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Abstract

We investigate and compare the particle number fluctuations in the putative many-body
localized (MBL) phase of a spinless fermion model with potential disorder and nearest-
neighbor interactions with those in the non-interacting case (Anderson localization) and
in effective models where only interaction terms diagonal in the Anderson basis are kept.
We demonstrate that these types of simple effective models cannot account for the par-
ticle number fluctuations observed in the MBL phase of the microscopic model. This
implies that assisted and pair hopping terms—generated when transforming the micro-
scopic Hamiltonian into the Anderson basis—cannot be neglected even at strong disorder
and weak interactions. As a consequence, it appears questionable if the microscopic model
possesses an exponential number of exactly conserved local charges. If such a set of con-
served local charges does not exist, then particles are expected to ultimately delocalize for
any finite disorder strength.
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1 Introduction

It has been conjectured that one-dimensional quantum lattice models with short-range
hoppings and interactions enter a many-body localized (MBL) phase for sufficiently strong
potential disorder [1–18]. Similar to Anderson localization (AL) in non-interacting sys-
tems [19–22], particles in an MBL phase are believed to be localized and particle number
fluctuations in any partition of the system in the thermodynamic limit should therefore
strictly be bounded. On the other hand, introducing local interactions for the original
particles induces exponentially decaying long-range interactions between the Anderson lo-
calized eigenstates of the non-interacting model leading to a dephasing. As a consequence,
in a quench starting from a product state, Anderson eigenstates which are a distance `
apart become entangled after a time t ∼ e`. This leads, in particular, to the logarithmic
increase of the von-Neumann entanglement entropy of a partition, S ∼ ` ∼ ln t, which is
considered to be one of the hallmarks of an MBL phase [23,24].

If the particles in an MBL phase are indeed localized, then this type of physics can be
described by effective models [8, 10, 25–27]

Heff =
∑
n

εnηn +
∑
nm

Jnmηnηm + · · · (1)

with random energies εn and exponentially many conserved charges [H, ηn] = 0 with
ηn = d†ndn being the occupation numbers of the localized orbitals. Note that in contrast to
Bethe ansatz integrable systems which have only linearly many independent local charges,
any combination of operators ηi which are centered near a lattice site n is again a new
local conserved charge [8]. For a fully localized system there are as many independent
local charges as there are eigenstates. Furthermore, Jnm are non-local interactions which
decay exponentially with the distance between the conserved charges. Due to the assumed
localized character of the orbitals, the operators dn in the effective model are related to
the original fermionic operators ci in the microscopic model by a unitary transformation.
Here the Wannier states |i〉w corresponding to the ith lattice site are replaced by a basis
of localized orbitals |n〉. Note that a representation of a given microscopic Hamiltonian
by an effective Hamiltonian as given in Eq. (1) is always possible if no restrictions are
placed on the form of the ηn, in particular, if they are allowed to be non-local [8,28]. What
makes this representation special for the MBL case is that the ηn are all supposed to be
local, i.e., these operators only have support—up to exponentially small tails—on a finite
number of adjacent lattice sites. If one wants to take into account the renormalization
of the orbitals of a non-interacting Anderson localized system when adding interactions,
then one has to ensure that this renormalization does not ultimately lead to delocalized
orbitals. Otherwise the statement that the microscopic model can be represented by an
effective model of the form (1) becomes meaningless. This is an important point which we
will return to later. In a number of recent publications, we have provided evidence that
the spinless fermion model

Hmicro = −J
∑
j

(c†jcj+1 + h.c.) + V
∑
j

njnj+1 +
∑
j

Djnj (2)

shows particle number fluctuations in a partition which are not bounded in the thermo-
dynamic limit for any finite disorder strength D [29–32]. Here J is the hopping am-
plitude, V the nearest-neighbor interaction, and the potential disorder is drawn from a
box-distribution, Dj ∈ [−D/2, D/2]. An unbounded growth of particle fluctuations was
also noticed by Weiner et al. [33], here the authors suggested an additional phase which is
located between the thermal and the MBL phase. Throughout this paper we use J as unit
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of energy and J−1 as unit of time, setting ~ = 1. Furthermore, nj = c†jcj is the particle
number operator. This finding seems to indicate that the microscopic model (2) can never
be fully described by an effective model of the type given in Eq. (1) with operators ηn which
are fully local. On the other hand, while the model (1) does not show any quasi-particle
fluctuations for ηn = d†ndn local and conserved, it does show, even in this case, bounded
particle fluctuations in the original fermionic basis because the quasi-particles dn are a
local linear combination of the ci particles.

The goal of this study is to understand in detail the differences in the particle number
fluctuations between the interacting microscopic model (2), the Anderson case (V = 0),
and simple effective models of the type shown in Eq. (1). Here we want to already stress
that it is not known how to exactly construct the local integrals of motion ηn—otherwise
the MBL problem would be fully solved—and that various approximative schemes have
been discussed in the literature [26, 27, 34, 35]. We note, furthermore, that while a fully
controlled Schrieffer-Wolff type transformation from a microscopic quantum spin chain with
disorder to an effective model as in Eq. (1) has been claimed to be proven in Refs. [11,
12], these results are currently under debate. Here we will concentrate on one particular
numerical scheme which has been used, for example, in Ref. [34] but we will argue that the
qualitative findings are generic: even if the orbitals ηn are further renormalized, the number
fluctuations have to remain strictly bounded as long as the η-orbitals remain local. Our
paper is organized as follows: In Sec. 2 we discuss how we construct the effective model and
define the measures used to quantify the particle number fluctuations. In Sec. 3, we present
and compare numerical data, obtained by exact diagonalizations, for the time evolution
of disorder-averaged fluctuation measures after a quantum quench for all three models.
We find, furthermore, that clear qualitative differences between the microscopic model (2)
and the effective model (1) emerge if we consider the time-averaged fluctuations in the
diagonal ensemble which are an upper bound for the true particle variance. These results
are presented in Sec. 4. The final section provides a short summary and a discussion of
the remaining open questions.

