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Abstract

We study Majorana chain with the shortest possible interaction term and in the presence
of hopping alternation. When formulated in terms of spins the model corresponds to the
transverse field Ising model with nearest-neighbor transverse and next-nearest-neighbor
longitudinal repulsion. The phase diagram obtained with extensive DMRG simulations
is very rich and contains six phases. Four gapped phases include paramagnetic, period-2
with broken translation symmetry, Z2 with broken parity symmetry and the period-2-Z2
phase with both symmetries broken. In addition there are two floating phases: gapless
and critical Luttinger liquid with incommensurate correlations, and with an additional
spontaneously broken Z2 symmetry in one of them. By analyzing an extended phase dia-
gram we demonstrate that, in contrast with a common belief, the Luttinger liquid phase
along the self-dual critical line terminates at a weaker interaction strength than the end
point of the Ising critical line that we find to be in the tri-critical Ising universality class.
We also show that none of these two points is a Lifshitz point terminating the incommen-
surability. In addition, we analyzed topological properties through Majorana zero modes
emergent in the two topological phases, with and without incommensurability. In the
weak interaction regime, a self-consistent mean-field treatment provides a remarkable
accuracy for the description of the spectral pairing and the parity switches induced by
the interaction.
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1 Introduction

1.1 Generalities

Models of strongly-correlated low-dimensional systems attracted a lot of attention in the past
decades [1]. Frustrated spin chains, models of spinless fermions and hard-boson models
have been studied intensely over the years and have lead to a number of fascinating re-
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sults. One of them is the emergence of Majorana edge states predicted by Kitaev [2] in a
chain of spinless fermions - an effective model of p-wave superconductors. This theory pre-
dictions stimulated impressive experimental activity [3–9] motivated by the potential usage
of Majorana zero modes in quantum computing [10–12]. By construction the Kitaev chain
describes non-interacting Majorana fermions, therefore shortly after the model has been pro-
posed it has also been extended to include interactions of various forms between the Majorana
fermions [13–19]. Interacting Majorana fermions have also been theoretically studied in the
presence of quenched disorder [20–26], in particular more recently in the context of many-
body localization physics at high energy [27–31]

1.2 The interacting Kitaev-Majorana chain model

Here we focus on low-energy properties for the following disorder-free microscopic spin Hamil-
tonian on a one-dimensional (1D) chain:

H =
∑

j

�

Jσx
j σ

x
j+1 − hσz

j + gzσ
z
jσ

z
j+1 + gxσ

x
j σ

x
j+2

�

, (1)

where σx ,z
j are Pauli matrices on site j. By means of Jordan-Wigner transformation this model

can be rewritten in terms of interacting (Dirac) fermions (see Appendix A.2)

H =
∑

j
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t
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†
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, (2)

with equal hopping and pairing terms t =∆ = J , and interaction strengths gz and gx . When
gx ,z = 0 we immediately recognize the celebrated transverse-field Ising (TFI) chain model [32,
33] in Eq. (1), equivalent to the so-called Kitaev chain model as given by the first line of Eq. (2).
The two other terms encode the interactions: the second line a nearest-neighbor density-
density repulsion for gz > 0 (attraction for gz < 0), while the last one can be understood as a
density-assisted hopping and pairing term at second neighbor distance.

This form of interaction takes a more symmetric expression in the Majorana language (see
Appendix A.2)

H = −i
∑

j

�

J b ja j+1 − ha j b j

�

−
∑

j

�

gza j b ja j+1 b j+1 + gx b ja j+1 b j+1a j+2

�

, (3)

where we have introduced two Majorana fermions at each site: a j = c†
j+c j and b j = i

�

c†
j − c j

�

.
A sketch of the model is given in Fig. 1 for both spin and Majorana representations. One can
easily see that tuning the transverse field of the Ising model in Eq. (1) introduces a bond
alternation of the kinetic term in the Majorana chain, see Fig. 1.

