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Motivated by the experimental progress in controlling the properties of the energy bands in su-
perconductors, significant theoretical efforts have been devoted to study the effect of the quantum
geometry and the flatness of the dispersion on the superfluid weight. In conventional superconduc-
tors, where the energy bands are wide and the Fermi energy is large, the contribution due to the
quantum geometry is negligible, but in the opposite limit of flat-band superconductors the superfluid
weight originates purely from the quantum geometry of Bloch wave functions. Here, we study how
the energy band dispersion and the quantum geometry affect the disorder-induced suppression of
the superfluid weight. In particular, we consider non-magnetic disorder and s-wave superconductiv-
ity. Surprisingly, we find that the disorder-dependence of the superfluid weight is universal across
a variety of models, and independent of the quantum geometry and the flatness of the dispersion.
Our results suggest that a flat-band superconductor is as resilient to disorder as a conventional
superconductor.

The superfluid weight Ds defines superconductivity,
since it captures the ability of a material to sustain a
nondissipative current and it becomes nonzero below the
critical temperature of the superconductive transition,
thereby characterizing the Meissner effect [1–4]. For con-
ventional superconductors originating from the metallic
state given by a partially-filled, isolated, and approxi-
mately parabolic band, one has the well-known result [1]
Ds = e2n/m∗, where n is the electronic density and m∗

the effective mass. Thus, for conventional superconduc-
tors the knowledge of the effective mass or, more gen-
erally, the band dispersion is sufficient to estimate the
superfluid weight.

The observations of superconductivity in twisted bi-
layer graphene [5–9] and other graphene multilayer sys-
tems [10–14] have intensified the theoretical interest in
the study of systems with flat energy bands and super-
conductivity [15–23]. In a flat band the effective mass
m∗ diverges and one would expect the superfluid weight
to vanish. On the contrary, it has been found that, be-
sides the band dispersion, also the quantum geometry of
the Bloch wave functions contributes to the superfluid
weight [24–33]. In particular, in the case of a well iso-
lated flat band the superfluid weight originates purely
from the quantum geometry and can be written as

Dµν
s =

8e2

~2
∆
√
ν̄(1− ν̄)

∫
ddk

(2π)d
gµν(k), (1)

where ∆ is the superconducting order parameter, ν̄ the
band filling, d the dimension, and k the momentum
of the electronic state. The quantum metric gµν(k) is
given by the real part of the quantum geometric tensor
Bµν(k) = 〈∂µunk|

(
1− |unk〉〈unk|

)
|∂νunk〉, where |unk〉

are the Bloch wave functions, n is the band index of

the flat band, and ∂µ ≡ ∂kµ . The imaginary part of
Bµν(k) is proportional to the Berry curvature Bµν . Be-
cause Bµν(k) is positive semidefinite, tr gµν ≥ |B12| and
1
2 tr

[∫
d2k gµν(k)

]
≥ π|C|, where C = 1

2π

∫
d2kB12(k) is

the Chern number. This inequality readily translates into
a lower bound for the superfluid weight through Eq. (1).
Similar lower bounds can be obtained when the bands
are characterized by other topological invariants [29].

According to the Anderson theorem, s-wave supercon-
ductors are robust against perturbations obeying time-
reversal symmetry [34]. Therefore, the superconduct-
ing ground state can have phase coherence, off-diagonal
long-range order, and non-zero superfluid weight even
though the underlying single-particle states (and quasi-
particle states) are localized due to the disorder [35].
However, by increasing the disorder strength the super-
conducting order parameter becomes spatially inhomo-
geneous, its magnitude is suppressed, and finally the sys-
tem breaks up into superconducting islands separated by
regions where the pairing amplitude approximately van-
ishes [35–37]. As a consequence, the superfluid weight
decreases and eventually goes to zero due to quantum
phase fluctuations, leading to a superconductor-insulator
transition at a critical disorder strength [36–38].

So far these disorder effects have been considered in
superconductors where the effect of the quantum geom-
etry is negligible, and the inequalities discussed above
between superfluid weight, quantum metric, and Chern
number suggest that the disorder effects might be differ-
ent in flat band systems where the superfluid weight orig-
inates from the quantum geometry. In fact, the Chern
number is quantized even in the presence of disorder [39],
and thus one might expect that the geometric contribu-
tion is robust against disorder. On the other hand, the

https://orcid.org/https://orcid.org/0000-0001-6671-8056
https://orcid.org/https://orcid.org/0000-0002-9947-1261
https://orcid.org/https://orcid.org/0000-0001-7315-0526
https://orcid.org/https://orcid.org/0000-0002-2647-3610
https://orcid.org/https://orcid.org/0000-0003-2587-9755


2

FIG. 1. Universality of the disorder-induced suppression
of the pairing amplitude and the superfluid weight across a
variety of lattice models [40]: (i)-(v) topological and triv-
ial extended Kane-Mele models, (vi)-(viii) trivial single-band
models (see text and Appendix). The ensemble averages of
(a) the spatial average of the pairing amplitude ∆̄ and (b) the
superfluid weight Ds are shown as a function of the disorder
strength W/W0.

superfluid weight is also affected by the magnitude of the
superconducting order parameter, the bandwidth, and
the band gap, which all depend on the disorder strength.

In this Letter, we calculate the disorder-induced sup-
pression of the superfluid weight Ds for a generalization
of the Kane-Mele model [41], for which the low energy
bands’ topology and flatness can be easily tuned by vary-
ing the values of the model’s parameters, and for a simple
single band model. Our main results are shown in Fig. 1,
where the ensemble averages 〈∆̄〉/∆0, 〈Ds〉/Ds,0 of the
spatially averaged pairing potential ∆̄ and the superfluid
weightDs are shown as a function of the disorder strength
W/W0. ∆0, Ds,0 are the pairing potential and the su-
perfluid weight, respectively, in the clean limit. W0 is
defined as the value of W for which 〈∆̄〉/∆0 = 1/2. For
W ≈ W0 the superconductor breaks up into supercon-
ducting islands. In all models the disorder dependence
of 〈∆̄〉 and 〈Ds〉 is the same after rescaling, pointing to
an unexpected universal behavior.

We consider a variety of tight-binding Hamiltonians
H0 with disorder potentials Vd supplemented by the
pairing interaction Hint, so that the full Hamiltonian
is H = H0 + Hint + Vd. We assume that H0 obeys
U(1) spin-rotation symmetry, Vd is represented by un-
correlated on-site energies uniformly distributed in the
interval [−W,W ], and Hint describes a local attraction
of strength U between the electrons that leads to a time-
reversal invariant singlet superconducting state described
by a real-valued pairing potential ∆(r). We neglect the
frequency dependence of U and the renormalization of
U due to the localization, because we are interested in
the comparison of the models instead of seeking for a
quantitative description of a particular system.

To model the disorder potential, we consider a large
cluster of N sites repeated in spaceN times with periodic
boundary conditions. The full set of superconducting

mean-field equations for such a system is given by

∆α =
1

N
∑
i

U〈ciα↑ciα,↓〉, ν̄ =
1

NN
∑
i,α,σ

〈c†iασciασ〉 (2)

with α = 1, . . . N , U > 0, and the filling per lattice site
ν̄ ∈ [0, 2] associated with both spin channels σ =↑, ↓ (see

Appendix). The operators c†iασ (ciασ) create (annihilate)
an electron with spin σ at site rα in the i-th cluster.
This is a large set of N + 1 equations, which we have
to solve self-consistently for the chemical potential µ and
for the spatial profile of the superconducting order pa-
rameter ∆α at a given temperature T and interaction
strength U . Therefore, to reduce the computational cost
of the calculation of ∆(T, rα), we assume that the spa-
tial profile is approximately independent of temperature.
With this assumption, we obtain the (normalized) spatial

profile ∆̂(rα) from the linearized self-consistency equa-
tions, which are valid close to the critical temperature,
and the overall amplitude ‖∆(T )‖ ≡ [

∑
α |∆(T, rα)|2]1/2

and ν̄ from the nonlinear self-consistency equations (see

Appendix) to obtain ∆(T, rα)=‖∆(T )‖∆̂(rα). We find
that this approximation leads to an underestimation of
〈∆̄〉 that, being very similar for all the models (see Ap-
pendix), does not affect the relative comparison of the
models.