2 Effective models and particle fluctuations in a partition

If a non-ergodic, many-body localized phase of a microscopic Hamiltonian H does exist,
then there must be a basis in which this Hamiltonian is diagonal with matrix elements
〈n|i〉w which are exponentially decaying away from a localization center. The Hamiltonian
in this localized basis then takes the form (1) and has exponentially many local conserved
charges. In practice it is, however, a very difficult task to find these conserved charges.

Here we consider a specific approximation to obtain an effective model which takes all
interactions between localized orbitals into account but assumes that these orbitals ηn are
the localized Anderson (V = 0) orbitals [34,36]. I.e., the renormalization of the ηn due to
interactions is neglected. This approximation is expected to be reasonable, in particular,
for small interaction strengths V . Furthermore, the results will remain qualitatively valid
as long as the renormalized orbitals remain local which is required if the MBL phase is
truly localized. For the numerical calculations, the effective model is obtained as follows:

• Construct the many-body Hamiltonian for V = 0 for a fixed random disorder con-
figuration.

• Obtain the transformation matrix U which diagonalizes the Hamiltonian for V = 0.

• Now, starting from the microscopic interacting t-V model (2), transform it into the
Anderson basis using the transformation matrix U .
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• Keep only the diagonal of this many-body Hamiltonian matrix. These are the con-
tributions which are diagonal in the Anderson basis.

• Use the transformation matrix U−1 to transform back into the original basis.

• For the obtained effective model, measures of particle fluctuations in the original
microscopic basis can now be calculated and directly compared to the full microscopic
model and the Anderson case.

We carry out all of these steps for each disorder realization separately by using exact
diagonalization (ED). The number of disorder configurations is then increased till the
considered averages are converged on the scales the results are presented on. In the effective
model constructed in this way, off-diagonal contributions such as assisted hopping terms
∼
∑

lmn ηld
†
ndm + h.c. and pair hopping terms ∼

∑
klmn d

†
kd
†
l dmdn + h.c., which naturally

arise when transforming the interaction part of the microscopic model into the Anderson
basis, are neglected. Put another way, the comparison between the microscopic and the
effective model will tell us if it is justified to neglect these terms. Note that all three
models are always considered at half filling and for exactly the same disorder configuration.
Disorder averages can be obtained by performing these steps many times for different
random configurations. Starting from initial product states |Ψ(0)〉, we calculate time
evolutions using these three Hamiltonians and monitor the time dependence of particle
fluctuations in a partition of the system. For normalized initial states, the expectation value
of an operator O is then given by 〈O(t)〉 = 〈Ψ(t)|O|Ψ(t)〉 with |Ψ(t)〉 = exp(−iHt)|Ψ(0)〉.
All expectation values shown in this paper are averages over many disorder realizations.
Time averages are denoted as O. We want to stress already here that care has to be
taken when exactly the time average is performed, a point which will be important for the
following discussions.

In order to investigate particle number fluctuations in these models, we partition the
system in two equal halves and calculate the probabilities p(n, t) of having n particles in
one partition at time t. Based on p(n) we can define the average particle number

〈N〉 =
∑
n

p(n)n (3)

and the number variance

∆N2 = 〈N2〉 − 〈N〉2 =
∑
n

p(n)(n− 〈N〉)2 . (4)

In addition, we will also consider Rényi number entropies [29]

S
(α)
N =

ln
∑

n p
α(n)

1− α
(5)

where α ≥ 0 is a real parameter. In the limit α → 1 we obtain, in particular, the von-
Neumann number entropy SN = −

∑
n p(n) ln p(n) [37–46], and in the limit α → 0 the

Hartley number entropy.

3 Numerical results for time-dependent fluctuation measures

We use ED for finite systems to investigate the quench dynamics in the full interacting
model, the Anderson model, and the effective model—constructed as described in the
previous section—starting from a charge density wave state |Ψ(0)〉 where every second site
is occupied.

4



SciPost Physics Submission

3.1 Entanglement and Number Entropy

We concentrate first on the time evolution of the disorder-averaged entanglement entropy S
and number entropy SN. In Fig. 1, we show results for two different disorder and interaction
strengths. In the Anderson case, both the entanglement and the number entropy saturate
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Figure 1: Results for L = 12 averaged over 80000 samples with D = 36 and V = 0.2 (top
row) and D = 20 and V = 2.0 (bottom row). Left column (a, b): entanglement entropy,
right column (c, d): number entropy. The largest entropies occur in the full model (blue)
while the entropies quickly saturate in the Anderson case (green). The effective model is
in between those two cases (orange).

quickly. In the full model, on the other hand, both quantities increase as S(t) ∼ ln t
and SN(t) ∼ ln ln t before saturation due to the finite size of the system sets in. For the
effective model, we also observe a logarithmic increase of the entanglement entropy for
both parameter sets shown which is expected due to the long-range dephasing terms in
Eq. (1). For the number entropy the situation is less clear. While for D = 36 and V = 0.2,
Fig. 1(c), the effective model shows a similar behavior as the full model, this is not the
case for D = 20 and V = 2.0, Fig. 1(d).

