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Abstract

We review recent progress on the calculation of scattering amplitudes in the high-energy
limit. We start by illustrating the shockwave formalism, which allows one to calculate
amplitudes as iterated solutions of rapidity evolution equations. We then focus on our
recent results regarding 2→ 2 parton scattering. We present the calculation of the imag-
inary part of the amplitude, at next-to-leading logarithmic accuracy in the high-energy
logarithms, formally to all orders, and in practice to 13 loops. We then discuss the com-
putation of the real part of the amplitude at next-to-next-to-leading logarithmic accuracy
and through four loops. Both computations are carried in full colour, and provide new
insight into the analytic structure of scattering amplitudes and their infrared singularity
structure.
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1 INTRODUCTION

1 Introduction

The high-energy, or Regge limit of gauge-theory scattering amplitudes offers a unique insight
into gauge dynamics. In this limit amplitudes simplify and factorize in rapidity, revealing new
degrees of freedom that propagate in two transverse dimensions. Rapidity evolution equations,
such as BFKL [1,2] and its non-linear generalization [3–7], allow us to translate concepts from
Regge theory [8] into calculation tools, leading to concrete predictions for partonic amplitudes
[9–17]. The study of the Regge limit has been crucial in determining multi-leg planar N
= 4 super Yang-Mills (SYM) amplitudes in general kinematics to unprecedented accuracy,
see e.g. [10, 16, 18, 19]. In parallel, computation of the Regge limit in 2 → 2 scattering for
general colour [11–14] have been shown to provide powerful constraints on soft singularities
of amplitudes in general kinematics [15,20–22].

In this talk we focus on 2 → 2 gauge-theory scattering amplitudes, and review recent
results in [13,14,23,24], obtained within a framework developed in [11,12]. In a scattering
configuration 1+ 2→ 3+ 4, with Mandelstam invariants s ≡ (p1 + p2)2, t ≡ (p1 − p4)2 and
u ≡ (p1 − p3)2 = −s − t, the high-energy limit is defined by the condition s≫ −t. Assuming
that the momentum transfer −t is large compared to the QCD scale, these amplitudes can be
calculated as an expansion in the strong coupling, and notoriously develop large logarithms
in the ratio s

−t . It has long been known that the Leading Logarithms (LLs) are resummed to
all orders [25,26] via

MLL
i j→i j(s, t) =
� s
−t

�CAαg (t)Mtree
i j→i j , with Mtree

i j→i j = g2
s

2s
t

Ti · T j , (1)

where the colour generator Ti is in the representation of parton i, and

αg =
αs

π

rΓ
2ε
+O(α2

s ) ; rΓ = eεγE
Γ 2(1− ε)Γ (1+ ε)
Γ (1− 2ε)

(2)

is the gluon Regge trajectory, written in dimensional regularization with D = 4− 2ε. Higher-
order corrections, not written in eq. (2), contribute beyond LL. The simple exponentiation
property in eq. (1) can be interpreted as due to the exchange of an effective degree of freedom,
which is identified as a single Reggeized gluon, or Reggeon. At higher logarithmic accuracy the
scattering amplitude develops a more complex analytic structure, which can be understood
in term of the exchange of multiple Reggeons [27–29] in the transverse plane. These involve
evolution equations which are integrable in the planar limit [30–33], but are difficult to solve
in general. However, in the pertubative regime they can be integrated iteratively [11–14], to
obtain perturbative high-energy amplitudes order-by-order in αs.

The factorization structure of the amplitude beyond LLs becomes clearer by exploiting the
symmetry under the exchange s↔ u, also known as “signature” symmetry. to this end, the
scattering amplitude is split into odd (−) and even (+) component with respect to s↔ u:

M= M(−) +M(+). (3)

It is also convenient to expand the amplitude into a signature-symmetric definition for the
large logarithm:

1
2

�

log
−s− i0
−t

+ log
−u− i0
−t

�

= log
�

�

�

s
t

�

�

�− i
π

2
≡ L , (4)

such that one has

M(±)
i j→i j =

∞
∑

n=0

�αs

π

�n n
∑

m=0

LmM(±,n,m)
i j→i j , with M(−,0,0)

i j→i j ≡Mtree
i j→i j . (5)
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Figure 1: Schematic relation between logarithmic counting and Reggeon exchanges
for two-parton amplitudes in the high-energy limit. The grey blobs represent impact
factors, while the red ones are corrections to the Regge trajectory.

Splitting the amplitudes into (±) components offers several advantages: first of all, signature
is preserved under rapidity evolution, which greatly simplifies the computation of these ampli-
tudes [11–14]. Furthermore, given that a single Reggeon has the quantum numbers of a gluon
exchanged in the t channel, which is odd under the signature symmetry, one finds that M(−)

consists of an odd number of Reggeons, while M(+) involves an even number of them [11]. In
addition, there are other useful properties: for instance, it is possible to show [12] that the odd
amplitude coefficients M(−,n,m) are purely real, while the even ones M(+,n,m) are purely imag-
inary, when expanded in powers of the symmetric logarithm L. Moreover, for gluon-gluon and
quark-gluon scattering Bose symmetry links the kinematic dependence to that of colour, there-
fore M(+) and M(−) are governed by t-channel exchange of colour representations which are
respectively even and odd under 1↔ 4 (or 2↔ 3) interchange.

One obtains a schematic representation for the amplitude, which connects the logarithmic
accuracy with the number of Reggeon exchanges, as represented in fig. 1. One has

M(−) =M(−), SRS+M(−),MRS , M(+) =M(+),MRS (6)

where the superscripts labels amplitudes involving single-Reggeon states (SRS) and multi-
Reggeon states (MRS), respectively. As shown in fig. 1, the odd component M(−) is given
up to NLL accuracy by a single Reggeon exchange [34, 35], with O(α2

s ) corrections to the
trajectory in (2), along with s-independent impact factors [36–39]:

M(−), LL+NLL
i j→i j =M(−), SRS

i j→i j

�

�

NLL = eCAαg (t)LCi(t)C j(t)Mtree
i j→i j . (7)

The factors Ci(t) are expanded in perturbation theory, with coefficients C (n)i . The n = 1 term
contributes at NLL, while the higher-order terms give rise to further subleading logarithms.

A proper description of the scattering amplitude beyond eq. (7) requires to take into ac-
count the t-channel exchange of multi-Reggeon states. The signature even amplitude M(+),
which starts at NLL accuracy, is governed at this logarithmic order by two-Reggeon exchange
[11, 13]. Furthermore, starting with the odd amplitude M(−) at NNLL accuracy, one needs
to take into account the exchange of three Reggeons and their mixing with one-Reggeon
states [12, 40]. In this talk we review recent results obtained in [13, 14] and [23, 24], where
the two towers of coefficients M(+,n,n−1) and M(−,n,n−2) have been expressed to all orders as
iterated solution of the BFKL equation and its generalization, the Balitsky-JIMWLK equation.
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2 METHODOLOGY

Thanks to the development of new methods, theM(+,n,n−1) tower has been evaluated explicitly
to 13 loops, [14], while the tower M(−,n,n−2) has been computed to 4 loops in [23,24].