Various types of interactions have been studied over the past decade, but clearly most of
the attention has been devoted to models with density-density interactions gz 6= 0 [15,18,19,
34–41]. In particular, the emergence of a stable Luttinger liquid phase [19], the eight-vertex
criticality [41] and the exact disorder line [18] have been reported. In contrast, models with
gx 6= 0 have not retained much consideration, except a few cases involving correlated hopping
of fermions, as studied recently in Refs. [42–44].

3



SciPost Physics Submission

In this paper we consider symmetric interactions gz = gx = g, which display a Kramers-
Wannier self-duality, see Appendix A.1. In the rest of the paper we will set J = 1 and focus on
the repulsive g > 0 regime, leaving the attractive case for further studies. In Refs. [16, 17],
using field-theory and density matrix renormalization group (DMRG) methods Rahmani et al.
have achieved a detailed study of symmetric interacting problem for the special case J = h.
Let us briefly summarize their results for the repulsive situation that we want to consider
in this work: For g ® 0.28 the system can be described by the Ising critical theory; when
0.28 ® g ® 2.86 it was suggested that the effective critical theory can be characterized by a
central charge c = 3/2 and corresponds to the combination of the Ising and the Luttinger liquid
criticalities; the latter is accompanied by an emergent U(1) symmetry in agreement with the
later analysis by Verresen et al. [19]. The point g ≈ 2.86 has been identified as a generalized
commensurate-incommensurate transition beyond which the system is gaped with four-fold
degenerate ground-state.

a1 a2b1 b2 aL bLa3 b3
Jh

gz

gx

σ1 σ2 σ3 σL
J

gz

gx

h

(a)

(b)
Figure 1: Schematic picture for the spin Hamiltonian (a), and its Majorana fermion
representation in (b), both with open boundary conditions. In this work, we fix J = 1
and gx = gz = g.

The goal of the present paper is to study an extended phase diagram based on which we
rediscuss some of the conclusions drawn in the previous works. Building on DMRG simula-
tions [45–49], we map the global phase diagram of the extended interacting Kitaev-Majorana
chain model Eq. (1) with g = gx = gz as a function of a transverse field h and interaction
strength g, see Fig. 2. We perform simulations with two-site DMRG on systems with up to
N = 2000 sites with open boundary conditions (OBC) and up to N = 200 with periodic bound-
ary conditions (PBC). We achieve the convergence by performing up to 8 sweeps keeping up
to 3000 states and discarding singular values below 10−8. When using OBC we either fix
them by polarizing the edge spins along the chosen direction or keep them free. The former is
used to compute Friedel oscillations profiles in the floating phases and to study quantum phase
transitions. The latter is chosen when we study the emergence of Majorana edge states and as-
sociated exact zero modes. We also complement the DMRG simulations using a self-consistent
Hartree-Fock treatment of the problem in the limit of weak interaction, see Appendix C for
some details.

1.3 Paper outline

The rest of the paper is organized as follows. In section 2 we overview the phase diagram
briefly discussing the properties of each phase and the nature of the quantum phase transi-
tions between them. In section 3 we discuss in more details the floating phases - Luttinger
liquid phases with incommensurate correlations and locate the boundaries of these phases
that corresponds to two Kosterlitz-Thouless phase transitions. We then discuss the multicrit-
ical point along h = 0 line that belongs to the universality class of the eight-vertex model.
Equipped with the understanding of the extended phase diagram we revise the nature of the
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critical lines along h = 1 in the section 4. In particular we will provide numerical evidence
that there is no generalize commensurate-incommensurate transition predicted in Ref. [17],
the Ising transition persist beyond the Luttinger liquid phase and terminates at the tri-critical
Ising point. In section 5 we discuss the Majorana zero modes that appear in the Z2 regimes,
with or without incommensurability. DMRG results are successfully compared with a self-
consistent Hartree-Fock treatment in the limit of weak interaction. We summarize our results
and put them in perspective in section 6.

2 Main results and phase diagram

We investigate the phase diagram of the interacting Majorana chain model defined by Eq. (1)
with gx = gz = g and J = 1 fixed, as a function of the transverse field h and the interaction
coupling constant g, as rewritten here

H =
∑

j

�

σx
j σ

x
j+1 − hσz

j + g
�

σz
jσ

z
j+1 +σ

x
j σ

x
j+2

��

. (4)

The phase diagram obtained from extensive DMRG calculations is presented in Fig. 2 and
consists of six main phases. Below we provide a short summary of our results, describing the
different regimes in Sec. 2.1 and the associated phase transitions and (multi) critical points in
Sec. 2.2. More details and extended discussions are provided in the corresponding sections of
the paper.