Clearly, a more detailed analysis of the scaling of the entropies with system size L,
disorder strength D, and interaction strength V is required. Let us first recapitulate what
we have found for the full microscopic model (2): For times 1/V � t� td — where td is a
common deviation time for both SN and Sent due to the finite size of the systems studied
— we have found that [31,32]

S = const +
A

D3
ln t, SN = const +

B

D3
ln ln t (6)
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with some constants A,B. The common deviation time scales as td ∼ exp(L/ξ)/V with
ξ ∼ 1/

√
D −Dc(V ) and is a finite-size effect. For the full microscopic model, the value

of SN where the scaling starts to deviate from ln ln t and saturation starts to set in is
therefore given by

SN (td) = const +
B

D3
ln
(
L
√
D −Dc(V )− const

)
(7)

and does depend on D, V , and L.
In the effective model, on the other hand, particle fluctuations only occur inside each

localized Anderson orbital, such that ∆N2 . ξA/a. Here ξA is the Anderson localization
length and a the lattice parameter. The scaling of the Anderson localization length is
known from transfer matrix approaches, ξA = ξ0/D

2. Furthermore, we have found [31,32]
that SN ∼ − ln

(
1− 2∆N2

)
leading to a saturation value of the number entropy in the

effective model given by
Ssat
N ∼ − ln

(
1− 2ξ0/D

2
)
. (8)

Together with the double logarithmic scaling for SN < Ssat
N this allows to define a saturation

time tsat for the effective model by

const +
B

D3
ln ln tsat = − ln

(
1− 2ξ0/D

2
)

+ const . (9)

If tsat < td—which will always be true if the system is large enough—then the number
entropy in the effective model at long times will saturate to a constant which only depends
on D but not on V and L. I.e., in sufficiently large systems, we expect a very different
scaling behavior in the full and the effective model. Here we want to also stress that this
qualitative picture is general and independent of the specific effective model considered.
It does hold with some finite length scale ξ0 as long as the η-orbitals are local. For
D = 20 and L = 8 − 16 this difference in scaling can already be observed numerically as
shown in Fig. 2. While the saturation value does depend on V and L in the microscopic
model, it is independent of V in the effective model and does become independent of L
for L ≥ 14. We conclude that at least this effective model where the conserved charges
are simply the unrenormalized Anderson orbitals cannot account for the observed behavior
of the number entropy in the microscopic model. However, renormalizing the Anderson
orbitals and thus the average localization length could potentially account for the observed
V dependence. In this case though, Eq. (9) would still apply for the renormalized and V
dependent correlation length ξ̃(V ). For systems large enough such that tsat < td there will
then still be an L-independent saturation. The only scenario where the effective model
could explain the finite-size data is if in the effective model with renormalized—but still
local—conserved charges the saturation time tsat is always larger than the deviation time
td for all system sizes accessible by ED. Such a scenario can never be ruled out entirely
based on numerical data for finite system sizes.

3.2 Hartley number entropy

The number entropy is not sensitive to large particle fluctuations occurring with a low
probability. As discussed in more detail in earlier publications [31, 32], a better suited
quantity is the Hartley number entropy SH , formally obtained from the Rényi number
entropy, Eq. (5), in the limit α → 0. However, since the unitary dynamics of the system
immediately couples the initial state with all the other states in the same symmetry sector,
it is crucial to introduce a cutoff and only include probabilities p(n) > pc in order to obtain
a quantity which measures particle fluctuations in a meaningful way. While the cutoff pc
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Figure 2: Number entropies for L = 8, 10 (200000 samples), L = 12 (40000 samples),
L = 14 (4000 samples), and L = 16 (3000 samples) with D = 20: The full model is shown
in the top row, the effective model in the bottom row. Left column (a, b): dependence on
interaction V for L = 12, right column (c, d): dependence on length L for V = 2.0. The
insets show a zoom-in into the time frame where SN saturates for the effective model.

is arbitrary, the qualitative behavior is the same for different cutoffs as long as they are
small. Here we will choose a cutoff pc = 10−10. Furthermore, we cannot take the limit
α→ 0 exactly in the simulations and instead choose a small fixed parameter α = 10−3.

For the Hartley entropy we expect a more pronounced difference between a model
where the particle movement is limited to their (renormalized) Anderson orbitals and
a model where hopping processes between such orbitals can occur. I.e., in a localized
model, p(n) ∼ exp(−|n− nmax|) at long times where nmax is the particle number where
the distribution is maximal. As shown in Fig. 3, we indeed find that SH saturates quickly in
the effective model while the microscopic model shows a ln ln t increase up to the deviation
time td. This difference becomes more pronounced with increasing interaction strength V .