The calculation of scattering amplitudes in terms of Reggeon exchanges is particularly
interesting, because it allows one to connect modern perturbation theory with concepts such as
Regge poles and cuts, obtaining a deeper understanding of the analytic structure of scattering
amplitudes. In general, an amplitude that can be brought to the form of eq. (7) is said to
admit Regge-pole factorization. It is only admitted by the signature odd amplitude, to NLL
accuracy. The signature even amplitude is described in turn by a Regge cut associated with a
two-Reggeon exchange. Starting at NNLL accuracy, also the signature odd amplitude receives
contributions due to multi-Reggeon states, giving rise to Regge cuts, such that one has

M(−), LL+NLL+NNLL
i j→i j = eCAαg (t)L Ci(t)C j(t)Mtree

i j→i j +M(−), MRS
i j→i j . (8)

The second term in the r.h.s. first arises at NNLL at two loops [41, 42], and it has been in-
terpreted as being due to three-Reggeon exchange in refs. [12, 40, 43], where the three-loop
NNLL amplitude was determined. As a consequence of eq. (8), at NNLL accuracy Ci/ j(t) and
αg(t) start to depend on how the separation in eq. (6) is precisely defined, which is referred
to below as a scheme choice. Following [12], we adopt the scheme in which the Regge cut
contribution is then identified with the MRS, which is explicitly computed using the Balitsky-
JIMWLK rapidity evolution equation. The Regge-pole contribution is identified with the SRS
contribution, determined by matching the r.h.s of eq. (8) to the full amplitude. Other schemes
may be possible, and we refer to [24] for a more detailed discussion on this topic.

An additional motivation to investigate multi-loop corrections in the high-energy limit is
that it provides information on the infrared singularity structure of amplitudes. Further dis-
cussion of this aspect can be found in the original papers [11–13,20,23,24] and in a talk given
at this conference [44], to which we refer for further details.

2 Methodology

Following [11,12], we describe two parton scattering in the high-energy limit within the shock-
wave formalism: fast particles moving in the (+) lightcone direction, defined as projectile, scat-
ter against fast particles moving in the (−) lightcone direction, or target. The fast projectile
|ψi〉 appears as a set of infinite Wilson lines U(z1)⊗ · · ·⊗U(zn) [45,46] at transverse position
zk ≡ xk⊥, crossing the target 〈ψ j| (seen as a “shockwave”) at x− = 0, with

U(z) = P exp

�

i gsT
a

∫ +∞

−∞
d x+Aa

+(x
+, x−=0, z)

�

. (9)

In perturbation theory the unitary matrices U(z) are close to the identity, therefore they can
be parameterized in terms of a colour-adjoint field W a:

U(z) = ei gs T aW a(z) , (10)

which is identified as a source for Reggeized gluons. The projectile and target are thus ex-
panded in Reggeon fields: schematically,

|ψi〉=
∞
∑

n=1

|ψi,n〉 ∼ gs

�

TW
�

i(p)− g2
s

�

TW ⊗TW
�

i(p)− g3
s

�

TW ⊗TW ⊗TW
�

i(p)+ . . . , (11)

where |ψi,n〉 represents a state of n Reggeons, which depends on the transverse momentum p,
but not on the center-of-mass energy. The energy dependence enters through the fact that in-
finite Wilson lines develop rapidity divergences, regulated introducing a rapidity cutoff η= L,
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3 TWO-REGGEON CUT

leading to a rapidity evolution equation for the projectile (and the target)

−
d

dη
|ψi〉= H |ψi〉 , (12)

where H is the Balitsky-JIMWLK Hamiltonian [3–7]. A key feature of eq. (12) is the non-
linearity of H: evolution of the full projectile |ψi〉 in rapidity generates an increasing number
of Wilson lines U(z j), eventually leading to the phenomenon of gluon saturation. However,
in applications to partonic scattering processes it is appropriate to take the limit of dilute
projectile and target [11,12], in which case H acts on states with a given number of Reggeon
fields W . In this perturbative regime, H is diagonal to leading order in g2

s ; the non-linearity
of H manifests at higher orders in the coupling, producing transitions between states with
different number of Reggeon fields: a transition k→ k+2n is of order g2(1+n)

s . Also, note that,
as a consequence of the signature symmetry, only transitions k → k ± 2 are allowed, while
transitions k→ k± 1 are forbidden. In short, the r.h.s of eq. (12) has the form

H







W
WW

WWW
· · ·






≡







H1→1 0 H3→1 . . .
0 H2→2 0 . . .

H1→3 0 H3→3 . . .
· · · · · · · · · · · ·













W
WW

WWW
· · ·






≃







g2
s 0 g4

s . . .
0 g2

s 0 . . .
g4

s 0 g2
s . . .

· · · · · · · · · · · ·













W
WW

WWW
· · ·






, (13)

where non-vanishing entries on the r.h.s. display the perturbative orders at which the various
transition Hamiltonian start contributing. While off-diagonal entries are obtained from expan-
sion of the Leading Order (LO) Balitsky-JIMWLK equation, diagonal entries are given by the
Regge trajectory for H1→1, or the LO BFKL equation for Hn→n, with n ̸= 1.

A scattering amplitude in the high-energy limit is then given as an expectation value be-
tween states with fixed number of Reggeon fields W evolved to equal rapidity:

i(Zi Z j)−1

2s
Mi j→i j = 〈ψ j|e−H L|ψi〉 , with Zi(t) = exp

(

−
1
2

∫ µ2

0

dλ2

λ2
Γi
�

αs(λ
2),λ2
�

)

.

(14)
Notice that, for simplicity, we define the expectation value in terms of states |ψi〉 where
collinear divergences have been removed. These are given by the factors Zi(t), defined as
an integral over the scale of Γi , where, to three loops, Γi =

1
2γK

�

αs(λ2)
�

Ci log −t
λ2 + 2γi . Here

γK is the component of the cusp anomalous dimension [47–51] proportional to the quadratic
Casimir Ci , in the representation of parton i, and γi are anomalous dimensions associated with
on-shell form factors [42,52].

Our aim is to calculate transitions which involve multi-Regge states, therefore, it proves
useful to introduce a reduced amplitude, obtained from the original amplitude by removing
single Reggeon transitions:

i
2s

M̂i j→i j = e−T2
t αg (t) L 〈ψ j|e−H L|ψi〉 ≡ 〈ψ j|e−Ĥ L|ψi〉 , Ĥk→k+2n = Hk→k+2n +δn0T2

tαg(t),
(15)

which we have expressed in terms of a reduced Hamiltonian Ĥ. After evolution has been per-
formed, the contraction of Reggeons of equal rapidity is evaluated in terms of free propagators
〈W a(p)|W b(q)〉= i

p2δ
abδ2−2ε(p− q) +O(g2

s ), see [11]. We are now ready to discuss the cal-

culation of the amplitudes M̂(+,n,n−1) and M̂(−,n,n−2).