Given a specific disorder realization, we compute the
corresponding superconducting order parameter ∆α and
the chemical potential self-consistently employing the re-
duced mean-field equations, and diagonalize the associ-
ated Bogoliubov-de Gennes Hamiltonian HBdG to deter-
mine its excitation energies Ei(k) and eigenstates ψi(k),
where k is the superlattice momentum arising due to the
cluster periodicity and i is the band index. The full su-
perfluid weight Ds of the superconductor is given by

Dµν
s =

e2

~2
∑
k,ij

n(Ej)− n(Ei)

Ei − Ej

(
〈∂µHBdG〉ij 〈∂νHBdG〉ji

− 〈∂µHBdGγ
z〉ij 〈γz∂νHBdG〉ji

)
, (3)

where 〈·〉ij ≡ 〈ψi| · |ψj〉, n(Ei) is the Fermi function, and
γz = σz⊗1N×N with σz being a Pauli matrix in particle-
hole space (see Appendix). We further decompose the
full superfluid weight into a conventional contribution
Ds,conv and a geometric contribution Ds,geom. The con-
ventional contribution involves only intraband matrix el-
ements containing derivatives of the normal-state Hamil-
tonian’s energies εkmσ,

Dµν
s,conv =

∑
k,mp

Cmmpp

[
∂µεkm↑ ∂νε−k,p,↓ + µ↔ ν

]
, (4)

with coefficients Cmmpp given in the Appendix. The geo-
metric contribution, Ds,geom, comprises interband matrix
elements with derivatives of the normal-state Hamilto-
nian’s Bloch states (see Appendix) and can be obtained
as the difference between Ds and Ds,conv. In the limits
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FIG. 2. Disorder-induced suppression of the superfluid weight
in the extended Kane-Mele model [40]. (a) Evolution of the
energy gap and the bandwidth of the lower band as a function
of M . C is the Chern number of the lower spin-up band. (b)
Ds as a function of M for different values of W/W0 and ν̄ =
1/2. The vertical dotted black line indicates the topological
transition in the clean system. (c), (d) Energy bands of the
clean systems along high-symmetry lines of the Brillouin zone
for M values corresponding to topologically distinct cases.
The dotted black lines indicate the Fermi level corresponding
to ν̄ = 1/2. (e), (f) 〈Ds〉 as a function of W/W0 for ν̄ = 1/2.

of a trivial parabolic band and an ideal flat band with-
out disorder, this decomposition reproduces the conven-
tional result Ds = e2n/m∗, and Eq. (1), respectively.
The considered disorder preserves the symmetries of the
respective clean systems on average. In particular, on
average it preserves the C3 symmetry of the Kane-Mele
models and the C4 symmetry of the single-band models
(see Appendix). Consequently, the disorder-averaged su-
perfluid weight tensors of our models are proportional to
the identity matrix and we have Dxx

s = Dyy
s ≡ Ds.

We first consider an extended Kane-Mele model on a
honeycomb lattice given by a Haldane model [42] for each
spin channel and additional hoppings between 3rd- (t3)

and 4th-nearest neighbors (t4):

H = t
∑

σ,〈i,j〉1

c†jσciσ + t2
∑

σ,〈i,j〉2

eiσϕij c†jσciσ + t3
∑

σ,〈i,j〉3

c†jσciσ

+ t4
∑

σ,〈i,j〉4

c†jσciσ +
∑
σ,i

[
(−1)iM − µ

]
c†iσciσ, (5)

Here, 〈i, j〉n denotes pairs of n-th neighbors, σ = ±1 ≡
↑, ↓ is the spin index of the particles, M is a staggered on-
site potential, µ is the chemical potential, and ϕij = ±ϕ
is a next-nearest-neighbor (NNN) hopping phase whose
sign depends on the hopping direction and on the spin
(see Appendix). The spin-dependence of the NNN hop-
ping phase is chosen in such a way that the full non-
interacting Hamiltonian is time-reversal symmetric. We
call the model in Eq. (5) the extended Kane-Mele model
because in the limit t3 = t4 = 0 and ϕ = π/2 it reduces
to the model introduced by Kane and Mele in Ref. 41.

Importantly, our model is well-suited for the study
of topological flat bands: By taking t2 = 0.349t, t3 =
−0.264t, t4 = 0.026t, ϕ = 1.377, and M = 0 [model (i)
in Fig. 1], the lowest spin-degenerate bands are almost
flat and have Chern numbers C = ±1 [see Fig. 2(a), (c)].
Therefore the superfluid weight is almost entirely geo-
metric in the clean limit, i.e., Ds ' Ds,geom satisfying

Eq. (1) with ∆ ≈ U
√
ν̄(1− ν̄)/2. Fig. 2(e) shows the

disorder-averaged superfluid weight 〈Ds〉 for ν̄ = 1/2,
U = 3t and T = 0 [43] displaying the behavior already
presented in Fig. 1(b), but here we have decomposed it
into geometric and conventional contributions [44]. The
superfluid weight associated with a flat band is almost
entirely geometric for all values of the disorder strength.

By increasing M the previously flat band becomes
more dispersive and the bulk energy gap closes around
M = 1.75t, so that after the reopening of the bulk gap
both energy bands are trivial (C = 0) [Fig. 2(a)]. Thus,
as we increase the parameterM , the superfluid weight ac-
quires a finite conventional contribution due to the grow-
ing dispersion of the lower band. The fraction of the
geometric contribution decreases, so that deep inside the
trivial phase the geometric contribution practically van-
ishes and the superfluid weight becomes almost entirely
conventional in the absence of disorder. This picture
changes with increasing disorder, as we show in Fig. 2(f).
First, we observe that the conventional contribution is
linearly suppressed in the low-disorder regime, whereas
the suppression is quadratic for the full superfluid weight.
In contrast, the geometric contribution is enhanced for
small disorder until it reaches a turning point. At this
point the conventional contribution is nearly zero and
the superfluid weight becomes entirely geometric, even
though the underlying bands are topologically trivial.

Importantly, although the geometric and conventional
contributions are remarkably different depending on M ,
surprisingly the disorder induced suppression of the
scaled superfluid weight 〈Ds〉/D0 as a function of the
scaled disorder strength W/W0 is completely indepen-
dent of the value of M [see Fig. 2(b)]. We find essentially
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FIG. 3. Disorder-induced suppression of 〈Ds〉 in a single-
band model [40]. (a) Energy band dispersion of the clean
system along high-symmetry lines of the Brillouin zone. The
dotted line indicates the Fermi level at ν̄ = 1/5. (b) 〈Ds〉,
〈Ds,conv〉 and 〈Ds,geom〉 as a function of W at ν̄ = 1/5.

the same results also when other parameters are varied,
such as the NNN hopping phase ϕ [see Appendix and
model (iv) in Fig. 1].

It is instructive to compare the extended Kane-Mele
model with a nearest-neighbor tight-binding model on
the square lattice given by the Hamiltonian

H = −t
∑
σ,〈i,j〉

c†jσciσ − µ
∑
σ,i

c†iσciσ. (6)

The energy spectrum consists of only one band with the
dispersion relation E(kk, ky) = −2t(cos kx + cos ky) vi-
sualized in Fig. 3(a). The filling is set at ν̄ = 1/5. In
the clean limit, the Berry curvature, the Chern number,
and the geometric contribution are identically zero, and
Ds = Ds,conv ≈ e2n/m∗ = 2e2ν̄t/~2. However, with
the onset of disorder the geometric contribution is again
enhanced while the conventional contribution is linearly
suppressed [Fig. 3(b)]. In particular, Ds is entirely geo-
metric in the strong disorder regime, even though the
considered model in the clean limit has no geometric
structure.

A possible explanation for this counter-intuitive behav-
ior lies in the nature of the decomposition of the super-
fluid weight. By definition, the geometric part contains
only interband matrix elements (see Appendix). Hence,
it is identically zero for a single-band model in the clean
limit. By adding disorder to the system, this band fans
out into several subbands in superlattice mini Brillouin
zone arising from the cluster periodicity. As a conse-
quence, states previously separated in momentum space
may now couple giving rise to nonzero interband matrix
elements. Moreover, avoided crossings in the superlat-
tice Brillouin zone can act as hot-spots of quantum met-
ric. In the thermodynamic limit (N → ∞), the super-
lattice Brillouin zone collapses to a single point allowing
all states of the single band to couple. Consequently, the
superfluid weight now originates entirely from interband
terms so that only the geometric contribution of the su-
perfluid weight remains non-zero.