Furthermore, we find that similar to the number entropy the saturation value of SH in
the effective model is again independent of V and becomes independent of L for L ≥ 12
while it does depend on both parameters in the full model, see Fig. 4. Note also that in the
full model the time scale where the Hartley entropy deviates from the ln ln t scaling is again
td as for the entanglement S(t) and the number entropy SN (t). I.e., in the microscopic
model there is only a single finite-size time scale controlling the dynamics of all entropies.
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Figure 3: Hartley number entropy for L = 12 and 80000 samples with D = 36 and V = 0.2
(left) and D = 20 and V = 2.0 (right). The largest Hartley number entropies occur in
the full model (blue) while the Hartley number entropies quickly saturate in the Anderson
case (green). The effective model is in between those two cases (orange).
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Figure 4: Hartley number entropies for L = 8, 10 (200000 samples), L = 12 (40000 sam-
ples), L = 14 (4000 samples), and L = 16 (3000 samples) with D = 20: The full model
is shown in the top row, the effective model in the bottom row. Left column (a,b): de-
pendence on interaction V for L = 12, right column (c,d): dependence on length L for
V = 2.0. For the effective model the insets show a zoom-in into the time frame where SH
saturates.

8



SciPost Physics Submission

3.3 Particle number fluctuations

Finally, we also want to compare directly the particle number fluctuations ∆N2(t) in all
three models which is the quantity which we will study further in Sec. 4. As for the Rényi
entropies, we start by comparing all three models for two different sets of disorder and
interactions strengths, see Fig. 5. The results are very similar to those for the number
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Figure 5: ∆N2 for L = 12 and 80000 samples with D = 36 and V = 0.2 (a) and D = 20
and V = 2.0 (b). The largest particle number fluctuations occur in the full model (blue)
while the particle number fluctuations quickly saturate in the Anderson case (green). The
effective model is in between those two cases (orange).

entropy shown in Fig. 1. While the effective model for small system sizes captures the
particle number fluctuations well for small interaction strengths V and large disorder D,
this is not the case for larger system sizes or larger V and smaller D.

If we consider again in more detail the scaling with V and L as shown in Fig. 6,
then we also find results which are consistent with those for the number entropy shown
in Fig. 2. In particular, the particle fluctuations in the effective model at long times are
again independent of the interactions strength V in contrast to the full microscopic model.
We also observe that ∆N2(t→∞) in the effective model starts to become independent of
system size for L ≥ 14 which is consistent with the results for SN .

4 Time-averaged number fluctuations

Instead of evaluating the time evolution of disorder-averaged quantities for which it is
difficult to attain analytical insights, it is useful to consider time-averaged quantities. The
reason why this is helpful is that in the average over infinitely large times only diagonal
terms in the eigenbasis survive for linear observables

〈O〉 = lim
T→∞

1

T

∫ T

0
dt 〈Ψ(t)|O|Ψ(t)〉 (10)

=
∑
k,m

〈Ψ(0)|m〉〈m|O|k〉〈k|Ψ(0)〉 lim
T→∞

1

T

∫ T

0
dt exp[i(Em − Ek)t]

=
∑
k

|〈k|Ψ(0)〉|2 〈k|O|k〉 .

The infinite time average is thus the same as the one obtained when averaging using the
diagonal ensemble ρdiag =

∑
k pdiag(k)|k〉〈k| with pdiag(k) = |〈k|Ψ(0)〉|2. Note that in the
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Figure 6: ∆N2(t) for full and effective model for different interaction strength V and system
sizes L. For L = 8, 10 200000 samples were used, for L = 12 40000 samples, for L = 14
4000 samples, and for L = 16 3000 samples, all with D = 20. The full model is shown in
the top row, the effective model in the bottom row. Left column (a, b): dependence on
interaction V for L = 12, right column (c, d): dependence on length L for V = 2.0. The
insets show a zoom-in into the time frame where ∆N2 saturates for the effective model.

last line of Eq. (10) we have assumed that energy eigenvalues are non-degenerate. If this
is the case, then only eigenstates enter and the dependence on eigenenergies drops out.
Different models with the same diagonal state, such as the Anderson and effective model,
then have the same time-averaged expectation values.

4.1 Time-averaged characteristic function and diagonal-ensemble num-
ber fluctuations

One of the difficulties in analyzing the time-averaged particle fluctuations ∆N2 is that this
quantity is not described by a diagonal ensemble. This can be seen as follows:
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∆N2 = 〈N2〉 − 〈N〉2 = 〈N2〉 − 〈N〉2 (11)

= lim
T→∞

1

T

∫ T

0
dt
{
〈Ψ(t)|N2|Ψ(t)〉 − (〈Ψ(t)|N |Ψ(t)〉)2

}
=

∑
k,m

〈Ψ(0)|k〉〈k|N2|m〉〈m|Ψ(0)〉 lim
T→∞

1

T

∫ T

0
dt ei(Ek−Em)t

−
∑
q,m,k,l

〈Ψ(0)|q〉〈q|N |m〉〈m|Ψ(0)〉〈Ψ(0)|k〉〈k|N |l〉〈l|Ψ(0)〉

× lim
T→∞

1

T

∫ T

0
dt ei(Eq−Em+Ek−El)t .