3 Two-Reggeon cut

According to eq. (15) and fig. 1, the NLL contribution to the even amplitude is given by

i
2s

M̂(+),NLL
i j→i j = 〈ψ j,2|e−Ĥ L|ψi,2〉 , (16)
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3 TWO-REGGEON CUT

p � k

k

p � k0

k0

| {z }
M̂(+,`)

NLL

| {z }
⌦(`�1)(p, k)

| {z }
LO BFKL

| {z }
⌦(`�2)(p, k0)

Figure 3. Graphical representation of the amplitude at NLL accuracy, as obtained through BFKL
evolution. The addition of one rung corresponds to applying once the leading-order BFKL evolution
on the wavefunction of order (` � 2). This gives the wavefunction at order (` � 1), according to
eq. (2.17). Closing the ladder and integrating over the resulting loop momentum gives the reduced
amplitude, according to eq. (2.11).

2.2 Evolution of the wavefunction

Eq. (2.11) shows that the `-th order amplitude is obtained in terms of iterated integrals that
arise upon evaluating the wavefunction ⌦(`�1)(p, k) to order (` � 1). It is straightforward
to compute the first few orders which gives us an opportunity to revisit the findings of
ref. [23]. We will be able to explain why a new colour structure emerges for the first time
at four loops and explore the general structure of the relevant iterated integrals.

A useful fact is that the evolution admits one well-known solution in the case where
the exchanged state is colour-adjoint and ⌦(p, k) is constant (i.e. independent of k) [1, 2].
The adjoint exchange gives a signature-even state with the same leading-order trajectory
as the reggeised gluon. This enables one to rewrite the Hamiltonian (2.14) as a part which
vanishes when ⌦(p, k) is constant, plus a part proportional to (CA � T2

t ):

⌦(`�1)(p, k) = Ĥ⌦(`�2)(p, k) Ĥ = (2CA � T2
t )Ĥi + (CA � T2

t )Ĥm (2.17)

where, explicitly,

Ĥi (p, k) =

Z
[Dk0]f(p, k, k0)

⇥
 (p, k0) � (p, k)

⇤
(2.18)

Ĥm (p, k) = J(p, k) (p, k) (2.19)

and the function J(p, k) is defined by

J(p, k) =
1

2✏
+

Z
[Dk0]f(p, k, k0) (2.20)

=
1

2✏


2 �

✓
p2

k2

◆✏

�
✓

p2

(p � k)2

◆✏�
(2.21)

– 10 –

Figure 2: Representation of the two Reggeon amplitude and the corresponding BFKL
wavefunction. A single application of the BFKL Hamiltonian adds a rung in the ladder.
The amplitude at ℓ loops, M(ℓ)(p), is obtained by integrating over the wavefunction
Ω(ℓ−1)(p, k), which itself consists of ℓ − 1 rungs. Figure taken from [15] under the
Creative Commons Attribution 4.0 International License.

where the subscript of |ψi,2〉 identifies the two-Reggeon component of the projectile i (and
target j). Upon expansion one obtains [1,2,11,13,53]:

M̂(+,ℓ,ℓ−1)
i j→i j = −iπ

rℓΓ
(ℓ− 1)!

∫

[Dk]
p2

k2(p− k)2
Ω(ℓ−1)(p, k)T2

s−u Mtree
i j→i j , (17)

where [Dk]≡ π
rΓ

�

µ2

4πe−γE

�ε d2−2εk
(2π)2−2ε , and rΓ has been defined in eq. (2). We refer to Ω(ℓ−1)(p, k)

as the two Reggeized gluon wavefunction at ℓ− 1 loop order, as shown in fig. 2. The wave-
function admits the BFKL evolution equation

d
d L
Ω(p, k) =

αsrΓ
π

ĤΩ(p, k) , (18)

where the Hamiltonian has two components Ĥ = (2CA− T2
t ) Ĥi + (CA− T2

t ) Ĥm with

ĤiΨ(p, k) =

∫

[Dk′] f (p, k, k′)
�

Ψ(p, k′)−Ψ(p, k)
�

, ĤmΨ(p, k) = J(p, k)Ψ(p, k) , (19a)

where

f (p, k, k′)≡
k2

k′2(k− k′)2
+

(p− k)2

(p− k′)2(k− k′)2
−

p2

k′2(p− k′)2
, (20)

and

J(p, k) =
1
2ε
+

∫

[Dk′] f (p, k, k′) =
1
2ε

�

2−
�

p2

k2

�ε

−
�

p2

(p− k)2

�ε�

. (21)

While the exact solution is unknown, the equation can be solved iteratively

Ω(p, k) =
∞
∑

ℓ=1

�αs rΓ
π

�ℓ Lℓ−1

(ℓ− 1)!
Ω(ℓ− 1)(p, k), Ω(ℓ−1)(p, k) = ĤΩ(ℓ−2)(p, k), (22)

and we get

Ω(0)(p, k) = 1, Ω(1)(p, k) = (CA− T2
t )J(p, k), (23)

Ω(2)(p, k) = (CA− T2
t )

2J2(p, k) + (2CA− T2
t )(CA− T2

t )

∫

[Dk′] f (p, k, k′)
�

J(p, k′)− J(p, k)
�

,
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3 TWO-REGGEON CUT

and so on. While for the first few orders it is possible to integrate directly these wavefunctions
to get the dimensionally-regularized amplitude, this task becomes quickly intricate at higher
orders. It is thus necessary to resort to more sophisticated techniques [13,14].