Evidently, the meaning of the geometric and conven-
tional contributions is obscured in the case of dirty su-

perconductors. To understand this better it is important
to compare the disorder-induced suppression of the total
superfluid weight in the cases of the extended Kane-Mele
models (Fig. 2) and the single-band model (Fig. 3). As
shown in Fig. 1, the scaled superfluid weight 〈Ds〉/D0

as a function of the scaled disorder strength W/W0 be-
haves the same way in all models. This finding is inde-
pendent of the concrete decomposition of the superfluid
weight into conventional and geometric contributions. In
particular, it would still hold even if there existed a dif-
ferent decomposition for disordered systems. Thus, our
results imply that the microscopic mechanism underly-
ing the superfluid weight becomes unimportant in dirty
superconductors.

To summarize, we have demonstrated that the
disorder-induced suppression of the superfluid weight is
universal across a variety of theoretical models indepen-
dently of the quantum geometry and the flatness of the
dispersion. Thus, flat-band superconductors are as re-
silient to disorder as conventional superconductors. We
have mainly concentrated on the disorder-induced sup-
pression of the ensemble averages of the pairing poten-
tial and the superfluid weight. However, the universal-
ity across the models remains true also for the statisti-
cal fluctuations. Namely, we find that apart from the
transition regime W ≈ W0, also the standard deviations
σ(∆̄)/∆0 and σ(Ds)/Ds,0 as a function of W/W0 behave
the same way in all models (see Appendix). In our cal-
culation there is no critical value of W above which Ds

vanishes. This is due to the fact that in our approach rel-
ative phase fluctuations of ∆ between different supercon-
ducting regions (islands) of the inhomogenous landscape
induced by the disorder are not taken into account [36–
38]. The interplay of such fluctuations and the quantum
metric is an interesting direction for future research.

Graphene-based heterostructures are an ideal platform
to experimentally study the universality of the disorder-
induced suppression of the superfluid weight. These sys-
tems are intrinsically very clean, disorder can be intro-
duced in a controlled way, and it is possible to tune the
dispersion and the different contributions of the super-
fluid weight through the twist angle, pressure, and elec-
tric field [5, 6, 10, 11, 28, 30]. Recent experiments in-
dicate that in some graphene-based systems it might be
possible to realize unconventional superconducting order
parameters [12–14]. Therefore, it is an interesting direc-
tion for future research to find out if the disorder-induced
suppression of superfluid weight remains independent of
the quantum geometry beyond the time-reversal invari-
ant s-wave superconductors considered in this work.
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Competition of electron-phonon mediated superconduc-
tivity and Stoner magnetism on a flat band, Phys. Rev.
B 98, 054515 (2018).

[19] T. J. Peltonen, R. Ojajärvi, and T. T. Heikkilä, Mean-
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P. Törmä, Band geometry, Berry curvature, and super-
fluid weight, Phys. Rev. B 95, 024515 (2017).

[27] T. Hazra, N. Verma, and M. Randeria, Bounds on the
Superconducting Transition Temperature : Applications
to Twisted Bilayer Graphene and Cold Atoms, Physical
Review X 9, 31049 (2019).

[28] X. Hu, T. Hyart, D. I. Pikulin, and E. Rossi, Geometric
and conventional contribution to the superfluid weight in
twisted bilayer graphene, Phys. Rev. Lett. 123, 237002
(2019).

[29] F. Xie, Z. Song, B. Lian, and B. A. Bernevig,
Topology-Bounded Superfluid Weight in Twisted Bilayer
Graphene, Phys. Rev. Lett. 124, 167002 (2020).

[30] A. Julku, T. J. Peltonen, L. Liang, T. T. Heikkilä,
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I. SELF-CONSISTENT MEAN-FIELD EQUATIONS

We start from the generic form of a Hamiltonian for a singlet s-wave superconductor with time-reversal symmetry,

HBdG =
∑
ij

Hij c
†
i↑cj↑ −

∑
ij

Hij ci↓c
†
j↓ +

∑
i

[∆i c
†
i↑c
†
i↓ + h.c.], (S1)

where we have used that H↑ = HT
↓ ≡ H because of time-reversal symmetry. The doubling of degrees of freedom in

the BdG formalism has been removed by making use of the relation between spin-up electrons and spin-down holes
due to time-reversal symmetry and U(1) spin rotation symmetry. In general, the indices i, j may include all degrees
of freedom except the spin. Here, we focus on models with only a site degree of freedom, i.e., one orbital per site.

Hence, the operator c†iσ creates a particle with spin σ at site ri.
Let us assume the system is periodic in space with N sites per unit cell. For a lattice site at position r, we then

write r = Ri+rα, where Ri points to the origin of the i-th unit cell and rα is the position of the lattice site inside that
unit cell. The index α now enumerates the lattice sites within a unit cell. With this, we rewrite the BdG Hamiltonian
as follows

HBdG =
∑
ij

∑
α,β

Hiα,jβ c
†
iα↑cjβ↑ −

∑
ij

∑
αβ

Hiα,jβ ciα↓c
†
jβ↓ +

∑
i,α

[∆α c
†
iα↑c

†
iα↓ + h.c.], (S2)

where we have assumed that the superconducting pairing amplitude has the same translational symmetry as the
normal-state Hamiltonian, i.e., ∆iα ≡ ∆α ∀i. Making use of the periodicity, we apply a Fourier transformation of the
following form

c†iασ =
1√
N

∑
k

eik(Ri+rα)c†kασ, (S3)
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where N is the total number of unit cells in the system, and obtain

HBdG =
∑
k

∑
αβ

Hαβ(k) c†kα↑ckβ↑ −
∑
k

∑
αβ

Hαβ(k) c−k,α,↓c
†
−k,β,↓ +

∑
k,α

[∆α c
†
kα↑c

†
−k,α↓ + h.c.], (S4)

where the components of the normal-state Bloch Hamiltonian are defined as

Hαβ(k) =
∑
δ

tαβ(δ)eik(Rδ+rα−rβ), with tαβ(δ) ≡ Hi+δ,α;iβ ∀i. (S5)

We assume that superconductivity originates from an attractive on-site interaction, such that the mean-field equa-
tions can be written as

∆α =
1

N
∑
i

∆iα =
1

N
∑
i

U〈ciα↑ciα,↓〉 =
U

N
∑
k

〈ckα↑c−k,α,↓〉, (S6)

with the paring interaction U > 0.

A. Full set of mean-field equations

We introduce the Nambu-space vector C†k = [c†k,1,↑, . . . , c
†
k,N,↑, c−k,1,↓, . . . , c−k,N,↓] and write the BdG Hamiltonian

as follows

HBdG =
∑
k

[
C†kH

0(k)Ck + C†kH
1(k)Ck

]
, (S7)

with

H0(k) =

(
h0(k) 0

0 −h0(k)

)
(S8)

and

H1(k) = H1 =

(
0 diag (∆1, . . . ,∆N )

diag (∆∗1, . . . ,∆
∗
N ) 0

)
, (S9)

where h0(k) is the normal-state Bloch Hamiltonian with components given by Hαβ(k) from Eq. (S5). We introduce
new creation operators defined by

d†ak =
∑
α

[
Ψaα,+(k) c†kα↑ + Ψaα,−(k) c−k,α,↓

]
, (S10)

or, equivalently,

c†kα↑ =
∑
a

Ψ∗aα,+(k) d†ak, (S11)

c−k,α,↓ =
∑
a

Ψ∗aα,−(k) d†ak. (S12)

Here, we have a = 1, . . . , 2N and [Ψa,+(k),Ψa,−(k)]
T

are eigenvectors of H0(k) + H1(k) with energy Ea(k). We

have introduced subscripts ± to distinguish matrix elements associated with operators c†kα↑ (+) and c−kα↓ (−) of the
Nambu-space vector. With this, the BdG Hamiltonian becomes

HBdG =
∑
a,k

Ea(k) d†akdak. (S13)

Similarly, we get

〈ckα↑c−k,α,↓〉 =
∑
a

Ψaα,+(k)Ψ∗aα,−(k)〈dakd†ak〉 =
∑
a

Ψaα,+(k)Ψ∗aα,−(k){1− nF [Ea(k)]}. (S14)
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Hence, the self-consistency equation from Eq. (S6) becomes,

∆α =
U

N
∑
k,a

Ψaα,+(k)Ψ∗aα,−(k){1− nF [Ea(k)]}, (S15)

with the Fermi function nF (E) = (eβE + 1)−1. This is a set of N equations for (∆1, . . . ,∆N ) and the chemical
potential µ, which have to be solved self-consistently together with the density constraint

ν̄ =
1

M
∑
k,α

[
〈c†kα↑ckα↑〉+ 〈c†−k,α,↓c−k,α,↓〉

]
= 1− 1

M
∑
k,a

nF [Ea(k)]
∑
α

[
|Ψaα,−(k)|2 − |Ψaα,+(k)|2

]
, (S16)

where we have introduced the total number of states M = NN and ν̄ is the filling factor taking into account both
spin-up and spin-down electrons (ν̄ = 0 . . . 2).