If we now evaluate the time integrals, then we obtain

∆N2 =
∑
m

|〈Ψ(0)|m〉|2〈m|N2|m〉 (12)

−
∑

q,m,k,l

Eq−Em+Ek−El=0

〈Ψ(0)|q〉〈q|N |m〉〈m|Ψ(0)〉〈Ψ(0)|k〉〈k|N |l〉〈l|Ψ(0)〉 .

If we assume, furthermore, that the system has no degenerate energy gaps—a common
assumption believed to be true for interacting systems [47–50]—then we can simplify the
last term further by using

lim
T→∞

1

T

∫ T

0
dt eit(Eq−Em+Ek−El) = δqmδkl + δqlδkm − δqkδqmδql . (13)

Note that the condition of non-degenerate energy gaps, i.e. the condition that Eq −Em =
El − Ek implies that either Eq = Em and El = Ek or Eq = El and Em = Ek, does not
restrict the occurance of degeneracies in the energy spectrum itself. While this condition
is expected to be true in systems where all subsystems interact with each other, it can be
violated in systems where subsystems become independent of the rest of the system. In
particular, we expect that this condition is not fulfilled in an Anderson localized system.

If Eq. (13) is fulfilled, then we can write the time average of the particle fluctuations
as

∆N2 =
∑
m

|〈Ψ(0)|m〉|2〈m|N2|m〉 −

(∑
m

|〈Ψ(0)|m〉|2〈m|N |m〉

)2

︸ ︷︷ ︸
=∆N 2

(14)

−
∑
k,m

k 6=m

|〈Ψ(0)|k〉|2|〈Ψ(0)|m〉|2|〈k|N |m〉|2.

We note that even in this case the time averaged particle fluctuations are not described by
a diagonal ensemble average which correspond to the first line of Eq. (14) only and which
are given by

∆N 2 = 〈N2〉 − 〈N〉2 . (15)

The difference of the diagonal-ensemble and time-averaged particle fluctuations is therefore

δN2 = ∆N 2 −∆N2 = 〈N〉2 − 〈N〉2 , (16)

i.e., it is due to the order in which the square of the expectation value and the time
average are taken. We note that the square function is convex and therefore, due to

11



SciPost Physics Submission

Jensen’s inequality, δN2 ≥ 0. In spectral representation, this difference corresponds to the
last line in Eq. (14) if condition (13) is fulfilled. However, independent of whether or not
this condition holds, ∆N 2 is always an upper bound for the true particle fluctuations ∆N2

which is important for the following discussion.
The diagonal-ensemble fluctuations ∆N 2 naturally arise when we consider the time-

averaged distribution of particle numbers N in one partition of the system. The number
distribution at a time t is fully described by the characteristic function

χ(θ, t) = 〈Ψ(t)| exp
(
−iθN

)
|Ψ(t)〉. (17)

The number distribution in a time-averaged state is then governed by the time-averaged
characteristic function

χ∞ (θ) = lim
T→∞

 1

T

T∫
0

dt χ (θ, t)

 (18)

from which we can obtain all moments, e.g.

〈N〉 = i
∂

∂θ
χ∞ (θ)

∣∣∣
θ=0

(19)

or the variance

∆N 2 = 〈N2〉 −
(
〈N〉

)2
= − ∂2

∂θ2
lnχ∞(θ)

∣∣∣
θ=0

. (20)

In the Anderson model, the number fluctuations in one partition of the system after
a quench are known to attain a finite asymptotic value independent of system size and
so will the number fluctuations ∆N 2 in the corresponding diagonal ensemble. Since the
eigenbasis of the considered effective model is identical to the Anderson basis, ∆N 2 in
the effective model agrees with that in the Anderson model provided the initial states are
the same. As a consequence, the time-averaged number fluctuations ∆N2 in the effec-
tive model are bounded from above by a quantity that becomes system-size independent
when approaching the thermodynamic limit. We have therefore proven that the particle
fluctuations in the effective model are bounded.

Finally, we note that the two fluctuations, ∆N2 and ∆N 2 agree in the thermodynamic
limit if the condition of non-degenerate energy gaps (13) is fulfilled and if |〈Ψ(0)|m〉|2 ∼ 1/Ω
where Ω is the dimension of the Hilbert space. In this case, the second line in Eq. (14)
will go to zero. We can expect the latter condition to be fulfilled for typical initial states
|Ψ(0)〉 which have an overlap with a macroscopic number of eigenstates |m〉. This point is
discussed further in the Appendix.

4.2 Numerical results

According to the results derived above, the time-averaged particle fluctuations in the di-
agonal ensemble ∆N 2 are identical in the effective model and in the Anderson model. I.e.,
the fluctuations do not change when adding interactions as long as the Anderson orbitals
remain unchanged and the interaction is diagonal in those orbitals. This is confirmed by
the exact diagonalization results shown in Fig. 7 where we perform in addition an average
over all initial states which we indicate by 〈〈· · · 〉〉i.

