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Abstract

Computation of a large group of interior eigenvalues at the middle spectrum is
an important problem for quantum many-body systems, where the level statis-
tics provides characteristic signatures of quantum chaos. We propose an exact
numerical method, dual applications of Chebyshev polynomials (DACP), to
simultaneously find thousands of central eigenvalues, where the level space de-
creases exponentially with the system size. To disentangle the near-degenerate
problem, we employ twice the Chebyshev polynomials, to construct an expo-
nential semicircle filter as a preconditioning step and to generate a large set
of proper basis states in the desired subspace. Numerical calculations on
Ising spin chain and spin glass shards confirm the correctness and efficiency
of DACP. As numerical results demonstrate, DACP is 30 times faster than
the state-of-the-art shift-invert method for the Ising spin chain while 8 times
faster for the spin glass shards. In contrast to the shift-invert method, the
computation time of DACP is only weakly influenced by the required num-
ber of eigenvalues, which renders it a powerful tool for large scale eigenvalues
computations. Moreover, the consumed memory also remains a small constant
(5.6 GB) for spin-1/2 systems consisting of up to 20 spins, making it desirable
for parallel computing.
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1 Introduction

Energy level statistics provides an essential characterization of quantum chaos [1, 2]. In-
tegrable systems often imply level clustering and a Poisson distribution of energy level
spacings [2], while chaotic systems exhibit level repulsion and a Wigner-Dyson distribu-
tion [3]. Other useful statistical tools like the δ3 statistic [4] and the power spectrum
of the δn statistic also depend on the level distribution [5]. Numerical eigenvalues are
important to exactly characterize these level statistics, because analytical results are not
available in general. In addition, individual eigenstates at the middle of the spectrum,
which correspond to the “infinite temperature” limit, are of great importance in studying
the many-body localization (MBL) [6–8]. Numerical simulations are a major tool in under-
standing quantitatively many aspects of the MBL problem. As the many-body problems
of interest often involve a huge Hilbert space whose dimension grows exponentially with
the system size, it is rather challenging to fully diagonalize the Hamiltonian or to solve
the time-independent Schrödinger equation. Seeking to resolve the eigenvalue problem in
a small part of the spectrum is thus an unavoidable and desirable substitution.

To obtain the interior eigenstates, a hybrid strategy of matrix spectroscopy is often
invoked [9–11]. It aims at computing eigenstates in selected regions of the spectrum and
combines the ground state solvers with a spectral filter, where the filter is designed to
transform the selected interior regions to the edges of the spectrum. Among these filters,
the Green function (H − λI)−1 is an excellent one. After applying the Green function
filter, the cluster of eigenvalues near the energy λ is mapped to very large positive and
negative values. The level spacings near λ are amplified, which improves the convergence.
The Lanczos method [12] was combined with such a filter [9, 10], and the Chebyshev
polynomial expansion of the Green function is implemented [13]. In particular, the shift-
invert method [14] essentially utilizes this spectral transformation and is widely used
in quantum many-spin systems [8, 15–18]. Moreover, it was considered to be the most
efficient one for the MBL problems [8]. However, for large systems this method suffers
rapid increases in computation time and memory consumption, due to the factorization
of (H − λI)−1. Other spectral filters have also been proposed, including the Dirac delta
function filter δ(H− λI) [19–23] and the rectangular window function filter [24].

Other more efficient methods were proposed to compute large numbers of eigenpairs
located at the interior spectrum. In particular, the eigenvalues slicing library (EVSL)
adopts the Chebyshev expansion of the Dirac delta function during the polynomial fil-
tering process, combined with the restarted Lanczos algorithm [21]. Similarly, FILTLAN
uses a combination of (non-restarted) Lanczos and polynomial filtering with Krylov pro-
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jection methods to calculate both the interior and extreme eigenvalues [20]. The FEAST
algorithm exploits the well-known Cauchy integral formula to express the eigenprojector,
leading to a rational filter to which subspace iteration is then applied [25]. Although these
methods are capable of finding thousands or tens of thousands eigenpairs using a divide
and conquer strategy, they can calculate only several hundreds or a thousand eigenpairs
in a single energy interval. Note that all the methods mentioned above are iterative. The
computation time is approximately proportional to the required number of eigenvalues,
i.e., more eigenvalues requires more filtrations and reorthogonalizations [8, 20,22].

In this paper, we propose an exact numerical method, DACP, to calculate thousands
of eigenvalues at the middle of the energy band, which is enough to reveal the level
statistics [26, 27]. For spin systems, such a middle region usually indicates a peak of the
density of states where the energy levels are nearly degenerate. It is extremely challenging
to distinguish these near-degenerate eigenvalues without factorizing H−1. In the DACP
method, we construct an exponential of semicircle (exp-semicircle) filter to quickly damp
the unwanted part of the spectrum by employing the Chebyshev polynomial for the first
time. The second application of the Chebyshev polynomial is to fast search a set of states
to span the specific subspace, which consists of all the desired eigenstates. Combining these
two steps, the DACP method essentially transforms the original high-dimension eigenvalue
problem to a low-dimension one. Instead of many iterative filtrations, the DACP method
directly produces results with only a single filtration.

For practical problems in many-spin systems, the DACP method is very efficient, due
to its full exploration of several excellent properties of the Chebyshev polynomial, while
other methods utilize only a part of them. For a large class of many-spin systems, the
DACP method exhibits a significant increase in computation speed, up to a factor of 30,
in comparison with the shift-invert method. The memory saving is more drastic, up to a
factor of 100. Moreover, the DACP method distinguishes itself from those iterative filtering
ones, as its convergence time varies slightly when the required number of eigenvalues
changes in a large region.

The paper is organized as follows. The detailed formalism of the DACP method, in-
cluding the exp-semicircle filtration, Chebyshev evolution, and subspace diagonalization,
is described in Section 2. Each of the processes relies on a particular property of the
Chebyshev polynomial, distinguishing the DACP from other filtering methods . In Sec-
tion 3 we calculate the interior eigenvalues with the DACP in two many-spin systems, the
Ising model and the spin glass shards, and present the numerical results. We compare the
DACP with other approaches in Section 4 and conclude in Section 5.

2 Dual applications of Chebyshev polynomials method

To access the central eigenvalues of large spin systems, naturally we are restricted by
the matrix-free mode, i.e., the matrix of the Hamiltonian must not be explicitly ex-
pressed/stored. Instead, we treat the Hamiltonian H as an operator whose input and
output are states/vectors. Therefore, we shall only operate with the set of quantum
states: {

|ψ⟩ ,H |ψ⟩ ,H2 |ψ⟩ , · · · ,Hk |ψ⟩
}
, (1)

where k is a positive integer, in the original Hilbert space of dimension up to 5×105. Note
that each “matrix-vector product” H |ψ⟩, being a basic operation, consumes considerable
time while only a small amount of memory. Moreover, as illustrated in Subsection 2.3, even
the states in Eq. (1) are not necessarily required to be stored. Therefore, the requirement
of memory in DACP is pretty tiny. In general, we hope to simultaneously find a large
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Figure 1: The exp-semicircle filters for a = 0.1 (red lines), 0.05 (blue lines), and 0.025
(black lines), with ka = 24. We have set Emax = 1 and Emin = −1. The solid lines
are for the Chebyshev polynomials Tk(F (x)), where F (x) =

[
2x2 − (1 + a2)

]
/(1 − a2),

while the dashed lines are for the approximations y = exp(2k
√
a2 − x2) ≃ Tk(F (x)). The

horizontal pink dotted line denotes the half maximum of the logarithm of filters. Note
that |Tk(F (x))| ≤ 1 when x /∈ [−a, a], thus the filter regions are restricted in [−a, a].

scale of central eigenvalues. In this manuscript, we set our goal to find 5, 000 eigenvalues
accurately at the middle of the spectrum for the many-spin systems as an illustration.