There are two crucial observations that allows one to carry the integration in eqs. (17)
and (19) to high order: the first is that the wavefunction Ω(ℓ)(p, k) is finite, to any order, which
follows from the form of the Hamiltonian (19). As a consequence, all infrared singularities in
the NLL amplitude must be generated in the final integration over k in eq. (17), from the soft
regions where k ≪ p or where p − k ≪ p. The symmetry of the problem implies that these
regions give the same contribution, hence it is sufficient to focus on the former, and multiply the
result by two. The second observation is that BFKL evolution closes in the soft approximation,
k≪ p. This is easily seen by considering a single evolution step of the wavefunction generated
by the Hamiltonian (19), and observing that f (p, k, k′) vanishes in regions other than the soft
region k ∼ k′ ≪ p. Applying these arguments iteratively, we deduce that the soft limit of the
wavefunction (and thus the complete singular part of the amplitude) is fully determined by
the configuration where the entire side rail of the ladder is soft. It is thus possible to expand
eq. (19) and solve it for k ∼ k′ ≪ p. This is much easier, because in this approximation the
original two-scale problem, k2 and (p−k)2, is reduced to a single-scale problem. The integrals
are then simple to perform, and the solution for the wavefunction at any order is given as a
polynomial in ξ≡ (p2/k2)ε:

Ω(ℓ−1)(p, k) =
(CA− Tt)ℓ−1

(2ε)ℓ−1

ℓ−1
∑

n=0

(−1)n
�

ℓ− 1
n

��

p2

k2

�nε n−1
∏

m=0

§

1− B̂m(ε)
2CA− Tt

CA− Tt

ª

, (24)

where B̂n(ε) = 2n(2+ n)ζ3ε
3 + 3n(2+ n)ζ4ε

4 + . . .. Performing the final integration over k
according to (17) we obtain all the infrared-singular contributions to the NLL amplitude at
any loop order ℓ. Remarkably, the result can be resummed into a closed-form expression:

M̂(+)
NLL

�

�

�

s
=

iπ
L(CA− T2

t )

�

1− R(ε)
CA

CA− T2
t

�−1 h

exp
n rΓ

2ε
αs

π
L(CA− Tt)
o

− 1
i

T2
s−u M(tree) (25)

up to O(ε0) terms, where

R(ε) =
Γ 3(1− ε)Γ (1+ ε)
Γ (1− 2ε)

− 1= −2ζ3 ε
3 − 3ζ4 ε

4 − 6ζ5ε
5 −
�

10ζ6 − 2ζ2
3

�

ε6 +O(ε7). (26)

Now that the singularities have been determined, the remaining task it to compute the
O(ε0) finite terms in the amplitude. Once again, the fact that the wavefunction is finite plays
a central role [14]: it implies that the wavefunction can be computed consistently in two
transverse dimensions, setting ε = 0. This may seem to pose a problem for the subsequent
calculation of the amplitude, given that the integral in (17) requires (dimensional) regular-
ization. However, this issue can be overcome by carefully combining the soft limit discussed
above with the two-dimensional calculation [14].

The calculation of the wavefunction in exactly two transverse dimension is rather techni-
cal, and we refer to [14] for a detailed discussion. Let us mention here that this computation
is done by representing the two-dimensional momentum k, k′ and p in the BFKL kernel of
eq. (19) as complex parameters, k = kx + iky , k′ = k′x + ik′y and p = px + ipy , and imple-
menting a variable change in the BFKL equation:

kx + iky

px + ipy
=

z
z − 1

and
k′x + ik′y
px + ipy

=
w

w− 1
. (27)

It is possible to show that in these variables, the 2-dimensional wavefunction can be expressed
in terms of single-valued harmonic polylogarithms (SVHPLs, [9, 54–58]) at any order. Single

7



3 TWO-REGGEON CUT

valuedness is to be expected here, because branch cuts are physically inadmissible in the Eu-
clidean two-dimensional transverse space. Moreover, the structure of the Hamiltonian guaran-
tees that the wavefunction at order ℓ is a pure function of uniform weight ℓ. It is then possible
to express the action of the 2-dimensional Hamiltonian on any linear combination of SVHPLs
Lw(z, z̄) (where the word w corresponds to a set of 0 and 1 indices) as a set of differential
equations, which can be integrated iteratively, using the soft limit z, z̄ → 0 as boundary data.
The procedure has been automated in [14]. For instance, the first two orders reads:

Ω
(1)
2d =

1
2

C2 (L0 + 2L1) , (28)

Ω
(2)
2d =

1
2

C2
2

�

L0,0 + 2L0,1 + 2L1,0 + 4L1,1

�

+
1
4

C1C2

�

−L0,1 −L1,0 − 2L1,1

�

.

With the amplitude determined to all orders in the soft approximation, see eq. (25), and the
wavefunction in two dimension available to any required order, we return to the question of
how to combine this information to obtain the full amplitude. This is achieved [14] by writing
the full wavefunction as the sum of a soft and an hard components: Ω(p, k) = Ωsoft(p, k)+Ωhard(p, k),
where the two components are defined as follows: Ωsoft(p, k) is given as the symmetric ver-
sion of the dimensionally-regularized solution in eq. (24), where (p2/k2)ε is replaced by
�

(p2)2

k2(p−k)2

�ε/2
. This guarantees that both soft limits are taken into account; moreover,Ωsoft(p, k)

admits an ε expansion in terms of SVHPLs, and hence its two-dimensional limit reproduces
exactly all non-vanishing terms in the z → 0 and z →∞ limits of the two-dimensional so-
lution Ω(2d)(z, z̄) of (28). As a consequence, one can isolate the two-dimensional limit of the
hard wavefunction as follows:

Ω
(2d)
hard(z, z̄) ≡ lim

ε→0
Ωhard = Ω

(2d)(z, z̄)−Ω(2d)
soft (z, z̄). (29)

Given that all the singularities in the amplitude arise from the soft component of the wave-
function, the full NLL amplitude (17) to O(ε) is given by

M̂(+),NLL
i j→i j

� s
−t

�

= −iπ

�∫

[Dk]
p2Ωsoft(p, k)
k2(p− k)2

+
1

4π

∫

d2z
zz̄
Ω
(2d)
hard(z, z̄)

�

T2
s−uM

(tree)
i j→i j . (30)

The soft wavefunction is integrated in dimensional regularization in d = 2− 2ε dimensions,
while the hard wavefunction, which by construction vanishes in the soft limits, can be inte-
grated in d = 2. We thus obtain the full NLL 2 → 2 amplitude, i.e. the leading tower of
logarithms in the imaginary part of the amplitude. For the first few orders one has

M̂(+,1,0)
i j→i j =iπ

1
2ε

T2
s−uM

(tree)
i j→i j , M̂(+,2,1)

i j→i j = iπC2

�

1
8ε2
−
ζ(2)

8

�

T2
s−uM

(tree)
i j→i j ,

M̂(+,3,2)
i j→i j =iπC2

2

�

1
48ε3
−
ζ(2)
32ε
−

29
48
ζ(3)
�

T2
s−uM

(tree)
i j→i j , (31)

M̂(+,4,3)
i j→i j =iπC2

2

�

C2

384ε4
−

C2ζ(2)
192ε2

−
�

7C2

288
+

CA

192

�

ζ(3)
ε
−

C2ζ(4)
48
−

CAζ(4)
128

�

T2
s−uM

(tree)
i j→i j .

The wavefunction is given up to ℓ= 13 loops in [14]; higher orders can be obtained with the
same algorithm. The amplitude coefficients M̂(+,ℓ,ℓ−1) have uniform transcendental weight,
and are expressed in terms of single- and multiple-zeta values: the latter appear starting at 11
loops, with ζ5,3,3 being the first one to emerge. Such multiple zeta values originate from the
hard part of the amplitude in eq. (30), and are thus only of the type that originates in SVHPLs.