The long-time average is increasing with system size for the full microscopic model
while it is decreasing towards a finite asymptotic value in the thermodynamic limit for the
Anderson and the effective model. This decrease of the long-time average in the Anderson
and the effective model is a consequence of a 1/L correction when averaging over all initial
product states. It is caused by certain initial states where, for example, all particles are
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Figure 7: Particle fluctuations in a partition averaged over all intial states
〈〈

∆N 2(T )
〉〉
i

=
1
T

∫ T
0 dt

〈〈
∆N 2(t)

〉〉
i
for the interacting spinless fermion model with disorder compared

to those in the Anderson and the effective model. 10000 disorder realizations are used for
L = 8, and 5000 for L = 10.

initially in one half of the system, see the Appendix for a more in depth discussion. These
1/L corrections also affect the scaling of the number fluctuations in the full microscopic
model and make it harder to analyze the finite-size scaling. In fact, these corrections
might be the reason that the increase of the number fluctuations with system size in the
interacting model has been overlooked in the past. If an average over all initial states is
performed, then the finite-size scaling in the interacting model should better be considered
relative to those in the non-interacting case. This largely eliminates the common 1/L
corrections and shows that the relative fluctuations increase roughly with a power law or
logarithmically with L, see Fig. 8. Alternatively, we can pick a typical initial product state
such as the charge density wave state studied earlier where every second site is occupied.
In this case, the finite-size corrections in the non-interacting case are much smaller, see
Fig. 9.

The numerical data presented here clearly demonstrate that the particle fluctuations
in the microscopic model—even for the small system sizes accessible in ED—cannot be
accounted for by the effective model which has particle fluctuations which are finite in the
thermodynamic limit and identical to those in the Anderson model.

Let us now return to the relation between the true particle fluctuations ∆N2 and those
in the diagonal ensemble ∆N 2. We start by numerically investigating the validity of the
assumption (13) of non-degenerate energy gaps. In Fig.10(a), a comparison between ∆N2

calculated with and without this assumption is shown for all three models. We note first
that ∆N2 obtained from Eq. (14), i.e. assuming that Eq. (13) is valid, is identical for the
Anderson and the effective model because this quantity only depends on the eigenstates
which remain unchanged. However, while this quantity appears to become identical to
the time-averaged number fluctuations ∆N2 in the thermodynamic limit for the effective
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Figure 8: (a) Time-averaged particle fluctuations
〈〈

∆N 2
〉〉
i
in dependence of system

size L averaged over all possible initial states. (b) Same as in (a) but relative to the
fluctuations in the non-interacting case

〈〈
∆N 2

AL

〉〉
i
. The data are averaged over 10000

disorder realizations.

Figure 9: Same as Fig. 8 with the charge-density wave state as initial state instead of
averaging over all initial product states. For L ≤ 10 the data is averaged over 50000
disorder realizations, 20000 for L = 12, and 10000 for L = 14.
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Figure 10: (a) Comparison of the time-averaged fluctuations ∆N2 obtained from Eq. (14)
where the assumption (13) has been used (triangles) with ∆N2(t→∞) (dots) where the
assumption (13) has not been used for the full microscopic model, the effective model,
and the Anderson model for L = 12. (b) δN2, Eq. (16), for the microscopic model and
different interaction strengths. In all cases, the data are consistent with δN2 ∼ exp(−L).
For comparison, the Anderson case is shown as well. For L ≤ 10 the data is averaged over
50000 disorder realizations, and 20000 for L = 12.

model, this is not the case for the Anderson model. Physically, this can be understood as
follows: While the Anderson model separates into subsystems which—up to exponentially
small contributions—are independent, the interaction present in the effective model does
couple these subsystems. The assumption of non-degenerate energy gaps, Eq. (13), there-
fore fails for the Anderson model while it appears to be fulfilled for the effective model due
to the interaction induced dephasing. For the full microscopic model the condition (13)
also appears to hold.

In addition, we also expect that for typical initial states the last line in Eq. (14) goes
to zero in the thermodynamic limit. I.e., for the effective and the full microscopic model
we expect that ∆N 2 → ∆N2 for L → ∞. Fig. 10(b) confirms this expectation showing
that the difference between the two fluctuation measures goes to zero exponentially with
system size.

5 Summary and Conclusions

In this paper, we have investigated the particle number fluctuations in a partition of the
t-V model with potential disorder. We have compared the results with the non-interacting
Anderson case, and with an effective model with exponentially many local charges, obtained
by only keeping interaction terms which are diagonal in the Anderson basis. Using various
measures for the particle fluctuations such as the number and Hartley entropies as well as
the variance, we have found that there are quantitative and qualitative differences when
comparing the time evolution after a quantum quench for the interacting microscopic model
and the effective model. In particular, while the number fluctuations in the microscopic
model depend on interaction strength and increase as a function of system size for a
fixed disorder strength, they are independent of interaction strength at long times for the
effective model and become independent of system size, i.e. they saturate to a finite value,
for the largest system sizes considered.

To investigate the difference in the particle number fluctuations between these two
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models further, we have shown that the time-averaged particle number variance ∆N2 =

〈N2〉−〈N〉2 can be bounded from above by the variance ∆N 2 = 〈N2〉−〈N〉2 obtained from
the time-averaged characteristic function. The latter is entirely determined by a diagonal-
ensemble average, while the first is not. I.e., ∆N 2 is independent of the eigenenergies and
diagonal in the eigenstates. Furthermore, we have shown that the difference between the
two fluctuation measures, δN2 = ∆N 2−∆N2, vanishes in the thermodynamic limit if the
system does not have degenerate energy gaps and if we start the quench from a typical
state which does have non-vanishing overlaps with a macroscopic number of eigenstates.
For the fluctuation measure ∆N 2 a clear, qualitative difference between the microscopic
and the effective model then emerges: while the fluctuations in the effective model are
exactly the same as in the Anderson model, do not depend on interaction strength, and
do not increase with system size, the fluctuations in the microscopic model are larger and
do increase with system size.