The idea of DACP is fairly straightforward. We first transform a randomly initialized
state into a wave packet in the subspace spanned essentially by at least 5, 000 central
eigenstates. This transformation is realized by an exp-semicircle filter implemented by the
Chebyshev polynomial. Here the Chebyshev polynomial is used to realize an exponential
decay. With this particular state in hand, we then generate a large amount of linearly
independent states, as large as possible, to approximately span the subspace consisting of
the required eigenstates. The Chebyshev polynomial is used again to oscillate (complex
exponential) the states, producing approximately linearly independent states. Once the
generating set for the desired eigenstates is known, one may explicitly calculate H, the
reduced representation of H in this subspace. The remaining operations are restricted in
the subspace of dimension around 104. Finally, direct diagonalization of H, which is of
size 104 × 104, gives the desired eigenvalues. The detailed procedures and discussions are
given in the subsections below.

2.1 Exp-semicircle filter
We utilize the exponential growth of the Chebyshev polynomials outside the interval [−1, 1]
to efficiently construct an exp-semicircle filter, as shown in Figure 1. The filter drastically
amplifies the components of a desired range of eigenstates for any randomly initialized
states, resulting a new state that sharply localized at the middle of the spectrum. We
note that the Chebyshev filter explores the same property as well, except that it amplifies
the lower end of the spectrum [28,29]. A similar idea was applied in the quantum algorithm
for finding ground states [30].

For the Hamiltonian H with energy bounded in [Emin, Emax], where Emin is the mini-
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mum (Emin < 0) and Emax the maximum (Emax > 0), the exp-semicircle filter is designed
to amplify the components of the eigenstates corresponding to eigenvalues in the interval
[−a, a] and to simultaneously dampen those in the interval [Emin,−a] and [a,Emax], where
a is a real positive parameter. Focusing on the spin systems, we have assumed Emin < −a
and a < Emax. After the filtration, a new state mainly consisting of the eigenstates with
eigenvalues belonging to the interval [−a, a] is generated. For simplicity, we denote the
subspace spanned by the eigenstates contained in [−a, a] as L. Consequently, the prob-
abilities of eigenstates outside L are almost negligible, as can be seen in Figures 1 and
2.

We now introduce the specific implementation details. Note that we want to amplify
the middle of the spectrum, but the exponential growth of the Chebyshev polynomial
exists only near both ends. To circumvent this difficulty, we first square the Hamiltonian,
obtaining H2 with a spectrum ranges [0, E2

max] (suppose Emin = −Emax for simplicity).
The middle spectrum [−a, a] of H is transferred to [0, a2] for H2, which lies exactly at
the lower end. Next is to map the dampening part [a2, E2

max] into [−1, 1] by shift and
normalization of H2. We thus define an operator

F =
H2 − Ec

E0
, (2)

where Ec = (E2
max + a2)/2 and E0 = (E2

max − a2)/2. One may easily affirm this map’s
correctness by replacing H2 with either a2 or E2

max, and correspondingly one has F (x) =
(x2 − Ec)/E0. Note that F is simply a polynomial expression of H, so is Tk(F).

We then explore the effect of the filtration using Tk(F). As the eigenvalues inside [0, a2]
of H2 are mapped into [−1−2a2/(E2

max−a2),−1] of F , we obtain Tk(F) = (−1)k cosh(kΘ)
for the lower end of the spectrum, where

Θ = cosh−1

(
1 +

2(a2 −H2)

E2
max − a2

)
. (3)

Let |ψ⟩ =
∑

i ci |ϕi⟩ +
∑

j dj |χj⟩ be a random initial state, with ci and dj the random
coefficients, |ϕi⟩ the eigenstates inside L, |χj⟩ the eigenstates outside L. The filtration by
Tk(F) is

|ψ (k)⟩ = Tk (F) |ψ⟩

=
∑
i

(
ekθ

in
i + e−kθini

) ci
2
|ϕi⟩+

∑
j

(
eikθ

out
j + e−ikθoutj

) dj
2
|χj⟩

≃ 1

2

∑
i

ekθ
in
i ci |ϕi⟩,

(4)

where θini = cosh−1(1+2(a2−E2
i )/(E

2
max−a2)), θoutj = cos−1(2(E2

j −a2)/(E2
max−a2)−1),

Ei and Ej are eigenvalues corresponding to |ϕi⟩ and |χj⟩, respectively. In writing Eq. (4)
we have ignored (−1)k, as it does not affect the absolute value of coefficients and is a
global phase at the end line. When a is tiny, i.e., a2 ≪ E2

max, one may further deduce
θini ≃ 2

√
a2 − E2

i /Emax via Taylor’s expansion of cosh−1(1+ε), where ε is a small positive
number. We thus obtain the exp-semicircle filter

Tk(F) ≃ e
2k

Emax

√
a2−H2 (5)

that peaks sharply at Ei = 0 with a large k, for eigenstates satisfying −a ≤ Ei ≤ a. In
Figure 1 the shape of Eq. (5) is presented in dashed lines, which agrees well with the exact
results.
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Figure 2: Comparison of the effect of three different filters in the interval [−0.25, 0.25].
We present the initial random normalized state |ψ⟩ =

∑
i ci |ϕi⟩ (black curve) and the final

normalized states after the filtration by the exp-semicircle filter with K = 240 (red curve)
and the Chebyshev expansion of the rectangular function Θ(x+0.1)Θ(−x+0.1) with order
K = 480 (blue curve) and the Dirac delta function δ(0) with K = 480 (pink curve). The
parameter a = 0.1 for the exp-semicircle filter. The x-axis corresponds to the “reduced
energy” E/Emax, while the y-axis to the absolute value of the probability amplitudes ci.
The rectangular function is shifted by 10−10 while the delta function is shifted by 10−15.
All three filters share the same number of matrix-vector products. The advantage of the
exp-semicircle filter is obvious, considering the amplification of the target amplitudes.

With the initial conditions T0(F) = 1 and T1(F) = F , the kth order Chebyshev
polynomial can be efficiently determined using the recurrence relation Eq. (18). In this
paper, we set the cut-off order K = 12Emax/a. Such a filter exponentially (the fastest
rate among all polynomials) amplifies the components of eigenstates inside L [31]. After
the normalization, it equivalently dampens those outside L, generating the target state:

|ψE⟩ ≃
∑
i

c′i |ϕi⟩, (6)

where c′i = βeKθini ci and β is the normalization constant. Obviously, the state |ψE⟩
localizes (in the energy representation) at the middle of the spectrum. We input |ψE⟩ as
the initial state for Subsection 2.2, Chebyshev evolution.

To further illustrate the advantage of the exp-semicircle filter, we compare it with the
Chebyshev expansion of two other functions. The first one is the Dirac delta function
δ(0), which was employed to efficiently find interior eigenvalues in Refs. [21–23, 32]. The
second is the rectangular function, which was also used for interior eigenvalue computations
[24]. Setting a randomly initialized state |ψ⟩ =

∑
i ci |ϕi⟩, we plot the generated states

after the filtration by the three filters in Figure 2. All three filters are realized with the
same number of matrix-vector products. The target interval of the delta filter is quite
small. However, for our purpose, it is the relative magnitude between the target interval
([−0.1, 0.1]) and the others (outside the target interval) that matters. Thus, the efficiency
of the exp-semicircle filter is confirmed apparently.
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2.2 Chebyshev evolution
After obtaining a state confined in the small subspace L, we then make use of the oscillation
property of the Chebyshev polynomial to efficiently generate a set of distinct states, as
many as possible, serving as a complete basis to span L. To achieve this goal, it is
necessary to limit Ei ∈ [−1, 1] (corresponding to x in Tk(x)), within which the Chebyshev
polynomial behaves as a cosine-like function. This region contrasts with the requirement
of the exp-semicircle filter, thus one needs a different transformation of H. Below we
describe the specific details for the second application of the Chebyshev polynomial.