The singularities of M̂(+,ℓ,ℓ−1) are part of the soft contribution, and are thus resummed by
eq. (25). Combining this information with the factorization theorem for infrared singularities

8



3 TWO-REGGEON CUT

allows one to extract the corresponding soft anomalous dimension and sum it to all orders, as
obtained in [13]. In short, it is well known that infrared divergences in amplitudes factorize
and exponentiate [48–50,59–62] according to

M= Z ·H, Z= P exp

(

−
1
2

∫ µ2

0

dλ2

λ2
Γ

)

, (32)

where H is an infrared-renormalized hard amplitude, which is finite, and Γ is the soft anoma-
lous dimension. In the high-energy limit the latter takes the form [20]

Γ=
γK

2

�

LT2
t + iπT2

s−u

�

+ Γi + Γ j +∆, (33)

where Γi is defined in (??) and∆ represents non-dipole corrections starting at three loops [48–
50, 63]. The dipole contribution is well known [20, 42]: the LT2

t term contributes starting at
LL, while the iπT2

s−u and Γi terms start at NLL. Here we focus on ∆, which we expand as

∆=
∞
∑

n=3

�αs

π

�n n−1
∑

m=0

Lm∆(n,m) . (34)

The calculation of the tower M̂(+,ℓ,ℓ−1) allows us to determine the coefficients ∆(−,ℓ,ℓ−1) for
all ℓ. We find [13]

∆(−,ℓ,ℓ−1) = iπG(ℓ) T2
s−u, with G(ℓ) ≡

1
(ℓ− 1)!

�

(CA− T2
t )

2

�ℓ−1 �

1− R(ε)
CA

CA− T2
t

�−1
�

�

�

�

�

εℓ−1

,

(35)
where R(ε) is given in eq. (26), and the subscript |εℓ−1 indicates that one should extract the
coefficient of εℓ−1. The result in eq. (35) can be resummed to all orders: one finds

∆(−)NLL = iπ
αs

π
G
�αs

π
L
�

T2
s−u , (36)

where G(x) =
∑∞
ℓ=1 xℓ−1G(ℓ). It is interesting to note [13] that G(x) is an entire function,

thus it admits an infinite radius of convergence, which implies that one can compute the NLL
soft anomalous dimension at any value of the effective coupling, including αs

π L≫ 1.
The finite, O(ε0) contribution to the NLL amplitude (31) can be written as

M̂(+)
NLL =

iπ
L
Ξ
(+)
NLL T2

s−uMtree . (37)

It is not yet known how to resum Ξ(+)NLL. In any case, it is clear that resummation would not

involve Γ functions only, because Ξ(+)NLL contains multiple zeta values. However, it is possible

to study numerically the convergence of the series given by the coefficients Ξ(+,ℓ,ℓ−1)
NLL , for the

relevant representations for Nc = 3, the singlet (T2
t M[1] = 0) and the 27 representation

(T2
t M[27] = 2(Nc + 1)M[27]). One finds:

Ξ
(+)[1]
NLL = −0.6169 x2 − 6.536 x3 − 0.8371 x4 − 8.483 x5 − 1.529 x6 − 12.67 x7 (38)

+ 1.610 x8 − 20.62 x9 + 16.48 x10 − 35.98 x11 + 46.07 x12 − 74.04 x13 +O(x14),

Ξ
(+)[27]
NLL = 1.028 x2 − 18.16 x3 + 2.184 x4 − 196.0 x5 + 372.3 x6 − 2821 x7 + 9382 x8 (39)

− 46494 x9 + 180397 x10 − 797524 x11 + 3.239× 106 x12 − 1.374× 107 x13 +O(x14).

By using Padé approximants, it is possible to conclude [14] that the series has a finite radius
of convergence, as is illustrated in fig. 3. We find asymptotic geometric progression with the
powers of −1

2 C2
αs
π L = −3

2 x and (C2 −
3
8 C1)

αs
π L = −17

4 x for the singlet and the 27 represen-
tations, respectively. In both cases the series displays sign-oscillations, indicating that once
resummed, it could be extrapolated beyond its radius of convergence.

9
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Figure 3: Partial sums of the amplitude coefficients Ξ(+,ℓ)
NLL , up to 13th order, for the

singlet (left plot) and the 27 colour representation (right plot). The horizontal axis
x represents αs

π L. The dashed vertical line represents the radius of convergence, R,
determined by the pole closest to x = 0, using Padé approximants. Figure taken
from [15] under the Creative Commons Attribution 4.0 International License.

4 Three-Reggeon cut

We turn now to considering the odd amplitude at NNLL accuracy, i.e., the tower of coefficients
M(−,n,n−2). This part of the amplitude is particularly interesting from the point of view of
Regge theory, because it involves a Regge cut in the real part of the amplitude, and it has quite
different factorization properties compared to the two-Reggeon cut discussed so far, which
contributes to the imaginary part of the amplitude. In this respect, an aspect of particular
interest is the mixing between the single- and triple-Reggeon exchange, as discussed at the
end of section 1, for which we refer the reader to [24]. In this talk we focus on the calculation
of M(−,n,n−2), which follows from the expansion to NNLL accuracy of

i
2s

M̂(−)
i j→i j = 〈ψ

(−)
j | e

−Ĥ L |ψ(−)i 〉= Di(t)Dj(t)Mtree
i j→i j +M̂(−), MRS

i j→i j , (40)

where the second equality follows from eq. (8) and the definition of reduced amplitude in
eq. (15). As shown in [23, 24], this matrix element can be written to all orders as the sum
of four contributions. In general, the NNLL contribution to the odd amplitude at n-loop is
proportional to Ln−2, which is obtained from n− 2 repeated actions of the Balitsky-JIMWLK
Hamiltonian H. The diagonal transitions Hk→k in eq. (13) are O(αs), while next-to-diagonal
transitions Hk→k±2n with n = 1 are O(α2

s ). Noting that |ψi,n〉 is O(gn−1
s ), there are four

different types of contributions O(αn
s Ln−2):

〈ψ j,3|Ĥk
3→3|ψi,3〉 , 〈ψ j,1|Ĥ3→1 Ĥk−2

3→3 Ĥ1→3|ψi,1〉 ,

〈ψ j,1|Ĥ3→1 Ĥk−1
3→3|ψi,3〉 , 〈ψ j,3|Ĥk−1

3→3 Ĥ1→3|ψi,1〉 ,
(41)

where the two transitions in the second line of eq. (41) are related by target-projectile symme-
try. These contributions can be expressed in a compact form by making the power-counting in
the strong coupling manifest. To this end we introduce normalized Reggeon projectile states
|in〉 (and similarly 〈 j| for the target) and a normalized reduced Hamiltonian H̃, defined as

(rΓαs)
(n−1)/2 |in〉 ≡ |ψi,n〉 ,

�αs

π
rΓ
�1+n

πn H̃k→k+2n ≡ Ĥk→k+2n , (42)

where we introduce rescalings by the constant rΓ defined in eq. (2), and in turn we expand

|in〉 = |in〉
LO +
∑∞

k=1

�αs
π

�k |in〉
NkLO. With this notation, the four terms in eq. (41) give rise to

10



4 THREE-REGGEON CUT

the NNLL odd amplitude as follows:

i
2s

M̂(−),NNLL
i j→i j =π2

� ∞
∑

ℓ=0

(−L)ℓ

ℓ!