2.1 Different phases

Before proceeding to a list of various phases let us point out a very important property of
the phase diagram. The model defined by Eq. (1) up to boundary terms obeys the Kramers-
Wannier self-duality (see Appendix A.1) with h→ 1/h and g → g/h. It immediately defines
h = 1 as a very special line in the phase diagram where the transitions between each pair of
dual phases take place. It turns out that this critical line is associated to a spontaneous parity
symmetry breaking for one of the side of the transition, depending on the interaction strength.

2.1.1 Parity (Z2) broken antiferromagnetic (topological) order

Realized for small g and h < 1 with spontaneously broken parity, this gapped phase is topo-
logically non-trivial with a two-fold (parity) degeneracy with emergent Majorana edge states.
Note that this phase has no topological interest for the (Ising) spin degrees of freedom for
which the so-called "topological phase" there boils down to a more conventional magnetic
order.

• Z2-C: Commensurate region of the Z2 phase with zero modes showing a vanishing (par-
ity) gap, exponentially suppressed with the system size.

• Z2-IC: A region of the Z2 phase with incommensurate short-range order and with zero
modes that due to incommensurability are exact at some points even for the finite length
of the chain.

2.1.2 Disordered paramagnetic phase

This gapped phase occurs at small g and h > 1. The ground-state is short-ranged correlated,
and corresponds to all spins polarized along the field h.
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Figure 2: Phase diagram of the interacting Majorana chain model Eq. (4) as a func-
tion of coupling constants g and h, obtained from DMRG simulations. It contains
four gapped phases: Z2, paramagnetic, period-2 and Z2-period-2; and two critical
floating phases in Luttinger liquid universality class. See main text, Section 2.1 for
a brief description of each phase. The model is self-dual for h→ 1/h and g → g/h.
The floating phases are separated from the gapped ones by the Kosterlitz-Thouless
transitions (red lines) with indicated critical values of the Luttinger liquid parameters
K c . The multicritical point at h = 0 and g ≈ 0.4105 is in the eight-vertex universal-
ity class. Blue lines are Ising transition that terminates at g ≈ 3 with the tri-critical
Ising point (blue star). For 0.29 ® g ® 1.3 the Ising transition is superposed with
the Luttinger liquid phase resulting in a critical line with central charge c = 3/2.
Dotted black line states for the disorder line above which the dominant wave-vector
is incommensurate.
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• Paramagnetic-C: Paramagnet with commensurate short-range order

• Paramagnetic-IC: Paramagnet with incommensurate short-range order showing the same
incommensurate vector as its dual phase Z2-IC.

2.1.3 Floating phases

These are gapless Luttinger liquid phases, with quasi-long-range incommensurate order. The
corresponding critical theory is characterized by a central charge c = 1. The floating phases
are stabilized by an emergent U(1) symmetry [17, 19]. In the Floating-2 phase realized for
h> 1 the parity symmetry Z2 is spontaneously broken.

2.1.4 Period-2 orders

• Period-2 (for h < 1): Gapped phase with spontaneously broken translation symmetry
and a two-fold degenerate ground-state. The phase is characterized by an antiferromag-
netic order along z with |〈σz

i −σ
z
i+1〉| 6= 0, and on top of it there is an incommensurate

short-range order.

• Z2-period-2 (for h> 1): Gapped phase with spontaneously broken translation and parity
symmetries. For chains with even number of sites there are Majorana zero modes.

Both phases, at least big portions of them, have incommensurate short-range order, however
the dominant wave-vector is very close to the commensurate value and, as we will see, ap-
proaches it with a zero slope. It means that for strong repulsion we cannot exclude the ex-
istence of the disorder line beyond which the correlations are commensurate. It also implies
that any finite-size result pointing towards commensurate wave-vector should be treated with
caution - it might take much larger system to detect a presence of incommensurability.