The original Hamiltonian H needs to be shifted by E′
c and to be rescaled by E′

0, where
E′

c = 1
2(Emin + Emax) and E′

0 = 1
2(−Emin + Emax). In a similar way to Eq. (2), we

define an operator G = (H−E′
c)/E

′
0, which is definitely bounded by −1 and 1. Assuming

Emin = −Emax again, we obtain
G =

H
Emax

. (7)

In this manner, the parameter a is rescaled as ar = a/Emax.
Let us explore the Chebyshev evolution, which is governed by the operator Tk(G) as k

plays the role of time. We input the state Eq. (6) generated by the filtration as an initial
state for the Chebyshev evolution. Since ∥G∥ ≤ 1, from Eq. (17) we have Tk(G) = cos(kΩ),
where Ω = arccos(G). In this sense, the Chebyshev evolution becomes

|ψE (k)⟩ = Tk (G) |ψE⟩

=
1

2

∑
j

(
eikωj + e−ikωj

)
c′j |ϕj⟩ ,

(8)

where ωj = arccos(Ej/Emax). Note that both ωj and k are unitless. Certainly, this is not
a physical evolution, and Tk(G) is not even a unitary operator. Actually, this evolution
essentially represents a superposition of both forward and backward propagation. Each
time the polynomial order k increases by 1, the evolution “time” is added by 1 as well.

With the aid of the Chebyshev evolution, we are able to construct a complete basis
that spans the subspace L. In detail, we collect a set of states as follows{

Î , sin(X̂), · · · , sin(nX̂), cos(X̂), · · · , cos(nX̂)
}
|ψE⟩ , (9)

where X̂ =πG/ar and n is an integer determined by the relation 2n + 1 ≥ d, with d
the dimension of L. In practice, one may need a relation 2n + 1 = 1.5d to ensure the
completeness of Eq. (9). Here k ≃ mπ/ar serves as the time, with m = 1, · · · , n. Similar
to Subsection 2.1, the kth order Chebyshev polynomial Tk(G) is calculated. The cut-off
order (evolution time) K ′ = ⌊nπ/ar⌋. More details can be found in Appendix B.

The duality of the Chebyshev polynomials, as being approximately the trigonometry
functions and being the polynomials, plays a vital role in the DACP method. In order
to distinguish those clustered eigenvalues to the utmost, we need a set of basis functions
whose slopes are as steep as possible, which amounts to the violent oscillations. In a
certain sense, the Chebyshev evolution is an efficient (possibly the most efficient among
all the polynomials) simulation of the quantum oscillations [33]. Replacing the operator
G with a real variable x, the maximum slope around E = 0 for Eq. (9) is nπ

ar
, in sharp

contrast to 1
ar

given by the (most common) operator set{
Î ,

G
ar
,
G2

a2r
, · · · , G

n

anr

}
. (10)
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We find that a steep slope is helpful in distinguishing near-degenerate eigenvalues. More-
over, under the circumstance of the simulations stated in Appendix E, using the basis
Eq. (10), instead of Eq. (9), during the Chebyshev evolution exhibits rather poor conver-
gence as shown in Figure 8. These facts clearly illustrate the advantages of the second
application of the Chebyshev polynomials.

2.3 Subspace diagonalization
Computing the basis {|Ψi⟩ : i = 1, · · · , 2n+ 1} (Eq. (9)), by combining the exp-semicircle
filter and the Chebyshev evolution, represents the most challenging aspect as well as the
most time-consuming part of the DACP method. Once the appropriate basis is con-
structed, the remaining task is straightforward, i.e., to compute the eigenpairs of the pro-
jected Hamiltonian H. This is equivalent to solving the generalized eigenvalue problem

HB = SBΛ. (11)

Here, H and S denote the projected Hamiltonian in L and the overlap matrices, respec-
tively,

Hij = ⟨Ψi|H |Ψj⟩ , Sij = ⟨Ψi|Ψj⟩ . (12)

Λ is a diagonal matrix with the eigenvalues in [−a, a] and the matrix B transforms the
found basis Eq. (9) to the eigenstates |ϕj⟩ of H,

|ϕj⟩ =
2n+1∑
i=1

Bij |Ψi⟩ . (13)

All these matrices are of size (2n + 1) × (2n + 1). Because of its small size, H can be
readily diagonalized by the LAPACK library [34].

Importantly, due to the special property of the Chebyshev polynomial, the computation
of matrices H and S can even be achieved without an explicit computation and storage of
the states |Ψi⟩. This feature gives rise to a further improvement for the DACP method,
both in computation time and memory. Besides, for an overcomplete basis Eq. (9), the
overlap matrix S is generally singular. We thus employ the singular value decomposition
(SVD). After the SVD, the eigenvalues of S are discarded if their absolute values sit below
the cutoff condition ε = 10−12. The number of remained eigenvalues effectively counts the
linearly independent states in Eq. (9). We present both the explicit expressions (denoted
by Tk(G) and |ψE⟩ only) of matricesH and S, and the solution of the generalized eigenvalue
problem in Appendix C.

Eigenvalues obtained by the subspace diagonalization may not own the same accuracy
when compared to true eigenvalues of the system, thus it is necessary to conduct an
independent check to estimate the error bounds. To this end, if the eigenstates |ϕj⟩

were known, the residual norm (variance of the energy) ||rj || =
√

⟨H2⟩ − ⟨H⟩2, where〈
H2

〉
= ⟨ϕj |H2 |ϕj⟩ and ⟨H⟩ = ⟨ϕj |H |ϕj⟩, is widely used as the parameter measuring the

accuracy of the results. It has been shown that ||rj || gives an upper bound on the true
error (absolute error) of the computed eigenvalue [35].

3 Numerical results

We apply the DACP method to the quantum spin-1/2 systems with two-body interactions.
Such systems are good models for investigating a large class of important problems in
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quantum computing, solid state theory, and quantum statistics [36–39]. A large number
of exact eigenvalues help us to obtain the statistical properties, to distinguish quantum
chaos from integrability, and serve as a benchmark to evaluate other approximate methods
as well.

Generally speaking, the DACP method can deal with spin systems consisting of cou-
plings between any pair of N spins. Each of the Pauli matrix σα or the two coupling Pauli
matrices σα ⊗ σβ, where α, β = x, y, z, is properly represented by a specific function.

