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Abstract

Known effects arising in the Ehrenfest dynamics of quantum electrons and
classical nuclei with a moving basis set for the former, can be understood
in terms of the curvature of the manifold hosting the quantum states of the
electronic subsystem. Namely, the velocity dependent terms appearing in the
Ehrenfest forces on the nuclei acquire a geometrical meaning in terms of the
intrinsic curvature of the manifold, while Pulay terms relate to its extrinsic
curvature.

1 Introduction

In a recent paper [1] it was established how to reformulate quantum-mechanical equations
for situations in which the basis set and the spanned Hilbert space vary with external
parameters such as nuclear positions. This is routinely encountered in electronic struc-
ture calculations using atom-centered basis functions, and where the nuclei move, that
is, any first-principles calculation method in quantum chemistry or condensed matter and
materials physics using atomic orbitals as basis sets. There are many such methods and
software packages that are widely used in either or both communities (for a brief review
and links to codes used in quantum chemistry see, e.g., Ref. [2]; for methods and programs
using atomic orbitals in condensed matter see, e.g., Refs. [3–9]). We will restrict ourselves
here to mean-field-like methods, such as Hartree-Fock or Kohn-Sham density-functional
theory (DFT) [10], including their time-dependent versions [11], and we will therefore use
single-particle language.

For adiabatic situations, it is an old and well-known problem, for which the relevant
equations have long been established. The key consequence of the basis states moving with
nuclei is the appearance of Pulay forces [12], which are extra terms in the adiabatic forces
acting on the nuclei due to the moving basis. The generalisation to non-adiabatic problems
was done two decades ago [13–15]. Differential geometry concepts were recently used to
obtain a transparent formalism, which allowed better insights into the meaning of the extra
terms appearing in the equations [1]. The use of the formalism was demonstrated in two
examples, namely, the time-dependent Schrödinger equation and the adiabatic forces on
nuclei.

In this paper we extend the formalism of Ref. [1] to the Ehrenfest forces in mixed,
classical-nuclei / quantum-electrons dynamical calculations. We show that the extra force
terms appearing beyond the Pulay forces consist of a term proportional to the Riemann
curvature tensor of the fibre bundle and the nuclear velocities, and, therefore, explicitly
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non-adiabatic, plus a term depending on the connection, which is implicitly non-adiabatic.
The Pulay forces themselves are shown to appear only for curved manifolds, including
extrinsically curved.

2 Forces

2.1 General formalism

For Ehrenfest dynamics, considering a system of quantum electrons and classical nuclei,
and following Todorov [14], we start from the Lagrangian

L =

Ne∑
n

〈ψn|ih̄ dt −H|ψn〉+

3Nn∑
j

1

2
MjṘ

2
j − Vnuc({Rj}) (1)

defined for the Ne wavefunctions ψn of independent electrons (we will disregard spin here-
after), and for the 3Nn position components of Nn nuclei in three dimensions, Rj , as
dynamical variables. Mj represent the nuclear masses; j runs over all nuclear-position
vector components, and, therefore, the mass associated to the three components of a given
nucleus is the same. Vnuc({Rj}) stands for the nucleus-nucleus repulsion. dt represents the
time derivative, d

dt , indicating |ψ̇n〉 in the Lagrange sense as dt|ψn〉 (to distinguish it from
the Lagrange partial derivatives, ∂j = ∂

∂Rj
and ∂

∂〈ψn|), although dt is still the partial time
derivative in the Schrödinger sense when referring to, for instance, ψn(r, t).

H is the effective single-particle Hamiltonian for the electrons using a mean-field theory
such as the Kohn-Sham version of time-dependent density-functional theory [11]. All the
results of this work directly apply to that theory [14,15].

The evolution of both ψn’s and Rj ’s will be then defined by minimising the action
S =

∫ t
Ldt′. This evolution was shown to conserve total energy, total momentum and the

orthonormality of the wavefunctions [14].
Defining the first term as

Le =

Ne∑
n

〈ψn|ih̄ dt −H|ψn〉 , (2)

we express now the electronic wavefunctions in a finite, non-orthogonal, and evolving basis
set, {|eµ, t〉, µ = 1 . . .N}, in an evolving N -dimensional Hilbert space Ω(t), always a
subspace of the entire (ambient) Hilbert space H. Ω(t) at all times defines a (N + 1)-
dimensional fibre bundle Ξt. In its natural representation [1], and summing over repeated
indices, Eq. (2) becomes

Le = ih̄ ψnµđtψ
µ
n − ψnµH

µ
νψ

ν
n ,

with
ψµn = 〈eµ|ψn〉 , ψnµ = 〈ψn|eµ〉 , Hµ

ν = 〈eµ|H|eν〉 .