B. Linear-response theory close to Tc

We may use the full set of self-consistency equations to determine the pairing amplitude ∆α at any given T . Close to
the critical temperature Tc, however, we can alternatively use linear-response theory, which we derive in the following.

We start again from the BdG Hamiltonian in Eq. (S4). This time, we change to the basis of Bloch eigenstates of
the normal-state Hamiltonian obtained from solving∑

β

Hαβ(k)ψnβ(k) = ξn(k)ψnα(k), (S17)

where ψn(k) is the coordinate vector of the n-th eigenstate with energy ξn(k) relative to the chemical potential µ.
The quantities ψn(k) and ξn(k) are typically the result of a numerical diagonalization of the Bloch Hamiltonan matrix
H(k). The eigenstates are normalized as

∑
α |ψnα(k)|2 = 1. We define new creation and annihilation operators by

c†nk↑ =
∑
α

ψnα(k) c†kα↑ =
1√
N

∑
iα

ψnα(k) e−ik(Ri+rα) c†iα↑, (S18)

and by

cn,−k,↓ =
∑
α

ψnα(k) c−k,α,↓ =
1√
N

∑
iα

ψnα(k) e−ik(Ri+rα) ciα↓. (S19)

Using these definitions, the BdG Hamiltonian becomes

HBdG =
∑
k,n

ξn(k)(c†nk↑cnk↑ − cn,−k,↓c
†
n,−k,↓) +

∑
k,n,m

[∆nm(k) c†nk↑c
†
m,−k,↓ + h.c.], (S20)

with

∆nm(k) =
∑
α

∆α ψ
∗
nα(k)ψmα(k). (S21)

Similarly, the self-consistency equation Eq. (S6) transforms to

∆α =
U

N
∑
k,n,m

ψnα(k)ψ∗mα(k) 〈cnk↑cm,−k,↓〉. (S22)

Introducing the alternative Nambu-space vector C̃†k = [c†1,k,↑, . . . , c
†
N,k,↑, c1,−k,↓, . . . , cN,−k,↓], we write the BdG

Hamiltonian as

HBdG =
∑
k

[
C̃†k H̃

0(k) C̃k + C̃†k H̃
1(k) C̃k

]
, (S23)

with

H̃0(k) = diag [ξ1(k), . . . , ξN (k),−ξ1(k), . . . ,−ξN (k)] , (S24)
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and

H̃1(k) =

(
0 ∆(k)

∆†(k) 0

)
(S25)

Next, we define an operator

Anm(k) = cnk↑ cm,−k,↓ = C̃†kA
nm C̃k, (S26)

A =

(
0 0

Qnm 0

)
, Qnmij = −δimδjn. (S27)

We can now calculate 〈Anm(k)〉 using linear response theory, which yields

〈Anm(k)〉 =
∑
i 6=j

1

εi(k)− εj(k)
H1
ij(k)Anmji {nF [εi(k)]− nF [εj(k)]}, (S28)

where εi(k) = H0
ii(k). Using the matrices above, this expression can be simplified to

〈Anm(k)〉 =
1− nF [ξn(k)]− nF [ξm(k)]

ξn(k) + ξm(k)
∆nm(k) (S29)

Finally, by using Eqs. (S21), (S22), (S26), and (S29) we obtain the linearized self-consistency equations

∆α =
∑
β

χαβ ∆β , (S30)

with the pair susceptibility

χαβ =
U

N
∑
k

∑
n,m

1− nF [ξn(k)]− nF [ξm(k)]

ξn(k) + ξm(k)
ψnα(k)ψ∗mα(k)ψ∗nβ(k)ψmβ(k). (S31)

Here, n,m = 1, . . . , N and also α, β = 1, . . . , N , where N is the number of sites per unit cell. We may determine the
critical temperature Tc from diagonalizing the pair susceptibility χαβ : the critical temperature is reached when the
largest eigenvalue of χαβ is equal to 1. The corresponding eigenvector corresponds to the normalized spatial profile
δα of the superconducting pairing amplitude at the critical temperature, i.e.,

∑
α |δα|2 = 1.

For completeness, the chemical potential is determined from

ν̄

2
=

1

M
∑
k,n

〈c†nk↑cnk↑〉, (S32)

Using a linear-response formula for the expectation value similar to Eq. (S28), we find that the linear-order term is zero.
Therefore, we can express the expectation value directly in terms of the normal-state Fermi function (zeroth-order
term), namely

ν̄

2
=

1

M
∑
k,n

nF [ξn(k)]. (S33)

.

C. Nonlinear self-consistent equations for the magnitude of the order parameter

Determining the exact pairing amplitude ∆α at a given temperature T < Tc requires self-consistently solving a set
of N + 1 equations with N + 1 unknown parameters [see Eqs. (S15) and (S16)], where N is the number of atoms per
unit cell. Numerically, this can be done by employing a minimization algorithm. However, as the parameter space
grows with N such an algorithm takes long to find solutions for systems with a large number of atoms per unit cell.
Since we want to study systems with large N , we will make use of an approximation which allows us to speed up the
computations considerably.

For that purpose, we write the pairing amplitude as ∆α = ‖∆‖ ∆̂α, where ‖∆‖ is the magnitude of the vector (∆α)

and ∆̂α is the normalized spatial profile of the pairing amplitude, that is
∑
α |∆̂α|2 = 1. We assume that for the
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systems considered the spatial profile of the order parameter is only weakly temperature-dependent such that we can
write

∆α(T ) ≈ ‖∆(T )‖ ∆̂α, (S34)

i.e., the temperature dependence of the pairing amplitude is fully given by the magnitude ‖∆(T )‖. We have checked
this expectation for the extended Kane-Mele model with periodic onsite disorder (see Fig. S7). We obtain a good
agreement at small disorder, while the deviations are generally larger for sizeable disorder.

This motivates us to extract the spatial profile ∆̂α by diagonalizing the pair susceptibility at Tc as obtained from
linear-response theory [see Eq. (S31)]. This allows us to reduce the set of N + 1 self-consistency equations for N + 1
unknown variables to a set of only two equations for ‖∆‖ and µ. Using Eq. (S15), we obtain

‖∆‖2 =
∑
α

|∆α|2 =
U2

N 2

∑
α

(∑
k,a

Ψaα,+(k)Ψ∗aα,−(k){1− nF [Ea(k)]}
)2
, (S35)

ν̄ = 1− 1

M
∑
k,a

nF [Ea(k)]
∑
α

[
|Ψaα,−(k)|2 − |Ψaα,+(k)|2

]
. (S36)

II. SUPERFLUID WEIGHT

A. Reduced BdG Hamiltonian

We consider a system with N sites per unit cell, one orbital per site, periodic boundary conditions, and spin-rotation
symmetry around the z axis, such that the electronic part of the Bloch Hamiltonian can be block-diagonalized