We specify the spin model for two physical systems. One is the disordered one-
dimensional transverse field Ising model [40], where the Hamiltonian is

H =
1

4

N−1∑
i=1

Ji,i+1σ
x
i σ

x
i+1 +

1

2

N∑
i=1

Γz
i σ

z
i , (14)

with σi the Pauli matrices for the spin i. This system is exactly solvable by Jordan-Wigner
transformation [38], making it an ideal correctness checker for the DACP method. The
nearest neighbor exchange interaction constants Ji,i+1 are random numbers that uniformly
distributed in [−J/

√
N, J/

√
N ] with J = 10. The local random magnetic fields are repre-

sented by Γz
i , which are random numbers that uniformly distributed in the interval [0,Γ]

with Γ = 1.
Another system is the spin glass shards [27], which represents a class of global-range

interacting systems that require relatively large bond dimensions to be tackled by the
DMRG methods [41]. The Hamiltonian describing the system is

H =
∑
i<j

Jijσ
x
i σ

x
j +

∑
i

Γz
i σ

z
i . (15)

All symbols and parameters are the same as that of the above Ising model, except that
the first summation runs over all possible spin pairs and J = 0.866Γ. This system is
interesting because it presents two crossovers from integrability to quantum chaos and
back to integrability again. In the limit J/Γ → 0, the ground state is paramagnetic with
all spins in the local field direction and the system is integrable [27]. In the opposite limit
J/Γ → ∞, the ground state is spin glass and the system is also integrable since there
are N operators (σxi ) commuting with the Hamiltonian. A quantum chaos region exists
between these two limits. J = 10Γ is approximately the border from the quantum chaos
to the integrable (the spin glass side) when N = 20, while J = 0.866Γ indicates the system
is in pure quantum chaos phase [27].

By employing the upper-bound-estimator, which costs little extra computation and
bounds up the largest absolute eigenvalue E0, one may estimate Emax = E0 and Emin =
−E0 [42]. For this setting we have utilized the symmetry of the density of states (DOS),
a bell-shape profile centered at zero, in the many-spin systems. Since we require 5, 000
central eigenvalues, we may set n = 4, 000, corresponding to a dimension 8, 001 and being
adequate to span the whole subspace L. The overlap matrix S is generally singular. The
approximate distribution of DOS ρ(E) may be efficiently calculated through the Fourier
transformation of a time evolved wave function or through a better estimation method
given in Ref. [43]. The parameter a is appropriately chosen to ensure that the number of
eigenstates contained in [−a, a] is a little less than 8, 000 (as illustrated in Figure 3, the
precision of some converged eigenvalues may be lower than required).

In practice, sometimes there may exist highly near-degenerate eigenvalues, with level
spacings as small as 10−7Γ while the average spacing is 10−5Γ. It is still hard (two
magnitudes longer time) for the Chebyshev evolution to discriminate such close pair of
eigenvalues. To circumvent this challenge, we employ the block filter technique [29], which
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Figure 3: The relative error η in logarithmic scale of the calculated eigenvalues, for (a)
Ising model with N = 19 and (b) spin glass shards model with N = 17. The horizontal
axis is the system energy. The number of eigenvalues satisfying η < 10−6 (black dashed
line) is 5, 385 for (a) and 5, 000 for (b). Such a distribution comes from the shape of filters
in Figure 1.

means a block of states is filtered or evolved “simultaneously”, in programming of the
DACP method. The idea is that two or several random states in the degenerate subspace
are usually linearly independent. For each numerical test, a block of 5 initial trial states
is randomly generated and employed with the parameter n being adjusted to n = 800
accordingly.

By these settings, we perform numerical tests on the above two systems to show the
exactness and efficiency of DACP method. For this work, we consider only the eigenvalues
computations. All the timing information reported in this manuscript is obtained from
calculations on the Intel(R) Xeon(R) CPU E7-8880 v4, using sequential mode.

In Figure 3, we present the relative error η in logarithmic scale versus the system
energy Eexact, for the Ising model with N = 19 and the spin glass shards with N = 17.
We have defined the relative error η of the computed central eigenvalues E as

η =

∣∣∣∣E − Eexact

Eexact

∣∣∣∣ .
Exact eigenvalues of both systems have been obtained by other reliable methods. For
the Ising model, we make use of the famous Jordan-Wigner transformation to reduce
the original 2N × 2N matrix to a 2N × 2N one, and restore the full spectrum of the
original Hamiltonian [38]. For the spin glass shards we simply utilize the function eigs
of MATLAB, to find 5, 000 eigenvalues closest to E = 0. As for our numerical tests, the
parameter a in Figure 3 is 0.036Γ and 0.16Γ for (a) and (b), respectively. In computing the
Ising model, the number of eigenvalues satisfying η < 10−6 is not enough (less than 5, 000)
by the settings mentioned above. By expanding the block size to 10 and the parameter
n to 500, we then collect enough eigenvalues. The number of converged eigenvalues, i.e.,
computed eigenvalues satisfying the condition η < 10−6 is 5, 385 for (a) and 5, 000 (all
the exact eigenvalues we have) for (b), while the total number of computed eigenvalues is
6, 232 and 5, 910, respectively.

The spike around E = 0 for both figures is due to the smallness of the denominator
Eexact. The smallest absolute eigenvalue is about 4.4 × 10−6Γ for (a) and 2.9 × 10−5Γ
for (b). Besides, there is a flat plateau at the middle of the figures, indicating that
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Figure 4: Statistical distributions of the level spacings s, for (a) Ising model with N = 19
and (b) spin glass shards model with N = 18. The probability distributions P (s) come
from the numerical results of DACP (red circles), the exact eigenvalues (blue squares),
Poisson statistic P (s) = exp(−s) (black curve in (a)) and Wigner-Dyson GOE statistic
(black curve in (b)). The horizontal axis s is in units of mean level spacing.

for those eigenvalues around E = 0 we encounter the numerical error, i.e., the absolute
error reaches the limit of the double precision representation. In Figure 3(a) one may
observe other spikes, which do not appear in (b). Each of those spikes corresponds to a
cluster of extremely close eigenvalues. The integrability of the Ising model implies the
level clustering and a Poissonian distribution of energy level spacings. We speculate that
the Chebyshev evolution does not function well for the near-degenerate eigenvalues, as
they give quite similar phase contributions to the final states. To significantly amplify
the phase difference exp(i∆Et), it requires t ≳ 1/∆E, where ∆E is the energy difference.
An alternative solution is to increase the block size to match up with the dimension of
near-degenerate subspace. Ignoring the central plateau and the spikes, the distribution
of η shows an inverted shape of the exp-semicircle filter. We discuss their relationship in
Appendix E.

In Figure 4, we further present the statistical distributions P (s) of the level spacing
s (the difference between consecutive eigenvalues, and in units of mean spacing) for the
two systems. The statistical distribution in Figure 4(a) is constructed from 5, 000 central
eigenvalues (nearest to E = 0), while the distribution in Figure 4(b) is obtained for
2, 500 central eigenvalues of the same symmetry class (the interaction in Eq. (15) does not
mix states with even and odd numbers of spins up). The transverse field Ising model is
integrable, exhibiting a Poisson distribution P (s) = e−s of level spacings. On the other
hand, for the spin glass shards model, we set J = 0.866Γ in Eq. (15), corresponding to
the quantum chaos phase [27]. Indeed, the distribution in Figure(b) obeys Wigner-Dyson
Gaussian orthogonal ensemble (GOE) statistic.

In Figure 5, we show the computation time versus the number of converged eigenvalues,
for the two systems of size N = 15. The horizontal axis represents the number of computed
eigenvalues satisfying the condition η(E) < 10−6 in each test. Recall that the DACP
method is divided into three parts: the exp-semicircle filtration, Chebyshev evolution,
and subspace diagonalization. We denote their time consumption as TF , TE , and TD,
respectively, while solving time is the full computation time T = TF + TE + TD. One
immediately notices that for the two systems, computation time T decreases on the left
side, reaching a plateau at the middle region, while quickly increases on the right side.
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Figure 5: Computation time (CPU seconds) versus number of eigenvalues satisfying the
condition η < 10−6, for the Ising model (red lines with squares, left axis) and the spin glass
shards (blue lines with circles, right axis), using the DACP method. For both systems,
N = 15. The solid lines show the solving time T = TF + TE + TD, including computation
time of the exp-semicircle filtration TF , of the Chebyshev evolution TE and of the subspace
diagonalization TD. The dashed lines present TE .