The set {|eµ, t〉, µ = 1 . . .N} is the dual basis of {|eµ, t〉}, also a basis of Ω(t), satisfying
〈eµ, t|eν , t〉 = δµν , ∀µ, ν at any time t. The symbol đt indicates the covariant time derivative
in Ξt, defined as [1]

đtψ
µ
n = dtψ

µ
n +Dµ

νtψ
ν
n , (3)

where Dµ
νt = 〈eµ|dteν〉 gives the connection in the manifold (note the convention in the

order of indices).
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There is also the possibility of orthonormalising the basis set at each time by, for
instance, a time-dependent Löwdin transformation from the original non-orthogonal basis.
In that case, the formalism remains, but it would simplify with the vectors of the dual basis
becoming identical with their direct-basis corresponding vectors, and the metric tensors
becoming the identity matrix. The equations all stay as for the natural representation
with no need of distinguishing upper/lower (contravariant/covariant) indices. Numerically,
however, it would be less efficient, so we keep the general non-orthogonal formalism for
generality.

2.2 Derivation of the forces

For the electrons, the Euler-Lagrange equations for the wavefunctions give [14] the time-
dependent Schrödinger equation in the natural representation [1],

Hµ
νψ

ν
n = ih̄ đtψ

µ
n . (4)

For the evolution of the nuclear coordinates, the Euler-Lagrange equations on Rj give

MjR̈j = −∂jVnuc({Rl}) + ∂jLe ,

the last term representing the Ehrenfest forces on the ions due to the electrons (we will
not include the nucleus-nucleus repulsion into the Ehrenfest forces as defined here).

Let us assume henceforth that the time evolution of the basis is associated to the nuclear
motion, such that |eµ, t〉 = |eµ, {Rj(t)}〉. This assumption includes the most widely used
moving bases, which are fixed-shape atomic orbitals f(r) for one quantum particle in
three-dimensional space (r is 3D position) moving with the nuclei as f(r − vt), being v
the instantaneous velocity of the nucleus a particular basis function moves with. It is not
limited to that case, however: the shape can vary (and does not need to be atomic-like),
as long as it depends on atomic positions and not explicitly on time 1. We then define
the (N + 3Nn)-dimensional fibre bundle ΞR defined by Ω ({Rj}), as spanned by the basis
{|eµ, {Rj}〉}. The covariant derivative in this ΞR manifold is now

ðjψ
µ
n = ∂jψ

µ
n +Dµ

νjψ
ν
n , (5)

with the corresponding connection, Dµ
νj = 〈eµ|∂jeν〉. Both manifolds are related by any

trajectory given by {Rj(t)}, which implies đt = vjðj , being vj the nuclear velocities 2.
Le being a scalar, ∂jLe = ðjLe. We compute the Ehrenfest forces on the nuclei as

Fj = ðjLe = ðj (ih̄ ψnµđtψ
µ
n − ψnµH

µ
νψ

ν
n) .

We just need two other key facts to proceed. Firstly, in the Euler -Lagrange equations,
the ψ’s and the Rj ’s are treated as independent variables, which in the present formalism
translates into ðjψnµ = ðjψνn = 0.

Secondly, using the Riemann curvature tensor of the bundle,

Θµ
jνkψ

ν
n ≡ ðjðkψ

µ
n − ðkðjψ

µ
n , (6)

and the fact that đt = vkðk, the double derivative in the first term of Fj becomes

ðjđtψ
µ
n = vk (ðkðjψ

µ
n + Θµ

jνkψ
ν
n) = vk Θµ

jνkψ
ν
n ,

1If the basis functions can vary in time for the same atomic positions, the formalism would heve to be
generalised, with an extra time dimension in the bundle, and allowing for ∂t in addition to the ∂j ’s.