H(k) =

(
h↑(k)− µ 0

0 h↓(k)− µ

)
, (S37)

where hσ(k) is the Fourier-transformed N × N hopping Hamiltonian of the electrons with spin σ, and µ is the

chemical potential. Using the Nambu basis {cαk↑, cαk↓, c†α,−k↑, c
†
α,−k↓}, the full BdG Hamiltonian of the system takes

the following general form

HBdG(k) =


h↑(k)− µ 0 ∆↑↑ ∆↑↓

0 h↓(k)− µ ∆↓↑ ∆↓↓
∆†↑↑ ∆†↓↑ −h∗↑(−k) + µ 0

∆†↑↓ ∆†↓↓ 0 −h∗↓(−k) + µ

 , (S38)

with the N ×N order-parameter matrices ∆σσ′ , which can generally depend on k. Here, we consider on-site interac-
tions and assume that the pairing obeys the translation symmetry of the Hamiltonian such that the components of the
order-parameter matrices are constants. The BdG Hamiltonian is particle-hole antisymmetric with the anti-unitary
operator τx ⊗ s0 ⊗ 1N×N K, k → −k, where K is complex conjugation. This imposes the restriction ∆ = −∆T

implying ∆↓↓ = ∆↑↑ = 0 and ∆↑↓ = −∆T
↓↑ ≡ ∆. Therefore, the BdG Hamiltonian becomes block-diagonal after a

basis transformation,

H̃BdG(k) =


h↑(k)− µ ∆ 0 0

∆† −h∗↓(−k) + µ 0 0

0 0 h↓(k)− µ −∆T

0 0 −∆∗ −h∗↑(−k) + µ

 ≡ (HBdG,↑(k) 0
0 HBdG,↓(k)

)
, (S39)

where HBdG,σ(k) are the reduced BdG Hamiltonians associated with the spin-σ blocks of electrons in the full Bloch
Hamiltonian. In this basis, the particle-hole operator is sx ⊗ τx ⊗ 1N×N K. This implies that the two blocks are
connected via

HBdG,↑(k) = −τxH∗BdG,↓(−k)τx. (S40)

This reflects the redundancy of the BdG formalism, which is why it is sufficient to focus entirely on one block, say
HBdG,↑(k). Hence, from now on we will simply write HBdG(k) when referring to a reduced BdG Hamiltonian.
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Moreover, if also time-reversal symmetry is preserved, we have h↑(k) = h∗↓(−k) and ∆ can be chosen to be real.
∆ is also diagonal, because we assumed one orbital per site and on-site interactions. Therefore, we further have
∆† = ∆T = ∆. Hence, the reduced BdG Hamiltonian becomes

HBdG,↑(k) =

(
h↑(k)− µ ∆

∆ −[h↑(k)− µ]

)
, (S41)

i.e., only information from one of the spin channels enters in each BdG Hamiltonian, which allows us to effectively
drop the spin index.

B. Decomposition of the superfluid weight

The full superfluid weight of a superconductor with spin-rotation symmetry, time-reversal symmetry, and
momentum-independent ∆ can be written as,

Ds
µν =

e2

~2
∑
k,ij

n(Ej)− n(Ei)

Ei − Ej

(
〈ψi|∂kµHBdG|ψj〉〈ψj |∂kνHBdG|ψi〉 − 〈ψi|∂kµHBdGγ

z|ψj〉〈ψj |γz∂kνHBdG|ψi〉
)
, (S42)

where |ψi(k)〉 is the i-th eigenstate of the reduced BdG Hamiltonian with energy Ei(k), n(Ei) is the Fermi function,
and γz = τz ⊗ 1N×N . For Ej = Ei = E the prefactor is set to −∂E n(E).

It is worth expressing the superfluid weight in terms of the eigenstates of the normal-state Bloch Hamiltonian hσ(k).
For this purpose, we decompose the BdG eigenstates as

|ψi〉 =

N∑
m=1

(
w+,im|m〉↑ ⊗ |+〉+ w−,im|m∗−〉↓ ⊗ |−〉

)
, (S43)

where |m〉↑ is the eigenvector of h↑(k) with eigenvalue ε↑,m(k), |m∗−〉↓ is the eigenvector of h∗↓(−k) with eigenvalue

ε↓,m(−k), and |±〉 is the eigenvector of σz with eigenvalue ±1. With this, the expression for the superfluid weight
from Eq. (S42) becomes

Ds
µν = −2

∑
k,ij

n(Ej)− n(Ei)

Ei − Ej

∑
m,n

∑
p,q

(
w∗+,imw+,jnw

∗
−,jpw−,iq ↑〈m|∂kµh↑(k)|n〉↑ ↓〈p∗−|∂kνh∗↓(−k)|q∗−〉↓

+ w∗−,imw−,jnw
∗
+,jpw+,iq ↓〈m∗−|∂kµh∗↓(−k)|n∗−〉↓ ↑〈p|∂kνh↑(k)|q〉↑

)
. (S44)

By defining the current operator

[jµ,σ(k)]mn = σ〈m|∂kµhσ(k)|n〉σ = ∂kµεσ,mδmn + (εσ,m − εσ,n)σ〈∂kµm|n〉σ, (S45)

we can write the full superfluid weight as

Ds
µν =

∑
k

N∑
m,n

N∑
p,q

Cmnpq

(
[jµ,↑(k)]mn[jν,↓(−k)]qp + [jν,↑(k)]mn[jµ,↓(−k)]qp

)
, (S46)

with

Cmnpq = −2

2N∑
i,j

n(Ej)− n(Ei)

Ei − Ej
w∗+,imw+,jnw

∗
−,jpw−,iq. (S47)

The current operator in Eq. (S45) contains two qualitatively different kinds of terms: the diagonal terms depend
on the derivative of the band dispersions whereas the off-diagonal terms contain derivatives of the Bloch states. The
latter, therefore, encode information about the quantum geometry of states. Accordingly, the full superfluid weight
can be decomposed into a conventional and a geometric part,

Ds
µν = Ds

conv,µν +Ds
geom,µν , (S48)

where the geometric part Ds
geom collects all contributions to the superfluid weight Ds containing off-diagonal elements

of the current operator, while the conventional part Ds
conv contains only diagonal elements of the current operator.

The conventional part can also be written as

Ds
conv,µν =

∑
k

N∑
mp

Cmmpp

[
∂kµε↑,m(k) ∂kν ε↓,p(−k) + ∂kν ε↑,m(k) ∂kµε↓,p(−k)

]
. (S49)
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In this work, we compute the full superfluid weight using the general formula in Eq. (S42) and the conventional
contribution to the superfluid weight based on Eq. (S49). We then compute the geometric part as the difference of
the two.

III. EXTENDED KANE-MELE MODELS

The Kane-Mele model [41] is prototypical for the realization of a quantum spin Hall insulator on a lattice. It is a

FIG. S1. Illustration of the extended Kane-Mele model on the honeycomb lattice with nearest-neighbor hopping t, i-th
neighbor hopping amplitudes ti, and staggered on-site potential M . Hopping processes between second neighbors acquire a
phase e±iσϕ depending on the spin σ = ±1 ≡ ↑, ↓ of the involved particles, on the hopping direction, and on the sublattice A,
B. Red arrows indicate a selection of hopping processes. Other hopping processes can be inferred by symmetry.

tight-binding model on the 2D honeycomb lattice, which is defined as

H0 =
∑
i,σ

[
(−1)iM − µ

]
c†iσciσ + t

∑
σ

∑
〈i,j〉1

c†jσciσ + t2
∑
〈i,j〉2

(
eiϕij c†j↑ci↑ + e−iϕij c†j↓ci↓

)
, (S50)

where the operators c†iσ (ciσ) create (annihilate) an electron with spin σ =↑, ↓ at site i, 〈i, j〉n denotes pairs of n-th
neighbors, M is a staggered on-site potential also known as mass term, µ is the chemical potential, and ϕij = ±ϕ is
a next-nearest-neighbor (NNN) hopping phase whose sign depends on the hopping direction, on the spin, and on the
sublattice as shown in Fig. S1. Note that the phase is ϕ = π/2 in the original Kane-Mele model.

We have used the lattice vectors a1 = (3a/2,−a
√

3/2) and a2 = (0, a
√

3). The coordinates of the two basis atoms

A and B are rA = (0, 0) and rA = (a/2, a
√

3/2), respectively, where a is the distance between the two atoms. The

corresponding reciprocal lattice vectors are b1 = (4π/3a, 0) and b2 = (2π/3a, 2π/
√

3a).
The model is time-reversal symmetric and block-diagonal in spin space. In particular, the two spin blocks are

mapped onto each other under time reversal. Furthermore, each spin block realizes a Haldane model [42], which
is a model prototypical for the realization of a Chern insulator on a lattice. The spin blocks have opposite Chern
numbers C↑ = −C↓ = C, which are related to the Z2 topological invariant ν of the corresponding Kane-Mele model as
ν = C mod 2. For a system with spin-rotation symmetry, the latter (without mod 2) is also known as the spin Chern
number. In the main text and in the following, we therefore use the Chern number C of the spin-up block to specify
the topology of the system.