Yet the dashed lines TE present a quite small increasing rate for the whole region, as
the horizontal axis is in logarithmic scale. At the middle of the region, where the DACP
method performs the best, the solving time T and the evolution time TE roughly coincide
with each other.

These features are easily understood if one considers the following four facts. (i) Notice
that the DOS ρ(E) is usually a bell-shape profile peaked at zero in spin systems and that a
is typically a tiny parameter (a/Emax ∼ 10−2 for N = 19), thus one may safely take ρ(E)
as a constant ρ̄ in [−a, a]. Consequently, the number of required eigenvalues is R ≃ 2ρ̄a.
(ii) Setting the action of the Hamiltonian on the state, H |ψ⟩, as a basic step, and denoting
the computation time of the basic step as τ , we may count the filtration time as τ times
twice the cut-off order K = 12Emax/a, i.e., TF ≃ 24Emaxτ/a ∝ R−1. (iii) Similarly, we
find the Chebyshev evolution time is TE ≃ ⌊RπEmax/a⌋τ ∝ R0 since R ∝ a. (iv) It is well
known that the full diagonalization time is proportional to the cube of the matrix size,
i.e., TD ∝ R3. The combination of these computation times clearly explains the behavior
shown in Figure 5. For the left side, the exp-semicircle filtration dominates, as TF is
inversely proportional to the parameter R. Whereas, when it comes to the intermediate
region where the number of eigenvalues is several hundreds to thousands, the evolution
time TE consists of the majority of the computation time while the other two are negligible.
As shown in Figure 5, the performance of DACP method is approximately the same in
finding 100 to 3, 000 eigenvalues. As R keeps increasing, the subspace diagonalization time
TD eventually consumes the most computation time.

We remark that the plateau at the middle region in Figure 5 distinguishes the DACP
method from those iterative filtering ones [10,20,23,24,28,29], although all of them make
use of the Chebyshev polynomials. The iterative methods usually require a larger amount
of filtrations and reorthogonalizations, thus a longer convergence time, in finding more
eigenvalues [8,20,22]. In fact, as illustrated in Ref. [8], one may find that the computation
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time is roughly proportional to the number of eigenvalues required for the shift-invert
approach. The DACP method is thus highly desirable for large scale eigenvalues compu-
tations.

At last, we note that the consumed memories by DACP method are rather small, as it
works in a matrix-vector product mode which avoids an explicit matrix representation of
the Hamiltonian. In addition, as shown in Appendix C, the whole set of states in Eq. (9)
are not preserved in memory as well. The major memory consumption is the storage of
elements Hij and Sij , thus the memory requirements of the DACP method relate only to
the dimension d of subspace L. By the settings of this work, it occupies around 5.6 GB of
memory for appropriately calculating 5, 000 eigenvalues in N ≤ 20 systems.

4 Comparison with other approaches

We compare the performance of DACP method to other established methods in computing
the two models introduced in Section 3. Specifically, we select three different types of
methods listed and discussed as follows.

The shift-invert approach is widely used in computing eigenpairs at the middle of the
spectrum for quantum spin systems, to name a few, like in [8, 15–17]. In our tests, it
is implemented by the “eigs” function of Matlab R2019b, which employs the implicitly
restarted Arnoldi method (ARPACK) [44]. The matrix of the Hamiltonian H is fully
stored in memory, so one may expect its fast computation at the expense of high memory
usage.

The Eigenvalues Slicing Library (EVSL) provides routines for computing eigenvalues
located in a given interval of real symmetric eigenvalue problems [21]. We choose the
routine “ChebLanTr”, which relies on polynomial filtering and is coupled with Krylov
subspace method and the subspace iteration algorithm [32]. Since it allows a matrix-
free format, we implement exactly the same matrix-vector product function as in the
DACP method. However, in the EVSL the matrix-vector product mode (SetAMatvec) is
restricted to apply to the real vectors, while the quantum states are generally complex
ones. Therefore, all the computation times of the EVSL shown in the figures are twice
that of recorded in practice.

The FEAST algorithm is a general purpose eigenvalue solver which takes its inspiration
from the density-matrix representation and contour integration technique in quantum
mechanics [45,46]. In our tests, we have installed the FEAST package v4.0 and invoked the
solver function “zfeast_hcsrev”. Although the matrix-free mode is utilizable, it demands
users to provide direct/iterative linear system solvers combined with the matrix-vector
routines. For simplicity, we store the matrix of Hamiltonian in the sparse-CSR format.
During the tests we find that it may not converge when the wanted number of eigenvalues
is several thousands, we thus divide the original search interval into several smaller ones.

As for the DACP method, to better recognize its scaling behavior, we have discarded
the time consumption of the subspace diagonalization, which is a constant that relies only
on the size of the subspace. Note that simply adding or subtracting a constant does
not affect the scaling. Specifically, the subspace diagonalization spends roughly 700 CPU
seconds in each test, and such a constant is negligible for N ≥ 16 systems. Nevertheless,
we plot the full computation time of the DACP method in dashed lines.

Before the comparison of scaling behaviors, we find that both the EVSL and the
FEAST approaches are not capable to find 5, 000 eigenvalues in a single run (one search
interval). Therefore, one must divide the search interval to achieve a better performance.
We suppose that each smaller interval contains a similar amount of eigenvalues, where the
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Figure 6: Scaling behavior measured by the computation time (CPU seconds) versus the
system size N , for (a) Ising model and (b) spin glass shards model. In both panels, we
compare the FEAST algorithm (pink diamonds), the shift-invert method (blue circles) and
the EVSL (black triangles) with the DACP method (red squares). Each of the numerical
tests (plotted as different marks) illustrates the computation time in finding 5, 000 central
eigenvalues. The solid lines are obtained via linear fittings. For the DACP method, the
red dashed lines present the full solving time T while the red solid squares present the
evolution time TE .

number is determined by their computational performances.
In Figure 6, we compare the scaling behaviors measured by computation time T (CPU

time in seconds) of the DACP method with three different types of method, i.e., the shift-
invert, the EVSL and the FEAST approaches. Each one of the numerical tests (marks) in
Figure 6 essentially represents the computation time in finding 5, 000 eigenvalues. During
the tests, the parameter M0 = 1.2R for the FEAST. Considering the performance of the
two methods and for the sake of convenience, we set the number of eigenvalues in each
search interval as 500 for the EVSL and 1, 000 for the FEAST. Both the DACP method
and the shift-invert approach successfully find 5, 000 eigenvalues in a single run. The EVSL
approach also finds 5, 000 eigenvalues by the “divide and conquer” technique. Whereas,
due to its long computation time, we set up the FEAST to find 1, 000 eigenvalues (a single
interval) and the total computation time is 5 times that.

As shown in Figure 6, for spin systems with 13 ≤ N ≤ 17, the DACP method is
about 20 times faster than the other approaches for both models, except for comparing to
MATLAB for the spin glass shards model. Since the shift-invert method essentially finds
the ground energy of H−1, which is usually not a sparse matrix, its computation time T is
not affected by the sparsity of the Hamiltonian and the two blue lines in Figure 6(a) and
(b) are nearly the same. On the contrary, since the DACP method employs the polynomial
combination of H acting on the states, its computation time T is heavily influenced by
the number of Pauli operators of the specific Hamiltonian. For example, when N = 18 the
computation time T for the spin glass shards is 5.5 times that for the Ising model, while
the number of Pauli operators is 6.2 times. Considering this effect, the DACP method
is still advantageous over the shift-invert approach in the worst case where the exchange
interactions run over all possible spin pairs and all three directions.