2The basis vectors for the nuclear coordinates could also be nonorthogonal, in which case the coordinates
and velocities would go as Rj and vj , respectively, but we will assume an orthonormal basis here without
loss of generality for the topic at hand
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where we have used the fact that ðjψ
µ
n = 0.

These velocity-dependent terms in the forces were amply discussed by Todorov [14].
To our knowledge, the fact that they are simply velocity times curvature was not known.
The Ehrenfest forces can then be concisely written as

Fj = −ψnµ
(
ðjHµ

ν − ih̄ vkΘ
µ
jνk

)
ψνn. (7)

By introducing the explicit expressions for the curvature Θµ
jνk and for the covariant deriva-

tive of the Hamiltonian ðjH
µ
ν (both in Ref. [1]), the resulting expression coincides with

what obtained in previous works by means of differential calculus [14, 15]. The meaning
is now, however, much clearer, the expression more transparent, and the derivation much
more direct.

2.3 Non-adiabatic terms

In adiabatic (Born-Oppenheimer) evolution, the atomic forces can be expressed as [1]

FBOj = −ψnµ ∂jHµ
ν ψ

ν
n , (8)

which is a direct result of the Hellmann-Feynman theorem. The difference between Eqs. (7)
and (8) gives the two non-adiabatic basis-related terms.

2.3.1 Explicitly non-adiabatic

Firstly, the curvature term, ψnµih̄ vkΘ
µ
jνkψ

ν
n, is explicitly non-adiabatic, scaling linearly

with the velocity of the displacing basis functions, with the moving nuclei. In the adiabatic
limit of atoms moving infinitely slowly, that force term vanishes with vj → 0. The curvature
itself is still there in the adiabatic limit, and it will give rise to effects analogous to the
geometric phases found in similar contexts [16, 17], but the force itself is strictly non-
adiabatic.

A possible visualisation of this force would be that of a (generalised) centripetal force,
which is suffered by the nuclei due to the electrons being forced to evolve within the curved
manifold. A more canonical interpretation can be obtained from the close analogy of what
is presented in this work and the theoretical framework of geometric phases in molecular
and condensed matter physics (see [16,17] and references therein), as was already noted in
Ref. [1]. In particular, the connection Dµ

νj appearing in the covariant derivative of Eq. (5)
very closely relates to the Berry (or Mead-Berry) connection, or gauge potential [16, 17],
while the curvature of Eq. (6) relates to the corresponding gauge field (gauge-covariant
field strength). In this last sense, the velocity-dependent term in the non-adiabatic force
can be seen as a (generalised) Lorentz force for a charged particle in a magnetic field.

The fundamental difference should be kept in mind, however, between this paper’s the-
ory and that relating to the mentioned geometric phases: the latter refers to the evolution
of the problem’s solutions, whereas the former relates to the evolution of the basis set. As
hinted in Ref. [1], the relation between possible non-trivial behaviours in both manifolds
could be interesting. It is clear that a topologically non-trivial solution manifold can exist
in a trivial basis manifold (as in the limit of the latter tending to H). The question is how
non-trivial basis manifolds affect the topology of the solutions manifold. To our knowledge
it is still to be explored.
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2.3.2 Implicitly non-adiabatic

The second term is the difference between the ψnµ ðjH
µ
ν ψνn term of Eq. (7) and the

ψnµ ∂jH
µ
ν ψνn term of Eq. (8). Remembering the expression for the covariant derivative

of the tensor associated to an operator, ðjH
µ
ν = ∂jH

µ
ν + Dµ

σjH
σ
ν − H

µ
λD

λ
νj [1], that

second non-adiabatic term can be expressed as

ψnµ

(
Dµ

σjH
σ
ν −H

µ
λD

λ
νj

)
ψνn . (9)

This term is not explicitly vanishing with velocity, it is rather an implicit non-adiabatic
term. This is seen from the Hellmann-Feynman theorem, whereby, in the adiabatic limit,
Hµ

νψνn = Enψ
µ
n and ψnµH

µ
ν = Enψnµ. Therefore

ψnµ

(
Dµ

σjH
σ
ν −H

µ
λD

λ
νj

)
ψνn =

= ψnµD
µ
σjEnδ

σ
νψ

ν
n − En ψnµδ

µ
λD

λ
νjψ

ν
n

= En ψnµ

(
Dµ

νj −D
µ
νj

)
ψνn = 0 .