�αs

π
rΓ
�ℓ+2
〈 j3|H̃ℓ3→3|i3〉

+
∞
∑

ℓ=1

(−L)ℓ

ℓ!

�αs

π
rΓ
�ℓ+2
�

〈 j1|H̃3→1H̃ℓ−1
3→3|i3〉+ 〈 j3|H̃

ℓ−1
3→3H̃1→3|i1〉
�

+
∞
∑

ℓ=2

(−L)ℓ

ℓ!

�αs

π
rΓ
�ℓ+2
〈 j1|H̃3→1H̃ℓ−2

3→3H̃1→3|i1〉
�LO

+
�αs

π

�2
〈 j1|i1〉

NNLO.

(43)

Notice that all but the last term are described within the leading order (LO) formalism, where
the matter content of the theory is irrelevant. The matrix elements are given in terms of LO
projectile/target states with either one or three Reggeons, which in turn are evolved by means
of the LO Balitsky-JIMWLK Hamiltonian. The two-loop contribution 〈 j1|i1〉

NNLO, instead, needs
to be extracted from two-loop amplitudes, see ref. [12], but it does not enter the calculation of
reduced amplitudes to higher orders. Apart from 〈 j1|i1〉

NNLO, eq. (43) is therefore universal,
in that it applies in any gauge theory, fully governed by the LO Balitsky-JIMWLK evolution of
infinite Wilson lines in eq. (12).

Eq. (43) has characteristic analytic properties. First of all, it is interesting to notice that
the NNLL amplitude is proportional, to all orders, to a factor of π2, if we exclude the two-
loop single-Reggeon contribution. This is a characteristic feature of the three-Reggeon cut,
playing a role similar to the universal factor of iπ appearing in case of the two-Reggeon cut in
eqs. (17) and (31). Furthermore, as in case of the two-Reggeon cut eq. (31), based on form of
the LO Balitsky-JIMWLK Hamiltonian, we expect the coefficients M(−,n,n−2) to have maximal,
uniform transcendental weight, when the dimensional regularization parameter ε is counted
as having weight −1.

Eq. (43) can be calculated iteratively. Compared to the computation of the two-Reggeon
cut discussed in section 3, the integrals involved in the calculation of eq. (43) are of similar
complexity; however, the colour structure is more involved, and it is non trivial to express it
in terms of colour operators acting on the tree level. For this purpose, specific techniques and
new colour identities need to be developed. This task has been carried out in [23, 24] where
the odd amplitude has been determined explicitly up to four loop. For a detailed discussion of
these techniques we refer the reader to these works. In the following we focus on presenting
the result for the odd amplitude up to four loops.

The two and three-loops amplitude coefficients were already obtained in [12]. Using the
notation of eq. (43), at the two-loop amplitude has two contributions:

i
2s

M̂(−,2,0)
i j→i j = 〈 j1|i1〉

NNLO +π2r2
Γ 〈 j3|i3〉. (44)

The single-Reggeon transition, comparing with eq. (40), reads

〈 j1|i1〉NNLO =
�

D(2)i + D(2)j + D(1)i D(1)j

�

〈 j1|i1〉. (45)

The three-reggeon transition gives

〈 j3|i3〉= −
1
8

�

1
ε2
− 6ε ζ̂3 +O
�

ε3
�

�

�

�

T2
s−u

�2 −
C2

A

12

�

〈 j1|i1〉, (46)

where the tree-level factor 〈 j1|i1〉 reads, according to the normalization of the states in eq. (42),
〈 j1|i1〉=

i
2sM̂tree

i j→i j . Furthermore, ζ̂3 = ζ3 +
3
2εζ4 −

5
2ε

3ζ6 +O
�

ε5
�

. Summing the two contri-
butions, one has

M̂(−,2,0) =
�

D(2)i + D(2)j + D(1)i D(1)j +π
2r2
Γ S(2)(ε)
�

(T2
s−u)

2 −
1
12

C2
A

��

Mtree, (47)

11



4 THREE-REGGEON CUT

Figure 4: Representation of transitions involving Multi-Reggeon States (MRS), which
contribute to the odd-signature amplitude at four loops. Figure taken from [23]
under the Creative Commons Attribution 4.0 International License.

where

S(2)(ε) = −
1

8ε2
+

3
4
εζ3 +

9
8
ε2ζ4 +O(ε3). (48)

At three loops the action of the Hamiltonian kicks-in, and one has to take into account
three MRS contributions:

i
2s

M̂(−,3,1)
i j→i j = −π

2r3
Γ

�

〈 j3|H̃3→3|i3〉 +
�

〈 j1|H̃3→1|i3〉+ 〈 j3|H̃1→3|i1〉
�

�

. (49)

The various matrix elements can be evaluated to give

〈 j3|H̃3→3|i3〉= −24 S(3)C (ε)

�

dARi

NRi
Ci
+

dAR j

NR j
C j

�

〈 j1|i1〉

+
�

S(3)A (ε)T
2
s−u[T

2
s−u,T2

t ] + S(3)B (ε)[T
2
s−u,T2

t ]T
2
s−u + S(3)C (ε)C

3
A

�

〈 j1|i1〉,

(50)

and

〈 j3|H̃1→3|i3〉+ 〈 j1|H̃3→1|i3〉= 24 S(3)C (ε)

�

dARi

NRi
Ci
+

dAR j

NR j
C j

�

〈 j1|i1〉 , (51)

where dARi
and dAR j

are quartic Casimir associated to the projectile and target:

dARi
=

1
4!