Furthermore, the scalings among these four methods are comparable. To compare
quantitatively, we extract the scaling constants α by fitting the numerical results, where α
is defined by T = T0 exp(αN). The values of α are shown in Table 1. Indeed, the scaling
constants are quite close for the spin glass shards model, while both the EVSL and FEAST
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Table 1: Scaling constants α by linear fitting of the curves in Figure 6.
α DACP MATLAB EVSL FEAST

Ising 1.49 1.42 1.31 1.29
Glass 1.50 1.47 1.45 1.53

Table 2: Memory consumption of the four approaches for the Ising model.
Memory (GB) DACP MATLAB EVSL FEAST

N=16 5.6 144.9 1.2 50.1
N=17 5.6 573 2.9 99.6
N=18 5.6 \ 3.2 395.5

own smaller α for the Ising model. Suppose that α remains unchanged for a bigger N ,
then the DACP method’s advantage in time cost may keep on for rather large systems.
Specifically, as for the Ising model, the scaling lines between the FEAST and DACP cross
at N ≃ 28, while for the glass model, the scaling lines between the EVSL and DACP cross
at N ≃ 80. In addition, as illustrated by the numerical tests of the shift-invert method
in Ref. [8], the factorization time for finding H−1 dominates other computation steps.
Considering the factorization part only, the execution time in Ref. [8] exhibits a scaling
constant α ≃ 1.66, indicating a worse scaling behavior for systems with larger spins. The
time efficiency of the DACP method is thus confirmed.

Finally, in Table 2 we compare the memory consumption of these approaches for the
Ising systems with N ≥ 16. As the subspace matrix elements constitutes the major
storage of DACP method, its memory requirement remains a constant during the tests.
More precisely, a quantum state of N = 18 systems occupies about 4 MB of memory,
and there are only around 10 quantum states kept in the memory. The dominant term is
the full storage of two matrices S and H, which remains a constant as N increases. On
the contrary, for the shift-invert method, the matrix size of H−1 grows rather fast as the
system size N increases (proportional to 4N ), demanding a large amount of memories.
For example, in our tests it consumes 573 GB of memory for N = 17 systems, which is
already a factor of 100 more than that of the DACP method. Since the EVSL approach
also works in a matrix-free mode and since it calculates only 500 eigenvalues (subspace
dimension d ≃ 1, 000) in one run, it requires the least memory. Using the sparse matrix
format, the FEAST approach saves a lot of memories while is still significantly more than
the matrix-free ones.

5 Conclusion

We propose the DACP method to efficiently calculate a large scale (at least 5, 000) of
central eigenvalues with high precision, by employing twice the Chebyshev polynomials.
It explores several excellent properties of Chebyshev polynomial, to efficiently filter out
unwanted amplitudes and to construct the appropriate basis states for the middle of the
spectrum. In particular, the proposed method is specified to solve the middle of the spec-
trum (eigenvalues around E = 0). This restriction makes it possible to combine different
properties of Chebyshev polynomial together. Eventually, two key features distinguish
DACP from the polynomial filtering methods: its computation time depends weakly on
the number of required eigenvalues, while its memory overhead is independent of the sys-
tem size. Moreover, as shown in Appendix D, the DACP method is more stable and more
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efficient than the Lanczos method applied with the exp-semicircle filter.
The numerical tests for the Ising model and the spin glass shards confirm the exactness

and efficiency of the DACP method. Compared to the widely used shift-invert approach,
the DACP method gives a considerable increase in the speed of computations, for the
Ising model up to a factor of 30 while for the spin glass shards the increase in speed is less
but still considerable (a factor of 8). Besides, the memory requirements are drastically
decreased, up to a factor of 100 for N = 17 spin systems and even more for larger ones. As
a powerful tool for central eigenvalues calculations, the DACP method may find potential
applications in many physical problems, such as many-body localization in condensed
matter physics [7, 15,17,47], and level statistics in quantum chaos [1, 16,27,48].
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A Chebyshev polynomials

In this paper, we limit ourselves to that only the polynomial combinations of H are the
allowed operations. We utilize the Chebyshev polynomials to fulfill the tasks mentioned
above. It is the key to bridge the combinations of Hk with an approximately exponential
function of H, either exp(kH) or exp(ikH). Due to its several remarkable properties, the
Chebyshev polynomials may exhaust the potential of this type of methods.

The kth order Chebyshev polynomial of the first kind is defined by

Tk (x) =


cos

(
k cos−1 (x)

)
, |x| ≤ 1

cosh
(
k cosh−1 (x)

)
, x > 1 ,

(−1)k cosh
(
k cosh−1 (−x)

)
, x < −1

(16)

with initial conditions T0(x) = 1 and T1(x) = x [49]. It is a piece-wise function containing
two different kinds of expression, while being the polynomial function, it is both continuous
and smooth. For simplicity, let us set θ = cos−1(x) (cos θ = x) when x ∈ [−1, 1] and set
θ = cosh−1(x) when x ∈ [1,∞), the corresponding range of θ is θ ∈ [0, π] and θ ∈ [0,∞),
respectively. In terms of the variable θ, Eq. (16) becomes

Tk (x) =

{
cos (kθ) , |x| ≤ 1
cosh (kθ) , x > 1.

(17)

One may easily observe that Tk(x) is a sine or cosine-like oscillation function bounded
by −1 and 1 inside the interval [−1, 1], as illustrated in Figure 7(a-c), while it grows
extremely fast outside [−1, 1], as shown in Figure 7(d-f).

Note that cosh(kθ) = (ekθ + e−kθ)/2. It is natural to expect an exponential growth of
the Chebyshev polynomial outside the interval [−1, 1]. In fact, it is known that among all
polynomials with degree ≤ k, the Chebyshev polynomial Tk(x) grows the fastest outside
the interval [−1, 1] under comparable conditions [31].
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Figure 7: Chebyshev polynomials Tk(x) for k = 3 (red lines), k = 4 (blue lines), k = 5
(black lines). The first row ((a-c) with solid lines) illustrates the oscillations of Tk(x) inside
the interval [−1, 1] while the second row ((d-f) with dashed lines) shows the rapid increase
outside [−1, 1] of Chebyshev polynomials.

17



SciPost Physics Submission

Associated with those properties is a practically useful one: Tk+1(x) can be efficiently
determined by the 3-term recurrence

Tk+1(x) = 2xTk(x)− Tk−1(x). (18)

All these properties of the Chebyshev polynomial render it a powerful toolbox and are of
great use for the DACP method.

B Detailed deduction of Eq. (9)

Here we derive explicit expressions for constructing the set Eq. (9) via the Chebyshev
evolution. We focus on the case that a ≪ Emax, which is fairly reasonable for large
(N ≥ 15) spin systems.

|ψE (k)⟩ = Tk(G) |ψE⟩

=
∑
j

cos(kωj)c
′
j |ϕj⟩

≃
∑
j

cos(
kπ

2
− kEj

Emax
)c′j |ϕj⟩

=


(−1)n

∑
j cos(k

Ej

Emax
)c′j |ϕj⟩ , k = 2n

(−1)n
∑

j sin(k
Ej

Emax
)c′j |ϕj⟩ , k = 2n+ 1.

