order term generates hopping between the low-energy channels

〈Sint〉> =

∫ β

0
dτ

∫
dx

ā−1∑

k1,k2=0

Wk1,k2 ψ
†
k1

(τ, x)ψk2(τ, x) , (89)

where

Wk1,k2 =

∞∑

n=ā

4Vn,k1,n,k2

∞∑

j=0

|χj(x)|2

eβ
(
εk+ω(j+1/2)

)
− 1

(90)

We see that this is small compared to the interaction strength c because the Bose occupation
factors are by construction negligible. The second order term in Sint contains all possible quadratic,
quartic and sextic interactions involving ψk(x, τ) and ψ∗k(x, τ) compatible with particle number
conservation, e.g.

ā−1∑

k1,k2,k3,k4=0

∫
dτ

∫
dτ ′
∫
dx

∫
dx′ Uk1,k2,k3,k4(τ − τ ′, x, x′)

× ψ∗k1(τ, x)ψk2(τ, x)ψ∗k3(τ ′, x′)ψk4(τ ′, x′) (91)

where

Uk1,k2,k3,k4(τ − τ ′, x, x′) = −8
∞∑

n2,n2=ā

Vn1,k1,n2,k2Vn2,k3,n1,k4

× Gn1(τ ′ − τ, x′, x)Gn2(τ − τ ′, x, x′) ,

Gk(τ > 0, x, x′) =
∑

j

χj(x)χ∗j (x
′)

e−τ
(
εk+ω(j+1/2)

)

1− e−β
(
εk+ω(j+1/2)

) = Gk(τ − β, x, x′). (92)

As εk > Λ the Matsubara Green’s function of the high energy channels is very short-ranged in
both imaginary time and space, so that retardation effects can be neglected and working with
a purely local interaction between the low-energy channels remains justified. Hence the quartic
terms generate only a very small renormalizations of the interaction terms already present between
the low-energy channels.
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