Due to its sublattice structure and spin symmetry, the model has two spin-degenerate energy bands. At half-filling,
it realizes a topological insulator with C = ±1 in certain regimes of the parameter space spanned by (t, t2,M, φ). In
particular, if M = 0 and t, t2 > 0 we have C = +1 for −π < ϕ < 0 and C = −1 for 0 < ϕ < π. On the other hand,
tuning M generally leads to a phase transition to a trivial insulator with C = 0.

By optimizing the parameters of the model, it is possible to make one of the bands quasi-flat, even in the topological
phase. As a measure of the band flatness, we use the ratio of bandwidth to energy gap,

r =
∆Ebandwidth

∆Egap
. (S51)

For the Kane-Mele model defined above, at M = 0 the flatness r of the lower band is minimal for cosϕ = t/4t2 =

3
√

3/43. Its minimum value is about rmin = 0.29.
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A. Kane-Mele model with optimized flatness

We can make the flatness of the lower band arbitrarily small by adding further-neighbor hopping to the Kane-Mele
model. Here, we go up to fourth-neighbor hopping and optimize the model parameters to minimize the flatness r.
Our extended Kane-Mele model reads,

H = H0 + t3
∑
σ

∑
〈i,j〉3

c†j,σci,σ + t4
∑
σ

∑
〈i,j〉4

c†j,σci,σ. (S52)

For M = 0, the flatness of its lower band is minimal for the parameters t2 = 0.349t, t3 = −0.264t, t4 = 0.026t, and
ϕ = 1.377. The minimum flatness is approximately rmin = 0.006, which is about two orders of magnitude smaller
than the minimum flatness of the 2nd-neigbor Kane-Mele model discussed above. In the following, we will refer to
this version of the model as the “flat” Kane-Mele model.

B. Models presented in the main text

In this subsection, we provide details on the extended Kane-Mele models presented in Fig. 1 of the main text. The
cluster size of the Kane-Mele models is 8× 8 clean unit cells, which is equal to 128 sites for each disordered cluster.
Moreover, we used the interaction strength U = 3t, the filling fraction ν̄ = 1/2, and the temperature T = Tc,0/100,
where Tc,0 is the critical temperature in the clean limit. The hopping parameters are fixed at the values in the flat
limit.

The other parameters are as follows:

(i) topological Kane-Mele model in the flat limit: M = 0, ϕ = 1.377 ≡ ϕopt,

(ii) topological Kane-Mele model with dispersing bands: M = t and ϕ = ϕopt,

(iii) topological Kane-Mele model with dispersing bands: M = 0 and ϕ = 1.0,

(iv) semi-metallic Kane-Mele model close to the topological phase transition: M = 1.75t and ϕ = ϕopt,

(v) trivial Kane-Mele model with dispersing bands: M = 3.2t and ϕ = ϕopt.

For the decomposition of the superfluid weight into conventional and geometric contributions as shown in Fig. 2 of
the main text, we have used smaller clusters of size 5× 5 corresponding to 50 sites within each disordered cluster.

To generate all the tight-binding Hamiltonians with disorder we have used the software package Kwant [46].

C. Flat Kane-Mele model with disorder

We study flat Kane-Mele models with random onsite disorder and periodic boundary conditions. The random
onsite potentials are drawn from a uniform distribution on the interval [−W,W ] with the disorder strength W . For
the Kane-Mele models considered here, unless stated otherwise, the disordered cluster has a size of 8× 8 unit cells of
the clean system, which amounts to 128 sites.

Generally, we find that the pairing amplitude ∆ is suppressed by disorder. We use this observation to define a
disorder scale W0 through 〈∆̄〉(W0) = ∆0/2, where ·̄ denotes a sample average and 〈·〉 a disorder average. ∆0 is the
sample average of the pairing amplitude in the clean limit. Numerically, we determine W0 by linear interpolation
based on the set of disorder strengths W considered. For instance, for 8× 8 clusters of the flat Kane-Mele model we
obtain W0 = 1.52t, while we get W0 = 1.85t for smaller clusters of size 5× 5.

In Fig. S2, we present various properties of the flat Kane-Mele model as a function of the disorder strength W .
Figure S2(a) shows disorder-averaged spectral properties. We observe that the band gap between the lower and the
upper band decreases linearly with disorder and closes around W = 2W0. Beyond this value, the gap slowly opens
again. On the contrary, the bandwidth of the previously flat lower band increases linearly.

We further find, see Fig. S2(b) that the disorder-averaged superfluid weight 〈Ds〉 is proportional to the disorder-
and sample-averaged pairing amplitude 〈∆̄〉 in the small-disorder regime W �W0, i.e.,

〈Ds〉 =
Ds,0

∆0
〈∆̄〉, (S53)

where the proportionality constant is given by the ratio of the respective values in the clean limit, Ds,0 and ∆0.
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FIG. S2. Disordered Kane-Mele model with optimized flatness: (a) Evolution of the band gap and the bandwidth of the
lower band as a function of disorder W . (b) Relation between full superfluid weight Ds and sample-averaged superconducting
order parameter ∆̄. (c) Disorder scale W0 as a function of the staggered on-site potential M for two different system sizes N .
The dotted black line indicates the topological transition in the clean system. (d) Evolution of the Chern number of the lower
spin-up band. (e) Evolution of the trace of the quantum metric of the lower spin-up band integrated over the Brillouin zone.
The dotted black line indicates the evolution of the lower bound on this integral given by the Chern number C. (f) Localization
length as a function of the disorder parameter W for the flat (M = 0) and for a trivial (M = 3.2t) Kane-Mele model for two
different system sizes N . The localization length is given in units of the sublattice separation a of the honeycomb lattice.

In Fig. S2(c), we show the disorder scale W0 as a function of the staggered on-site potential for the two system
sizes considered in this work, namely N = 50 (5× 5 cluster) and N = 128 (8× 8 cluster).

In the clean limit, the spin -up flat band of the considered model has Chern number C = −1. As expected, the
value of the Chern number is robust as long as the energy gap remains open, as we show in Fig. S2(d). Once the
disorder-averaged gap becomes close to zero, more and more realizations within the disorder ensemble undergo a
transition to a trivial phase. Hence, the absolute value of the disorder-averaged Chern number decreases until it
reaches 〈C〉 = 0. At this point, the gap is large enough such that all realizations have undergone the transition from
topological to trivial.

We have also computed the quantum metric of the model adopting the essence of a method for calculating the Berry
curvature in a discretized Brillouin zone [47] to efficiently compute the quantum geometric tensor Bij . In Fig. S2(e),
we show the evolution of the trace of the disorder-averaged quantum metric gµν integrated over the Brillouin zone. In
the main text, we stated that this quantity is bounded from below by 2π|C| in the clean limit, where C is the Chern
number of the involved band. Here, we find that this bound also applies to the averages in the disordered model.

In Fig. S2(f), we relate the disorder strength W to the localization length Lloc of the system. For this purpose,
we compute the average two-terminal conductance G for a ribbon of fixed width as a function of its length L for
different disorder W using periodically repeating clusters of size 8× 8. For disorder strengths W > 0.1t, we find that
the conductance shows a clear exponential suppression with a saturation G∞:

G(L) = Ce−L/Lloc +G∞. (S54)

By fitting our numerical results to this expression, we extract the localization length Lloc(W ). In Fig. S2(f), we
present our results for the flat topological Kane-Mele model (M = 0) and for a trivial Kane-Mele model (M = 3.2t)
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for two different system sizes N .

D. Kane-Mele models with different staggered on-site potential M

FIG. S3. Properties of the extended Kane-Mele model as a function of the staggered onsite potential M for U = 3t,
T = Tc,0/100, and ν̄ = 1/2: (a) Evolution of the energy gap and the bandwidth of the lower band. We also indicate the
Chern number of the lower spin-up band on the two sides of the topological transition. Full superfluid weight (b), conventional
contribution (c), and geometric contribution (d) as a function of disorder W for various values of M . The inset in (b) shows
the disorder scale W0 as a function M .