(19)

Using the fact that when x is small, arccos(x) = π/2 − x + o(x), we obtain ωj =
arccos(Ej/Emax) ≃ π/2 − Ej/Emax at the third line of Eq. (19). Therefore, we find
the expression

Tk(G) ≃
{

(−1)n cos(kG), k = 2n
(−1)n sin(kG), k = 2n+ 1.

(20)

We then conduct a Chebyshev evolution with a cutoff order K ′ = ⌊nπ/ar⌋, recording both
Tk−1(G) |ψE⟩ and Tk(G) |ψE⟩ when k = ⌊mπ/ar⌋ with m = 1, · · · , n. After the evolution,
the set of states Eq. (9) is automatically generated.

C Evaluation of matrix elements and solution of the gener-
alized eigenvalue problem

As shown in Appendix B, we rewrite the basis Eq. (9), or {|Ψi⟩ : i = 1, · · · , 2n+ 1}, using
the Chebyshev polynomials:

{I, Tk1−1(G), Tk1(G) · · · , Tkn−1(G), Tkn(G)} |ψE⟩ , (21)

where km = ⌊mπ/ar⌋, m = 1, · · · , n, |Ψ1⟩ = |ψE⟩, |Ψ2⟩ = Tk1−1(G) |ψE⟩, |Ψ3⟩ =
Tk1(G) |ψE⟩, etc. For simplicity, one may further assume km is an even number.

The elements Sij = ⟨Ψi|Ψj⟩ = ⟨ψE |Tx(G)Ty(G) |ψE⟩, where x and y are directly deter-
mined by i and j, respectively:

x =

{
ki/2 − 1 , for even i
k(i−1)/2 , for odd i ,
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while y and j share the same relation. By making use of the relation [49]

Ti(H)Tj(H) =
1

2
(Ti+j(H) + T|i−j|(H)), (22)

one may even find the matrix elements without recording any states during the Chebyshev
evolution. Instead, we simply record the two numbers ⟨ψE |Tk(G) |ψE⟩ and ⟨ψE |HTk(G) |ψE⟩
at the appropriate time, i.e., when k = km − 2, k = km − 1, k = km and k = km + 1.

Finally, we arrive at the explicit expressions of matrix elements

Sij =
1

2
⟨ψE |

(
Tx+y(G) + T|x−y|(G)

)
|ψE⟩ , (23)

Hij =
1

2
⟨ψE |H

(
Tx+y(G) + T|x−y|(G)

)
|ψE⟩ . (24)

Also note that since Tx+y is needed, where both x and y may reach the maximum value
kn, the cut-off order K is doubled to K = 2kn in this mode. When the block technique is
employed, the situation becomes a little more complicated. One then needs to record the
cross terms (like a 2×2 matrix) instead of the single number. In this case, the relationship
between i, j and x, y remains the same. Suppose we have two different evolving states |ψ1⟩
and |ψ2⟩, the three numbers

⟨ψ1|Tk(G)|ψ1⟩ , ⟨ψ1|Tk(G)|ψ2⟩ , and ⟨ψ2|Tk(G)|ψ2⟩

shall be recorded at the same time (same k). The final version of S matrix is then composed
of 4 matrices:

S =

[
S11 S12

S21 S22

]
, (25)

where Sab
ij = ⟨ψa|Tx(G)Ty(G) |ψb⟩.

For the generalized eigenvalue problem Eq. (11), the Hermitian matrix S is first diag-
onalized as

S = V ΛsV
†, (26)

where V is the eigenvector matrix for S, V V † = I, and Λs is the associated eigenvalue
matrix. Since S is generally singular, we then contract the (2n+1)× (2n+1) matrix V by
elimination of the columns associated with eigenvalues with absolute value below a cutoff
ε = 10−12. Denoting the number of retained eigenvalues as m, the contracted eigenvector
matrix Ṽ is of order (2n+ 1)×m, and

S̃ = Ṽ Λ̃sṼ
†. (27)

The next step is to form the contracted Hamiltonian matrix H̃. Since

I =

(
Λ̃
− 1

2
s Ṽ †

)
S̃

(
Ṽ Λ̃

− 1
2

s

)
, (28)

denoting the transformation matrix U = Ṽ Λ̃
− 1

2
s , the contractedm×m Hamiltonian matrix

is
H̃ = U †HU. (29)

The Hermitian matrix H̃ of order m ×m with m ranging from 103 to 104 is then diago-
nalized directly

H̃ = Ỹ Λ̃Ỹ †, (30)
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where Ỹ is the eigenvector matrix of H̃ and Λ̃ is a diagonal matrix consisting of those
desired eigenvalues of the original Hamiltonian H contained in [−a, a]. The eigenstates of
the projected Hamiltonian H may be obtained through elementary matrix algebra:

B = UỸ = Ṽ Λ̃
− 1

2
s Ỹ . (31)

Denoting the Eq. (21) as a 2N × (2n + 1) matrix A with |χi⟩ being the i-th column, the
eigenstates of the original Hamiltonian H contained in [−a, a] is

Φ = AB = AṼ Λ̃
− 1

2
s Ỹ . (32)

We finally get the eigenvalues Λ̃ and eigenstates Φ.

D Comparison with a hybrid method

Since the Lanczos method is widely employed to compute the lowest (or highest) eigenval-
ues, while the exp-semicircle filter provides a means to transform the central eigenvalues to
the highest ones, naturally one may combine them together to efficiently compute the cen-
tral eigenvalues, a way far simpler than the DACP method. But there are several reasons
to prefer complicated techniques used in the DACP method to the standard construction
of the Krylov space, especially when large scale computations are required.

First, it is known that the Lanczos method is not numerically stable under practi-
cal conditions. Specifically, although the Lanczos algorithm shows perfect properties in
theory, in practice it loses many of its designed features, e.g., global orthogonality and
linear independence among Lanczos recursion states [35, 50, 51]. These defects effectively
limits the number of eigenvalues which can be computed. In addition, it seems that the
emergence of generalized eigenvalue problem (to deal with non-orthogonal base states)
is unavoidable due to the error accumulations [52, 53]. The Chebyshev recursion, on the
other hand, possesses many interesting properties common in both the ideal and prac-
tical calculations [50]. In particular, it is accurate and stable for x ∈ [−1, 1], allowing
the propagation in the Chebyshev order domain for tens of thousands of steps without
accumulating significant errors [33].

Second, taking the reorthogonalization step into consideration, the efficiency of the
Lanczos algorithm decreases. The reorthogonalization step is a necessary part in both the
Lanczos and the Arnoldi method. When there is a large amount (e.g., several thousands)
of eigenvalues to be computed, the total cost is actually dominated by the reorthogonal-
ization [28,29,54]. Suppose the total required number of eigenvalues is R and the Hilbert
space dimension is D, then the Lanczos-type methods scale as DR2, as every generated
Ritz vector needs to be reorthogonalized against the existing ones (see also the discussions
in Refs. [29,44]). In comparison, we have shown in Section 3 that TF ∝ DR−1, TE ∝ DR0,
and TD ∝ D0R3, where each one of them is better than DR2 (R≪ D). Although partial
reorthogonalization schemes have been proposed, they result in an increased cost in compu-
tations as well as memory traffic [20,55], and they are not guaranteed to succeed when the
accuracy requirement becomes strict [55]. Moreover, the DACP method and the Lanczos
algorithm are different in terms of space complexity, as the former shows max(DR0, R2),
while the latter requires DR once the reorthogonalizations are needed [44]. Therefore, the
DACP method has superiority over the Lanczos algorithm in both the time and the space
complexity.