∑

σ∈S4

Tr
�

Fσ(a)Fσ(b)Fσ(c)Fσ(d)
�

Tr
�

Ta
i Tb

i Tc
i T

d
i

�

, (52)

and the functions S(3)i (ε) arise from the evaluation of loop integrals in 2− 2ε dimensions:

S(3)A (ε) =
1

48ε3
+

37 ζ̂3

24
+ O
�

ε2
�

, (53a)

S(3)B (ε) =
1

24ε3
+
ζ̂3

12
+ O
�

ε2
�

, (53b)

S(3)C (ε) = −
1

432

�

1
2ε3
− 35ζ̂3 +O
�

ε2
�

�

. (53c)

It is interesting to note that the sum of the transitions 1 → 3 and 3 → 1 does not involve a
matrix in colour space, but is simply proportional to 〈 j1|i1〉. This is due to the fact that colour
is carried by a single Reggeon on either the target or projectile sides. This property holds for
all terms in the second and third lines of (43) at any order. Another intriguing feature [23,24]
is that the quartic Casimir contributions of eq. (51), exactly cancel an identical contribution in
the 3→ 3 transition. One then finds

M̂(−,3,1) = −π2r3
Γ

�

S(3)A (ε)T
2
s−u[T

2
s−u,T2

t ] + S(3)B (ε)[T
2
s−u,T2

t ]T
2
s−u + S(3)C (ε)C

3
A

�

Mtree. (54)
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Next, we consider the four-loop amplitude, determined for the first time in [23]. In this
case we need to take into account two consecutive application of the Balitsky-JIMWLK Hamil-
tonian, which gives rise for the first time to all four MRS terms in eq. (46). One has

i
2s

M̂(−,4,2)
i j→i j =

π2r4
Γ

2

�

〈 j3|H̃2
3→3|i3〉+
�

〈 j1|H̃3→1H̃3→3|i3〉+ 〈 j3|H̃3→3H̃1→3|i1〉
�

+ 〈 j1|H̃3→1H̃1→3|i1〉
�

,
(55)

The first term, i.e. the double insertion of H̃3→3 in the three-Reggeon ladder, gives the most
complicated contribution, which is schematically represented by the two diagrams on the left
in fig. 4. The first diagrams involve BFKL evolution applied twice to the same pair of Reggeons,
while in the second diagram evolution is applied at each stage to a different pair. One obtains

〈 j3|H̃2
3→3|i3〉=
�

C(4,−4)

ε4
+
ζ̂3

ε
C(4,−1) +O (ε)
�

〈 j1|i1〉, (56)

where we have defined the following operators in colour space

C(4,−4) =
1

432

�

dAA

NA
− 3CA

�

dARi

NRi
Ci
+

dAR j

NR j
C j

�

+
C4

A

12

�

−
1

192
[T2

s−u,T2
t ]T

2
t T

2
s−u

+
1

96

�

T2
s−u, [T2

s−u,T2
t ]
�

T2
t +

7
576

T2
t [
�

T2
s−u

�2
,T2

t ]−
5

192
T2

s−u[T
2
s−u,T2

t ]T
2
t ,

(57)

C(4,−1) =−
101
216

�

dAA

NA
−

312
101

CA

�

dARi

NRi
Ci
+

dAR j

NR j
C j

�

+
211C4

A

2424

�

+
101
96
[T2

s−u,T2
t ]T

2
t T

2
s−u

+
49
48

�

T2
s−u,
�

T2
s−u,T2

t

�

�

T2
t −

47
288

T2
t [
�

T2
s−u

�2
,T2

t ]−
49
48

T2
s−u[T

2
s−u,T2

t ]T
2
t .

(58)

The terms in square brackets in eqs. (57) and (58) are leading in the planar limit, while all
other terms, involving commutators of T2

s−u and T2
t , are suppressed in Nc , and result in mixing

of the octet exchange with other colour.
The third and fourth diagrams in fig. 4 correspond to the 3 → 1 and 1 → 3 transitions

given by the second and third terms in eq. (55). The last diagram correspond to the 1 → 1
transition mediated by three Reggeons, i.e. the last term in eq. (55). These contributions are
all proportional to the unit matrix in colour space. For the 3 → 1 and 1 → 3 transitions we
obtain [23,24]

〈 j1|H̃3→1H̃3→3|i3〉+ 〈 j3|H̃3→3H̃1→3|i1〉=

=
CA

144

�

dARi

NRi
Ci
+

dAR j

NR j
C j

�

�

1
ε4
−

208ζ̂3

ε
+O (ε)
�

〈 j1|i1〉 ,
(59)

and for the 1→ 1 transition

〈 j1|H̃3→1H̃1→3|i1〉=
�

−
1

432ε4

�

dAA

NA
+

C4
A

12

�

+
55 ζ̂3

108ε

�

dAA

NA
+

101C4
A

1320

��

〈 j1|i1〉. (60)

Summing the contributions in eqs. (56), (59) and (60) we get

M̂(−,4,2) =
r4
Γπ

2

2

�

1
ε4

K(4) +
�

1
ε
ζ3 +

3
2
ζ4

�

K(1) +O(ε)
�

Mtree, (61)
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where the colour structures are defined by

K(4) =
1

96

�

T2
s−u, [T2

s−u,T2
t ]
�

T2
t +

7
576

T2
t

�

(T2
s−u)

2,T2
t ]

−
1

192
[T2

s−u,T2
t ]T

2
t T

2
s−u −

5
192

T2
s−u[T

2
s−u,T2

t ]T
2
t ,

(62a)

K(1) =
49
48

�

T2
s−u, [T2

s−u,T2
t ]
�

T2
t −

47
288

T2
t

�

(T2
s−u)

2,T2
t ]

+
101
96
[T2

s−u,T2
t ]T

2
t T

2
s−u −

49
48

T2
s−u[T

2
s−u,T2

t ]T
2
t +

1
24

�

dAA

NA
−

C4
A

24

�

.
(62b)

Eq. (62b) depends on the quartic Casimir dAA, irrespective of the representation associated
to the target and to the projectile. The expressions in eq. (62a) and (62b) imply that the
reduced amplitude M̂(−,4,2) is non-planar, which is expected on general grounds, [24], based
on its direct connection to the Regge cut. This is because eq. (62a) is written in terms of the
commutator [T2

t ,T2
s−u], which is subleading in Nc , and the only non-commutator term is also

subleading, given that
dAA

NA
−

C4
A

24
= 0 · N4

c +
3
2

N2
c . (63)

We note that, as at three loops, all terms arising from 3→ 1 and 1→ 3 transitions, which
are proportional to the quartic Casimir invariants dARi

and dAR j
, cancel in the sum with the

3→ 3 amplitude, to all orders in ε. These contributions are separately leading in the planar
limit, thus their cancellation is essential for the complete M̂(−,4,2) to be non-planar. Based
on this observation, we conjecture that transition amplitudes connecting three-Reggeon states
with a single Reggeon cancel from the reduced amplitude M̂(−),NNLL to all perturbative orders.