By changing the staggered on-site potential M , we can tune the system from the topological to the trivial phase.
In the following, we discuss how the change of topology affects the full, the conventional, and the geometric super-
fluid weight as disorder is increased. Since the decomposition of the superfluid weight into its two contributions is
numerically more involved, we here present results for smaller clusters of size 5 × 5 clean unit cells amounting to 50
sites per cluster. All other model parameters are the same as in the flat Kane-Mele model.

In Fig. S3(a), we first show how the bandwidth of the lower band and its gap to the upper band changes as a
function of M in the clean system. The band gap decreases linearly, closes at about M = 1.78t, and then increases
again linearly. In the process, the Chern number of the lower spin-up band changes from C = −1 to C = 0 indicating
a transition from a topological to a trivial insulator. In contrast, the bandwidth grows linearly until the gap closing
point and remains constant after that.

Figure S3(b) shows the full superfluid weight as a function of disorder for different M . We study the system at
filling ν̄ = 1/2 and interaction parameter U = 3t. Comparing to Fig. S3(a), we find that the suppression of the
superfluid weight is independent of the topology of the underlying band. It follows a universal behavior as discussed
in the main text.

In contrast to that, the conventional and geometric contributions presented in Figs. S3(c) and (d), respectively,
show a clear dependence on the parameter M . In the flat limit (M = 0), the conventional contribution approximately
vanishes independent of disorder, such that the superfluid weight remains entirely geometric. With increasing M ,
the fraction of the conventional contribution grows in the small disorder regime W � W0, while the fraction of
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the geometric contribution is suppressed. This is attributed to the increasing bandwidth. Moreover, once the band
acquires a finite dispersion the geometric contribution shows a non-monotonic behavior in the small disorder regime
with a maximum shifting to larger disorder values with increasing M . However, in the large disorder regime W �W0

the conventional contribution vanishes and the superfluid weight becomes again entirely geometric.

E. Kane-Mele models with different NNN hopping phases ϕ

FIG. S4. Properties of the extended Kane-Mele model as a function of the NNN hopping phase ϕ for U = 3t, T = Tc,0/100, and
ν̄ = 1/2: (a) Evolution of the energy gap and the bandwidth of the lower band. The band has optimal flatness at ϕopt = 1.377.
We also indicate the Chern number of the lower spin-up band where the gap is nonzero. Full superfluid weight (b), conventional
contribution (c), and geometric contribution (d) as a function of disorder W for various fixed NNN hopping phases ϕ. The
inset in (b) shows the disorder scale W0 as a function of ϕ.

Next, we discuss how a change of the NNN hopping phase affects the behavior of the superfluid weight and its two
contributions under disorder. Again, for numerical reasons we present results for a smaller cluster of size 5 × 5. All
other parameters are the same as in the flat Kane-Mele model.

First of all, starting from the flat limit with M = 0, we note that a change of the NNN hopping phase cannot push
the clean system into the trivial phase. As we show in Fig. S4(a), the energy gap closes close to ϕ = 0 and close
to ϕ = π. Under time reversal, we have that ϕ → −ϕ and C → −C. Hence, tuning ϕ into the interval [−π, 0] the
energy gap opens again and the Chern number of the lower spin-up band changes from C = −1 to C = 1. The system
remains a topological insulator. As expected, the bandwidth increases away from the flat limit with ϕopt = 1.377.

Turning to the behavior of the superfluid weight, we make the similar observations as in the case of varying the
M parameter. Again, we study the system at filling ν̄ = 1/2 with interaction parameter U = 3t. The full superfluid
weight shows a universal behavior independent of the value of the NNN hopping phase [see Fig. S4(b)]. On the
contrary, the conventional and geometric contributions show a clear parameter dependence in the small disorder
regime W � W0 [see Fig. S4(c) and (d)]. In particular, as the bandwidth of the underlying band becomes sizeable
the conventional contribution is enhanced whereas the geometric contribution is suppressed in this regime. For large
disorder, the superfluid becomes entirely geometric independent of the NNN hopping phase.
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In contrast to what we observe for the variation of M , we find that the disorder scale W0 increases approximately
linearly as we tune the system from the flat limit to the band closing point close to ϕ = 0, see inset of Fig. S4(b).

IV. STANDARD DEVIATIONS AND FORMATION OF SUPERCONDUCTING ISLANDS

FIG. S5. Ensemble standard deviations σ of (a) the pairing amplitude ∆̄ (spatial average) and (b) the superfluid weight Ds
as a function of W/W0 for the models considered in Fig. 1 of the main text: (i)-(v) topological and trivial extended Kane-Mele
models, (vi)-(viii) trivial single-band models. (c) Spatial profile ∆α of the pairing amplitude for single disorder realizations of
the flat Kane-Mele model [model (i)] at different disorder strengths W/W0. White corresponds to a vanishing pairing amplitude,
whereas darker colors signify a larger values. Around W = W0, the superconductor breaks up into isolated superconducting
islands accompanied by large fluctuations of ∆̄ and Ds.

In the main text, we pinned down a universal suppression of the pairing amplitude ∆ and of the superfluid weight
Ds reflected in the ensemble averages across various models. In this section, we show that this universality applies
widely also to the fluctuations around the average. For this purpose, we analyze the standard deviations, σ(A) =√
〈A2〉 − 〈A〉2, of the respective quantities for the models discussed in Fig. 1 of the main text.
Figures S5(a) and (b) show our results for the spatial average of the pairing amplitude and for the superfluid weight,

respectively. We find that fluctuations reach a maximum at W 'W0, where W0 is the disorder scale introduced in the
main text. Quantitatively, we observe that the behavior at small and large disorder is model-independent, which is in
line with the universality of the ensemble averages. On the contrary, the height of the fluctuation peaks at W 'W0 is
found to be model dependent, but we are not able to identify any systematic signature originating from the topology
of the models as both the flat Kane-Mele model [model (i)] and the trivial single-band model [model (viii)] can have
comparable peak fluctuations.

A closer inspection of the spatial profile of the pairing amplitude for single disorder realizations reveals that the
the fluctuations are maximal (W ' W0) when the superconductor starts to break up into superconducting islands
[see Fig. S5(c)]. For W/W0 > 1 the superconducting order parameter ∆α vanishes in large parts of the sample except
inside small, isolated clusters. We observe the breaking of the superconductor into superconducting island around
W 'W0 in all the models considered, providing a concrete physical interpretation for the disorder scale W0.

V. SIZE SCALING OF UNIVERSAL SUPPRESSION

In the main text, we found that the superfluid weight shows a universal and model-independent suppression by
disorder. In this section, we show how this universal behavior evolves as a function of the cluster size. Due to the
universality, we restrict our analysis to a specific model, namely the extended Kane-Mele model with a flat lower
band.

Figure S6 shows our results for samples with different numbers of sites N in the disordered supercell. Both the
sample-averaged pairing amplitude [Fig. S6(a)] and the superfluid weight [Fig. S6(b)] show a saturation at large
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FIG. S6. Disorder-induced suppression of the pairing amplitude and the superfluid weight for different cluster sizes. We show
results for the extended Kane-Mele model with flat lower band and U = 3t, T = Tc,0/100, and ν̄ = 1/2.

disorder strengths W/W0. This value is finite for small cluster sizes but approaches zero as the cluster size is
increased. In the small-disorder regime, the considered quantities are slightly enhanced as the cluster size is increased
but approach a common functional behavior once the cluster size is sufficiently large. Overall, we find that the
functional form of the disorder-induced suppression does not change considerably beyond cluster sizes of N = 128
for the considered model. In general, we expect that the required cluster size that approximates well the N → ∞
behavior depends on the details of the system.

VI. PAIRING AMPLITUDE OBTAINED FROM FULL MEAN-FIELD EQUATIONS

FIG. S7. Comparison between full (orange) and reduced (blue) mean-field approach for the superconducting order parameter
∆ in the extended Kane-Mele model with U = 3t, T = Tc,0/100, and ν̄ = 1/2: (a) topological phase and (b) trivial phase. We
show results of single disorder realizations (thin lines) and their ensemble averages (bold lines).

So far, we have used a reduced set of mean-field equations to self-consistently determine the real-space structure of
the pairing amplitude [see Eqs. (S36) and (S36)]. In this section, we also look at the solutions of the full mean-field
equations (S15) and (S16) for the extended Kane-Mele model with disorder in the zero-temperature limit.