Finally, ignoring the requirement of reorthogonalizations, we find that the two methods
are comparable in both the time and the space complexity. Recall that the Chebyshev evo-
lution time, being the dominating term in the DACP method, becomes TE ≃ πREmaxτ/a,
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Figure 8: Comparison of relative error distributions η(E) for different basis during the
second step of the DACP method, including {Tk(H)} (red squares),

{
Hk

}
(blue squares)

and
{
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}
with Schmidt orthogonalization (blue crosses).

where τ is the time for matrix-vector product. We then discuss the time complexity of
a combined version, the Lanczos method with the exp-semicircle filter. As shown in Fig.
1 of the Supplemental Material in Ref. [22], and the discussions in Ref. [28], the number
of Lanczos steps m shall be at least twice the number of requested eigenvalues R, i.e.,
m ≥ 2R. Since 2R iterations are needed, and every iteration requires a filter applica-
tion with TF ≃ 24Emaxτ/a, the computation time reads 2R · 24Emaxτ/a = 48REmaxτ/a.
Therefore, the DACP method and the combination of Lanczos with the exp-semicircle
filter share the same time complexity.

In addition, we also test the basis set in Eq. (10) using the simulation of DACP
(calculating the error produced by the three steps of DACP as the exact eigenvalues are
known), with other conditions the same. The results are shown in Figure 8. Such a basis
set does not converge to any eigenvalues in the condition η(E) ≤ 10−6. In contrast to the
DACP method, the best converged eigenvalues for basis

{
Hk

}
are located at the two ends

of the interval. In summary, the DACP method is more stable and more efficient than the
Lanczos method applied with the exp-semicircle filter.

E Error analysis

In this section, we deduce the shape of relative error distribution. We obtain the error
results using two different approaches. The first way roughly follows the progress of the
DACPmethod except substituting those computationally hard steps by their direct results.
The second one is analytical deductions under several approximations.

We first state the assumptions shared by the two approaches.

1. We start from an initial state |ψ⟩ = β
∑

i ci |Ei⟩, where β is the normalization con-
stant, ci the real valued probability amplitudes, |Ei⟩ the eigenstates with Ei, and
−a ≤ Ei ≤ a. Namely, ci = 0 when |Ei| > a.

21



SciPost Physics Submission

2. The exact energy levels are known and are equally spaced, i.e., Ei+1−Ei = Ei−Ei−1.

3. The maximum abstract energy Emax = 1.

4. We compute the eigenvalues following the Chebyshev evolution and the subspace
diagonalization of the DACP method.

Under these settings, we employ a simulation program of the DACP method (rep-
resenting partially analytical results) to efficiently generate errors that are close to that
of the DACP method. In detail, instead of performing K order Chebyshev evolution in
the DACP method, we explicitly write down the expressions of the states in Eq. (9) and
construct the corresponding subspace matrices in Eq. (12). The results are almost exactly
the same to DACP, except that there exists a slight difference between the two sides of
Eq. (20). Nevertheless, such a simulation catches the major error produced during the
Chebyshev evolution and subspace diagonalization without performing difficult computa-
tional tasks (assuming the exact eigenvalues are known). Moreover, it is also convenient
to test the effectiveness of the basis states constructed from Eq. (10).

Next, we introduce the analytical deduction approach. The difference between the
simulation approach and analytical one lies essentially in the third step of the DACP.
The former one performs the full diagonalization of the subspace matrices. For simplicity
while catching the essential, here we consider only two different eigenvalues {E1 = 0, E2}
combined with two constructed states {|ψ1⟩ , |ψ2⟩ = sin(πH) |ψ1⟩}, where

|ψ1⟩ = β1(|E1⟩+ ε |E2⟩) ,

ε = c2/c1 ≪ 1, and β1 ≃ 1. In the case of the distribution in Eq. (5), c1 ≃ exp(24). ε≪ 1
means that E2 is far away from E1 = 0. Explicitly expressing |ψ2⟩, we then obtain

|ψ2⟩ ≃ ε sin(πE2) |E2⟩ .

The numerical round-off error (marked as δ) runs in during the normalization process,
namely, a small number like ε2 is modified to ε2+ δ. Specifically, the expression of overlap
matrix S reads

S =

[
1 β1ε

2 sin(πE2)
β1ε

2 sin(πE2) ε2 sin2(πE2)

]
. (33)

Supposing that 10−12 ≤ ε2 ≪ 1, diagonalization of Eq. (33) gives

Λs ≃
[
1 0
0 ε2 sin2(πE2)

]
.

Correspondingly, the eigenvalues of the matrix H in Eq. (29) are
{
E1, E2ε

2 sin2(πE2)
}
,

which are then multiplied by Λ
− 1

2
s twice (recall that H̃ = Λ̃

− 1
2

s Ṽ †HṼ Λ̃
− 1

2
s ). Suffering from

the round-off errors, the smallest number E2ε
2 sin2(πE2) turns into E2ε

2 sin2(πE2) + δ,
generating a relative error

η ≃ δ

E2ε2
=

δc21
E2c22

. (34)

Generalizing the Eq. (34) and using c21 ≃ exp(48), one finally gets

η(Ei) ≃
δ exp(48)

Eic2i
≃ 2.8× 10−18

β2Eic2i
. (35)

In deducing the right hand side of Eq. (35), we have used that the double precision
numbers have 16 significant digits and β2 ≃ 4 × 10−23 for our simulation in Figure 9(a),
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Figure 9: Comparison of relative error distributions η(E) obtained via the DACP method
(green crosses), simulation (partially analytical results) of DACP (red squares) and ana-
lytical prediction from Eq. (35) (blue curve) for the initial state |ψE⟩ = β

∑
i ci |Ei⟩. The

results of DACP are the same as in Figure 3(b), except that the range is rescaled from
a = 0.16 to a = 0.1. Note that in Eq. (35), the relative error η(E) is proportional to c−2

i ,
especially for those eigenvalues far away from E = 0.

where β is the normalization constant that obeys β2
∑

i c
2
i = 1. When the distribution of

the probability amplitudes varies, β is changed accordingly, giving different expressions of
η(E).

Alternatively, we may also consider a more complicated case, as the constructed set of
states is {|ψ1⟩ , |ψ2⟩ = cos(πH) |ψ1⟩}. We thus have

|ψ1⟩ = β1(|E1⟩+ ε |E2⟩) ,
|ψ2⟩ = β1(|E1⟩+ ε cos(πE2) |E2⟩) .

The matrix

S ≃

[
1 1+ε2 cos(πE2)

1+ε2
1+ε2 cos(πE2)

1+ε2
1+ε2 cos2(πE2)

1+ε2

]
, (36)

gives the diagonal matrix

Λs ≃
[
2 0
0 ε2(1− cos(πE2))

2/2

]
.

A similar argument leads also to Eq. (35).
In Figure 9, we compare the relative error distributions of the above two approaches.

Specifically, the results of the DACP method (the same as in Figure 3(b)) are also shown.
The initial state for the former two is set directly to |ψ⟩ = β

∑
i ci |ϕi⟩, where

ci =

{
e

2k
Emax

√
a2−E2

i , Ei ∈ [−a, a]
0 , Ei /∈ [−a, a].

A similar state is prepared after the exp-semicircle filtering in the DACP method. Ob-
viously ,the distribution of ci is directly connected to the relative error η(E), especially

23



SciPost Physics Submission

for those eigenvalues far away from E = 0. Therefore, to reduce error and to find more
eigenvalues, the best initial state |ψE⟩ for the Chebyshev evolution shall be the windows
function

ci =


1√
R
, Ei ∈ [−a, a]

0, Ei /∈ [−a, a],

where R is the dimension of eigenspace in [−a, a].
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