However, if ψµn is not an eigenstate of Hµ
ν , i.e., it is evolving non-adiabatically, then

the term in Eq. (9) is not zero. Explicitly, given the basis of Hamiltonian eigenstates at any
time ξµa (that is, H

µ
νξνa = εaξ

µ
a), if expanding the evolving n-th state as ψµn =

∑
aCanξ

µ
a,

Eq. (9) becomes

ψnµ

(
Dµ

σjH
σ
ν −H

µ
λD

λ
νj

)
ψνn =

=
∑
a,b

C∗anCbn(Eb − Ea)ξaµDµ
νjξ

µ
b ,

This expression becomes zero when at most only one of the Can coefficients is non-zero,
which is precisely the adiabatic case.

2.4 Pulay forces

There is one last point to make in the relation between forces and the curvature of the
manifold, which was already implicit in Ref. [1]. Pulay forces appear in the calculation of
the matrix elements ∂iH

µ
ν = ∂i〈ψµ|H|ψν〉, as

∂iH
µ
ν = 〈eµ|∂iH|eν〉+ 〈∂ieµ|H|eν〉+ 〈eµ|H|∂ieν〉 , (10)

the Pulay terms being the last two. From the expression for the covariant derivative of the
Hamiltonian tensor, ðiH

µ
ν , Ref. [1] recast Eq. 10 in the more revealing form

ðiHµ
ν = 〈eµ|∂iH|eν〉+ 〈∂ieµ|QΩH|eν〉+ 〈eµ|HQΩ|∂ieν〉,

where QΩ is the complement of the projector onto Ω ∈ H, PΩ, i.e., PΩ + QΩ = 1, the
identity operator in the infinite-dimensional ambient Hilbert space H. The last two terms
of the last expression make explicit the direct relation between the Pulay correction and
the curvature of the manifold: if the extrinsically defined basis vectors stay within Ω when
displacing coordinate i, as would happen in the absence of curvature, QΩ|∂ieν〉 = |0〉
and 〈∂ieµ|QΩ = 〈0|, and, therefore, the last two terms would be zero, giving ðiH

µ
ν =

〈eµ|∂iH|eν〉. The effect of basis change within Ω is taken care of by the connection in the
covariant derivative in ðiH

µ
ν [inside parenthesis in Eq. (9)], which, as shown in the previous

subsection, give a zero contribution to the forces in the adiabatic case. In other words,
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when slightly displacing in nuclear configuration space, it is not the change in basis, but
the turning of Ω, what matters for the (adiabatic) Pulay corrections to the forces, which
happens when ΞR is curved.

Unlike the velocity-dependent terms discussed above, which depend on the intrinsic
(Riemann) curvature, the Pulay corrections appear for any curvature, including extrinsic
curvature (in the sense of a cylinder having non-zero extrinsic curvature but zero intrinsic
one), since the Pulay corrections stem from calculations in the ambient space H, including
outside Ω. The corrections will be there as long as QΩ|∂ieν〉 6= |0〉.

3 Conclusion

For Ehrenfest dynamics of quantum electrons and classical nuclei, and for basis functions
for the former that move with the latter, it has been shown how the extra terms appearing in
the Ehrenfest forces acquire a natural geometric interpretation in the curved manifold given
by the set of electronic (tangent) Hilbert spaces defined at each set of nuclear positions. The
velocity-dependent term, explicitly non-adiabatic, depends on the intrinsic curvature of the
manifold (it could be considered to be a centripetal force arising when constraining motion
to the curved manifold, or the force arising due to the effective gauge field represented by
that curvature). It has the simple form of velocity times curvature.

The two additional terms are implicitly non-adiabatic, disappearing in the adiabatic
limit, when following the Born-Oppenheimer surface. The well-known Pulay forces are also
shown to be a consequence of the manifold curvature, although in this case, an extrinsically
curved manifold is enough for these terms to appear.

The paper allows a deeper understanding of the extra terms appearing in the Ehren-
fest forces for moving basis sets, in addition to connecting them to other contexts, albeit
the forces themselves are unchanged. This is unlike what happens with the better under-
standing of the electronic evolution equation, Eq. (4), which enables the design of better
numerical integrators [18]. The curvature itself, however, Eq. (6), can also be exploited as
a measure of basis incompleteness along a nuclear trajectory.
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