For that purpose, we generate several disorder realizations for a disordered cluster of size N = 50 for different
disorder strengths W . We then solve both the reduced and the full mean-field equations self-consistently. We use the
solutions of the reduced mean-field equations as initial guesses for the solver algorithm searching for solutions of the
full mean-field equations. Figure S7 shows the spatial averages of the different realizations and also their ensemble
averages. For both the trivial and topological phase of the model, we find a good agreement between both approaches
at small disorder. At larger disorder, the discrepancies become more enhanced with the solutions of the reduced mean-
field equations tending to overestimate the suppression of the pairing amplitude. Nevertheless, the differences in the
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ensemble averages remain small thereby justifying our approximation. Most importantly, the qualitative behavior of
the suppression is the same in both approaches. In particular, also the solutions of the full mean-field equations do
not show any significant difference between the topological and the trivial phase.

We note that the solutions of the full mean-field equations obtained here are not necessarily the solutions with
the lowest free energy. We find that the obtained solutions are sensitive to the initial conditions used for the solver,
which indicates a highly complex structure of the corresponding free-energy landscape with many local minimums.
Therefore, finding a global minimum based on the full mean-field equations is computationally very expensive. Due to
their significantly smaller parameter space, the reduced mean-field equations provide a computationally more efficient
and more robust approach to finding suitable solutions. The analysis in this section, as well as additional calculations
with different initial conditions, leads us to the expectation that this does not affect the results qualitatively. Therefore,
we have used the reduced mean-field equations in the rest of the text.

VII. TRIVIAL SINGLE-BAND MODELS

In the main text we compare our results obtained for the extended Kane-Mele model to a trivial single-band model
defined on a 2D square lattice. The model has one orbital per site and is described by the Hamiltonian

H = −t
∑
σ

∑
<i,j>

c†jσciσ − µ
∑
σ,i

c†iσciσ. (S55)

It has a single spin-degenerate energy band with dispersion E = −2t(cos kx + cos ky). Each spin band is entirely
trivial, i.e., all components of the quantum geometric tensor are zero in the whole Brillouin zone. Hence, their
quantum metric, Berry curvature, and Chern number are zero as well.

To make this single-band model comparable to the flat Kane-Mele model, we use the full superfluid weight of the
latter in the clean limit, Ds,0 = 0.2245 tKM where tKM is the nearest-neighbor hopping amplitude of the flat Kane-Mele
model, as a common energy scale. We then generate a set of models with different hopping parameters t, interaction
strengths U , and fillings ν̄, such that, in the clean limit, they all have the same superfluid weight Ds,0.

For the trivial single-band models in Fig. 1 of the main text, we have used clusters of size 11× 11, which is equal
to 121 sites per disordered cluster. Moreover, the presented models have the following parameters:

(vi) U = 13.4Ds,0, ν̄ = 1, and t = 2.0Ds,0,

(vii) U = 8.9Ds,0, ν̄ = 1, and t = 1.7Ds,0,

(viii) U = 13.4Ds,0, ν̄ = 1/5, and t = 3.3Ds,0.

For the decomposition of the superfluid weight into conventional and geometric contributions as shown in Fig. 3 of
the main text, we have used smaller clusters of size 7× 7 corresponding to 49 sites within each disordered cluster.

To generate the tight-binding Hamiltonians with disorder we have used the software package Kwant [46].

VIII. SUPERFLUID WEIGHT FOR CLEAN SYSTEMS

For a conventional superconductor originating from a metallic state given by a partially-filled, isolated, and approx-
imately parabolic band, the superfluid weight is purely conventional and can be expressed as

Ds = e2
n

m∗
, (S56)

with the electron density n and the effective mass m∗. On the other hand, for a superconductor originating from
a metallic state given by a partially-filled and isolated flat band, the superfluid weight is entirely geometric and is
related to the quantum geometry of the electronic states as

[Ds]µν =
8e2

~2
∆
√
ν̄(1− ν̄)

∫
ddk

(2π)d
gµν(k), (S57)

where ∆ is the superconducting order parameter, ν̄ the band filling, d the dimensions, and gµν(k) is the quantum met-
ric. The latter is obtained as the real part of the quantum geometric tensor Bµν(k) = 〈∂µunk|

(
1− |unk〉〈unk|

)
|∂νunk〉,

with |unk〉 the Bloch functions of the flat band. The superconducting order parameter further satisfies

∆ =
U

2

√
ν̄(1− ν̄). (S58)
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FIG. S8. Comparison with analytical formulas for the clean systems in the zero-temperature limit: (a) superfluid weight Ds
and (b) superconducting order parameter ∆ of the flat Kane-Mele model for different coupling constants U as a function of
the filling ν̄. Solid lines represent the respective quantities as obtained directly from numerics, dashed lines show the results
computed using Eqs. (S57) and (S58), respectively. (c) Superfluid weight of the single-band model for different U at small
fillings close to the band bottom. Solid lines are the numerical results while the dashed black line represents the analytical
result using Eq. (S56) assuming a parabolic band.

Importantly, the flat-band formulas are expected to hold for coupling constants U much smaller than the excitation
energy to the other bands and much larger than the bandwidth of the flat band. In the following, we apply the
analytical formulas above to the models considered in this paper in the clean limit.

We first look at the extended Kane-Mele model in the flat limit. The flat lower band has a bandwidth of 0.02t and
is separated from the upper band by an energy gap of 3.5t, where t is the first-neighbor hopping defining the energy
scale of the model. In Fig. S8(a) we show the superfluid weight of the model (solid lines) as a function of the filling ν̄
for different coupling constants U . We further compare this to the results of Eq. (S57) (dashed lines). For the latter,
we have computed the quantum metric of the model numerically adopting the essence of a method for calculating
the Berry curvature in a discretized Brillouin zone [47] to efficiently compute the quantum geometric tensor Bµν . At
larger coupling constants U , we observe that the numerically obtained curve for the superfluid weight is skewed with
respect to the analytical result. However, with decreasing U the agreement improves. Around U = t, the two curves
are nearly on top of each other. This is in agreement with the validity regime of Eq. (S57).

We have also checked the superconducting order parameter of this model as a function of U [see Fig. S8(b)]. Also
here we observe deviations from the analytical formula in Eq. (S58) at larger U , but the agreement improves as the
coupling constant is decreased to be considerably smaller than the energy gap of the model.

Finally, we look at the superfluid weight of the single-band model. Close to the band bottom at Γ, the model has an
approximately parabolic dispersion with an associated effective mass of m∗ = ~2/2ta2, where a is the lattice constant
and t the nearest-neighbor hopping. We further have n = ν̄/a2 for the electron density. Hence, Eq. (S56) evaluates
to Ds = 2e2ν̄t/~2 for our specific model, which is plotted in Fig. S8(c) for small band fillings ν̄ (dashed line). We
also plot the numerically obtained superfluid weight for different coupling strengths U (solid lines). We find that, as
U decreases, the superfluid weight of the model approaches the analytical result at small band fillings.

IX. UNSCALED SUPERFLUID WEIGHT AND UNSCALED PAIRING AMPLITUDE

In the main text, we established that the superfluid weight and the pairing amplitude show a universal suppression
when plotted in units of their values in the clean limit, Ds,0 and ∆0, as a function of the disorder strength in units
of the disorder scale W0. In general, the quantities Ds,0, ∆0, and W0 vary from model to model. In Fig. S9 we show
the suppression of the superfluid weight and of the pairing amplitude without rescaling. We observe that our models
describe a variety of moderate and strong coupling superconductors, highlighting that the universal behavior of the
rescaled quantities Ds,0, ∆0, and W0 is expected to occur in microscopically very different physical systems.
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FIG. S9. Disorder-induced suppression of the pairing amplitude and the superfluid weight across a variety of lattice models
corresponding to Fig. 1 of the main text: (i)-(v) topological and trivial extended Kane-Mele models, (vi)-(viii) trivial single-
band models. The ensemble averages of (a) the spatial average of the pairing amplitude ∆̄ and (b) the superfluid weight Ds are
shown as a function of the disorder strength W . In contrast to Fig. 1 of the main text, we here show the unscaled quantities
in units of the nearest-neighbor hopping amplitude t of the respective model.
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