Thus, clearly, the studied effective model does not account for the observed increase of
the particle number fluctuations with system size in the microscopic model. In other words,
when expressing the microscopic model in the Anderson basis, off-diagonal terms describing
assisted and pair-hopping processes—which naturally arise from the interaction—cannot
be neglected. The question then is, whether these terms simply renormalize the Anderson
orbitals while still allowing for an effective description of the form (1) with local conserved
charges or whether such a renormalization ultimately leads to these charges becoming non-
local. In the latter case, the disordered many-body system would not be localized. We note
that the qualitative picture for the number fluctuations in the effective model remains valid
as long as the η-orbitals are local charges. In this sense, our results are general. Based
on the numerical data for the accessible system sizes we also believe that it is fair to
say that there is no evidence that ∆N 2 and therefore ∆N2 in the disordered t-V model
is bounded. If an MBL phase and an effective model with local charges describing this
model do exist, then the Anderson orbitals are strongly renormalized and become much
less local even for strong disorder and already for weak interactions. Such a strong initial
renormalization is unexpected and needs to be explained. In this context we also note that
within the last year the critical disorder strength in the model (2) has been strongly revised
from Dc ∼ 16 to Dc > 28 [51] and very recently to Dc > 80 [52]. This seems to imply
that all previous results discussing the phase transition at Dc ∼ 16 should be discarded.
We note, in particular, that these results further support our results in Refs. [30, 31] that
the system is not localized up to at least D ∼ 40. While we already responded to the
criticism of our results by Luitz and BarLev [53] in detail in [31] our current study has
brought to light another issue: Performing averages over all initial product states leads
to a 1/L correction to ∆N 2 with a negative sign which is present already in the non-
interacting Anderson case and which can disguise the increase of ∆N 2 with system size
in the interacting case. This might explain why this increase has been missed in the past
including in [53]. Lastly, we remark that if we assume that the overlap of a typical initial
state with each eigenstate is ∼ 1/Ω, where Ω is the dimension of the Hilbert space, then
∆N 2 ∼ 1

Ω

∑
m〈m|N2|m〉 − 1

Ω2 (
∑

m〈m|N |m〉)2. I.e, under this assumption the question
whether or not ∆N 2 is bounded is reduced to an investigation of the fluctuations in the
eigenstates of the system which might be a useful simplification for further investigations.
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Appendix

A.1 Relation between ∆N2 and ∆N 2

The number fluctuation ∆N 2 = −∂2
θ lnχ∞(θ)

∣∣
θ=0

obtained from the time-averaged charac-
teristic function are identical to the number fluctuations in the diagonal ensemble ρdiag =∑

m pdiag(m)|m〉〈m| with probabilities pdiag(m) = |〈m|Ψ(0)〉|2 determined by the initial
state |Ψ(0)〉. They are an upper bound to the time-averaged number fluctuations ∆N2,
since

δN2 = ∆N 2 −∆N2 = 〈N〉2 − 〈N〉2 =
(
〈N〉 − 〈N〉

)2
≥ 0. (21)

In the following we show that δN2 vanishes in the thermodynamic limit if condition (13)
holds. To this end, we note that in this case δN2 can be written as (see Eq. (14))

δN2 =
∑
k,m

k 6=m

|〈Ψ(0)|k〉|2|〈Ψ(0)|m〉|2|〈k|N |m〉|2 =
∑
k,m

pdiag(k)pdiag(m)Ckm (22)

where C is the non-negative, symmetric matrix of overlaps

C =



0 |〈1|N |2〉|2 . . |〈1|N |Ω〉|2

|〈1|N |2〉|2 0 . . |〈2|N |Ω〉|2
. . .
. . .

|〈1|N |Ω〉|2 |〈2|N |Ω〉|2 . . 0

 . (23)

Ω is the dimension of the restricted Hilbert space with fixed total number of particles. In
our case Ω = L!/

[(
L
2

)
!
]2, which in the thermodynamic limit L→∞ grows exponentially

Ω ∼ L−1/22L.
The maximum eigenvalue of C is finite and can be bounded by [54]

min
m

(
∆N2

m

)
= min

m

∑
k

Cmk ≤ λmax (C) ≤ max
m

∑
k

Cmk = max
m

(
∆N2

m

)
, (24)

where
∆N2

m = 〈m|N2 |m〉 − 〈m|N |m〉2 ≤ γL2, (25)

is the fluctuation of particle number in the chosen partition in the eigenstate |m〉. γ is a
system-size independent constant. Hence δN2 can be bounded from above by

δN2 ≤ λmax (C)
∑
m

pdiag(m)2. (26)

∑
m pdiag(m)2 is the inverse participation ratio. In general, a typical initial state |Ψ(0)〉

overlaps with many eigenstates of the system making
∑

m p(m)2 very small. Indeed, as

17



SciPost Physics Submission

has been shown in [55], when averaging over all initial states with fixed total number of
particles N0 = L/2, denoted by 〈〈. . . 〉〉i one finds〈〈∑

m

pdiag(m)2
〉〉

i
<

2

Ω
. (27)

Thus
δN2 <

2

Ω
max
m

(
∆N2

m

)
−→
L→∞

0. (28)

We conclude that—provided the condition of non-degenerate energy gaps (13) is fulfilled—
the time-averaged particle number fluctuations averaged over all initial product states,
〈〈∆N2〉〉i, and the corresponding diagonal-ensemble fluctuations 〈〈∆N 2〉〉i approach each
other exponentially with increasing system size L. Since condition (13) is fulfilled for the
effective and the full microscopic model we found indeed δN2 ∼ e−L as shown in Fig.10(b),
while δN2 > 0 remains finite in the Anderson model.