With the odd amplitude coefficients M(−,n,n−2) evaluated up to four-loop, several aspects
concerning the analytic structure of two-parton amplitudes can be investigated. We refer
to [24] for a throughout analysis. Here we limit ourselves to one application, namely, the
extraction of the soft anomalous dimension, (see refs. [24,44]) which can be obtained by com-
bining the knowledge of the amplitude in the high-energy limit with the infrared factorization
theorem, as discussed for the even amplitude at NLL accuracy. In this case, the calculation
of the tower M(−,ℓ,ℓ−2) gives access to ∆(+,ℓ,ℓ−2). Here we have determined M(−,ℓ,ℓ−2) up to
ℓ= 4, therefore we obtain [12,23,24]:

∆(+,3,1) = 0, (64)

∆(+,4,2) = ζ2ζ3

�

dAA

NA
−

C4
A

24
−

1
4

T2
t [(T

2
s−u)

2,T2
t ] +

3
4
[T2

s−u,T2
t ]T

2
t T

2
s−u

�

. (65)

Thanks to the calculation of the four-loop amplitude, we have obtained the first non-trivial
real contribution to the tower ∆(+,ℓ,ℓ−2). For completeness, we recall that also the imaginary
contribution ∆(−,3,1) has been determined from the three-loop exact calculation in general
kinematic, [63], and reads ∆(3,1) = iπζ3

4 [T
2
t , [T2

t ,T2
s−u]] [12]. We refer to [24] for a complete

list of known coefficients ∆(±,ℓ,m) in the high-energy limit.
With the result for the soft anomalous dimension, it is easy to invert eq. (32) and obtain a

prediction for the finite reminder of the amplitude at four loop. To this end, given the reduced
amplitude in eq. (61), one needs first to restore the single Reggeon contribution which had
been removed according to eq. (15). The finite reminder then reads

H = Zi Z jZ
−1eαgT2

t LM̂. (66)

Upon expansion the four-loop contribution at O(ε0) we get

H(−,4,2) =
§C2

A

2

�

α̂(2,0)
g

�2
+

3
16
ζ4ζ2 C (+,4,2)

∆ +O(ε)
ª

Mtree, (67)
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where α̂(2,0)
g = CA

�

101
108 −

ζ3
8

�

− 7
27 TRn f is the O(ε0) term of the two-loop Regge trajectory, and

C (+,4,2)
∆ ≡
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2
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s−u)
2] +

3
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2
t T

2
s−u. (68)

Eq. (67) conveniently displays the theory dependence of H(−,4,2), which is in fact restricted to
α̂(2,0)

g . We can thus obtain explicit result in QCD:

H(−,4,2)
QCD =
§
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A T2

R n2
f
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�
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(69)

which is a new result. Furthermore, according to the principle of maximum trascendentality,
in N = 4 SYM one has:

H(−,4,2)
SYM =
§ C4

A

128
ζ2

3 +
3
16
ζ4ζ2 C (+,4,2)

∆ +O(ε)
ª

Mtree. (70)

While for N = 4 SYM the planar limit, Nc →∞, is already known [64–66], the non-planar
correction, i.e. the second term in eq. (70) is new.

5 Conclusion

In this talk we have summarized recent progress concerning the calculation of amplitudes in
the high-energy limit. Within the shockwave formalism, scattering amplitudes can be calcu-
lated as expectation values of Wilson lines associated to the external partons [3, 67]. In this
framework one can identify an effective degree of freedom, identified as a “Reggeon” [11],
which plays a central role in determining the factorization properties of the amplitude in the
high-energy limit. Upon expansion in perturbation theory, the amplitude can be described in
terms of transition amplitudes between states labelled by the number Reggeons, which needs
to be evolved to equal rapidity by means of the BFKL equation and its generalization, the
Balitsky-JIMWLK equation [11, 12]. While it is not known how to solve these equations ex-
actly, it is possible to develop iterative solutions, which allows one to calculate the amplitude
to high order in perturbation theory.

In this context, we have discussed recent calculations of 2 → 2 scattering amplitudes in
the high-energy limit. Refs. [13, 14] focus on the imaginary part of the amplitude at NLL
accuracy in the high-energy logarithm. Within the shockwave formalism this can be expressed
as a class of ladder graphs involving two Reggons with any number of rungs, which arise from
the iterative solution of the BFKL equation. We have shown that the singular part [13] can
be associated to a kinematic configuration in which one of the two Reggeons become soft.
Within this approximation the evolution equation simplifies, such that the singular part of
the amplitude can be calculated to all order and resummed in a closed form involving only
gamma functions. We have then discussed the calculation of the finite contribution, for which
a general algorithm has been set up, based on an iterative solution of the BFKL equation in
two transverse dimensions, where the calculation is greatly simplified by the fact that the two-
dimensional two-Reggon wavefunction consists of single-valued HPLs [14]. Explicit results
have been presented up to 13 loops order. Finite corrections to the amplitude have a more
complicated pattern, involving multiple zeta values, and hence they cannot be resummed in
terms of gamma functions.
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We moved then to discuss the calculation of the real part of the two-parton scattering am-
plitude at NNLL accuracy, recently investigated in [23,24]. We have shown that the amplitude
can be expressed to all order as an iterated solution of the Balitsky-JIMWLK equation, with a
simple diagrammatic interpretation in terms of ladder graphs involving three Reggons, with
any number of rungs. Remarkably, the calculation of the entire tower requires only the LO
Balitsky-JIMWLK formalism, while the complete odd amplitude at NNLL requires only two ad-
ditional inputs, given by the single-Reggeon impact factors at two loops and Regge trajectory
at three loops, which can be determined by matching with the full amplitude. In [23, 24]
the signature-odd amplitude has been calculated for the first time to four loops, where is was
expressed in a form valid for scattering of particles in general colour representations. The
four-loop result, eq. (61), is entirely non-planar, a property that can be understood based on
its direct connection to the Regge cut [24], and it involves a purely adjoint quartic Casimir.

Finally, we have briefly discussed one application of these calculations, which exploit the
fact that it is possible to apply infrared factorization to the scattering amplitude calculated in
the high-energy limit, to extract the soft anomalous dimension within the same limit. In this
context, the calculation of the even NLL amplitude discussed above made it possible to extract
the soft anomalous dimension to all orders, which, at this logarithmic accuracy, is found to
have an infinite radius of convergence. From the computation of the odd amplitude at NNLL
accuracy we determine the soft anomalous dimension at this logarithmic accuracy to four loop.
Ref. [51] analyzed the colour structure of the soft anomalous dimension, incorporating the
recently computed four-loop cusp anomalous dimension [68, 69], which introduces quartic
Casimirs. Our results show that the soft anomalous dimension contains additional quartic
Casimirs, beyond those associated with the cusp.

The knowledge of the soft anomalous dimension in the high-energy limit is extremely
useful for bootstrap approaches, see for instance [22]. In practice, the information obtained
in particular kinematic limits, such as the Regge limit, can be used to reconstruct the structure
of infrared divergences in full kinematic. Preliminary steps in this direction, using the new
information obtained in [13, 14, 23], have been carried out in [24], and have been discussed
in another talk in this conference, [44], to which we refer for further details.
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