A.2 Influence of initial states on the scaling of number fluctuations

In Fig. 7 we have seen that the diagonal-ensemble number fluctuations when averaged over
all initial product states decrease when going from L = 8 to L = 10 for the Anderson and
effective model. This scaling behavior, which points to a potential problem when analyzing
data obtained after averaging over initial states, is at first glance surprising and different
from the interacting model. It is an artifact of initial states with large number fluctuations.

In Fig. 11 we have plotted the diagonal-ensemble fluctuations for the Anderson model
as function of system size L for an initial density-wave state, i.e. a state where every
second site is occupied, and for the case of an average over all random initial states. While
for the initial density-wave state ∆N 2 increases with system size towards an asymptotic
value which is quickly reached, as naively expected, it decreases towards a system-size
independent value when we average over all initial states. This ∼ 1/L decrease is due to
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Figure 11: Particle fluctuations in a partition for the Anderson model for an initial density-
wave state ∆N 2 (green triangles) and when averaged over all initial states 〈〈∆N 2〉〉i (blue
dots). To perform the initial state average we used Eq. (30). The data has been averaged
over 50000 disorder realization for L ≤ 100 and 10000 for L > 100. For the calculation of
∆N 2 starting from a charge density wave common free fermion methods have been used.

rare initial states with large number fluctuations whose relative weight becomes smaller
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with increasing system size. This is illustrated in Fig. 12 where we show a histogram of
particle fluctuations in eigenstates of the Anderson model. One clearly recognizes that
eigenstates with large fluctuations of the particle number have a much larger probability
in smaller systems. When an average over all initial states is taken, also states are included
that have a sizable overlap with these eigenstates which results in a larger value of 〈〈∆N 2〉〉i
for small systems.
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Figure 12: Histogram of particle number fluctuations in eigenstates |α〉 of the Anderson
model for different system sizes L. One clearly recognizes that eigenstates with large
fluctuations become less and less important when increasing the system size. In all plots
we have used 5000 disorder realizations.

The scaling 〈〈∆N 2〉〉i ∼ L/(L−1) seen in Fig. 11, can be understood from a toy model of
localization. Let us consider a system with adjacent, spatially non-overlapping, localized
orbitals extending over exactly two lattice sites. We cut the system in two partitions
assuming that the cut splits the central orbital into two halves and calculate the fluctuations
of particle numbers in one partition in an arbitrary eigenstate. The eigenstates are product
states of all orbitals occupied by zero, one or two particles with the constraint of a fixed
total particle number. We here assume half filling, i.e. N = L/2 particles in L lattice
sites. Then only those eigenstates contribute to the number fluctuations where exactly one
particle is in the central orbital. The probability of such states can easily be computed
from combinatorics. It is given by the number of eigenstates where L/2 − 1 particles are
distributed among the L − 2 remaining lattice sites outside of the central orbital divided
by the total number of states, leading to

〈〈∆N 2〉〉i ∼

(
2
1

)(
L−2
L/2−1

)(
L
L/2

) =
L

2(L− 1)
. (29)

A more rigorous derivation of the particle number fluctuations 〈〈∆N 2〉〉i averaged over
initial states can be done for the Anderson model [56]. This leads to the following expression

〈〈∆N 2〉〉i =
L2

8 (L− 1)

(
1− 2

L

L∑
m=1

〈〈α2
m〉〉

)
, (30)

where 〈〈. . . 〉〉 is used to stress that a disorder average is taken over α2
m with
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αm =

L∑
p=1

∣∣〈p|m〉w∣∣2Wpp, (31)

where Wpp = 〈p|
[∑L/2

j=1 |j〉w w〈j|
]
|p〉 is the overlap of the pth Anderson orbital with the

partition of length L/2. Eq.(30) is also used in the numerical simulation of the diagonal-
ensemble number fluctuations averaged over all initial states, shown in Fig. 11. In the
thermodynamic limit, the 〈〈αm〉〉 can be approximated as

〈〈αm〉〉 ≈
{

1− βm, for m ≤ L
2

βm, for m > L
2

, (32)

where

βm =
L∑
p=1

Cp

exp
[
1/4l(p)

]
− 1

exp

{
−|m− L/2|

4l(p)

}
. (33)

Cp is a normalization constant of order unity and l(p) is the localisation length of the pth
Anderson orbital∣∣∣〈p|k〉w∣∣∣2 ∼ exp

(
−|p− k|

4 l(p)

)
, for |p− k| � l(p). (34)

From Eq. (30) one can then derive the following upper and lower bounds

L

L− 1

lmin

2
exp

(
− 1

4lmin

)
≤ 〈〈∆N 2〉〉i ≤

L

L− 1
lmax, (35)

where lmin(lmax) is the minimum (maximum) of l(p).
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