2.2 Phase transitions and multicritical points

The phase diagram contains a wide variety of quantum phase transitions:

• Ising transition: Quantum phase transition between theZ2 and the paramagnetic phases
is in the Ising universality class along h= 1 and for g ® 0.29.

• Ising+LL: Inside the floating phase Ising transition is superposed with the Luttinger
liquid phase resulting in a critical line characterized by the central charge c = 3/2. This
transition separates two critical floating phases one of which has broken Z2 symmetry.
According to our results Luttinger liquid terminates at g ≈ 1.3 marked in Fig. 2 with S,
for much smaller interaction strength than suggested in Ref. [17].

• Second Ising transition: The Ising critical line continues beyond the point S and ter-
minates around g ≈ 3.

• Tricritical Ising point: The location of the end point of the Ising critical line agrees
within the error-bars with the location of the generalized commensurate-incommensurate
transition reported in Ref. [17]. However, we arrived to a different conclusion regarding
the nature of this end point: in Sec. 4 we provide numerical evidences that (i) the end
point is in the tri-critical Ising (TCI) universality class, (ii) the Luttinger liquid terminates
at much weaker interaction strength and does not affect the nature of the end point, and
(iii) the incommensurate short-range correlations persist beyond this end point which is
not a Lifshitz point separating commensurate and incommensurate regimes.
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• Kosterlitz-Thouless transitions: The Luttinger liquid phase is stable against supercon-
ducting instability for K < 1/2 and against broken translation symmetry for K > 1/4.
When the Luttinger liquid exponent reaches these critical values, the system under-
goes Kosterlitz-Thouless transition into the corresponding gapped phase. Note that in
the period-2 phase short-range order remains incommensurate and the transition be-
longs to the Kosterlitz-Thouless universality class by contrast to the Pokrovsky-Talapov
commensurate-incommensurate transition realized in a related model that takes place
at the same critical value of K c = 1/4 [19,41].

• Multi-critical point M: The pairing operator becomes relevant and lead to a gapped Z2
phase for K > 1/2. The spin-flip operation always creates a pair of domain walls in a
paramagentic phase and thus has the same critical value K c = 1/2. However, along the
Ising critical line neither the pairing nor the spin-flip becomes a relevant perturbation
and the Kosterlitz-Thouless transition to the floating phase takes place at K c = 1 that cor-
responds to free fermions. Two disorder lines (dotted black) separating commensurate
and incommensurate regions of paramagnetic and Z2 phases terminate at this point.

• Eight-vertex critical point: The multi-critical point located at g ≈ 0.41 and h = 0 is in
the universality class of the eight-vertex model [15,41,50,51].

3 Floating phases

3.1 The boundaries of the floating phase

Let us first focus on the h < 1 side of the phase diagram. The stability of the Luttinger liquid
phase against superconducting pairing and spontaneous translation symmetry breaking due
to nearest-neighbor repulsion has been studied recently in Ref. [19]. It has been argued that
due to an emergent U(1) symmetry the Luttinger liquid phase is stable when the Luttinger
parameter lies within the interval 1/4 < K < 1/2. For K > 1/2 the pairing term becomes
relevant; for K < 1/4 the phase is unstable with respect to spontaneously broken translation
symmetry.

By choosing open boundary conditions we explicitly break translation symmetry and there-
fore can observe the floating phase with Friedel oscillations of local magnetization. In order
to reduce log-corrections we polarize first and last spins with strong boundary field. Then
according to the boundary conformal field theory, Friedel oscillations on a finite-size system
behave as [52]

〈σz
i 〉 ∝

cos(q j)
[(N/π) sin(πi/N)]K

, (5)

where K is the corresponding scaling dimension that for σz
i operator (equivalent to the local

density operator) coincides with the Luttinger liquid parameter, q is the incommensurate wave-
vector [53]. By fitting Friedel oscillations one can get an extremely accurate estimate of both,
the Luttinger parameter K and the incommensurate wave-vector q. Examples of such fits are
presented in Fig. 3 where the uniform part of the spin density 〈σz

i 〉 has been subtracted, and
the fitting window is cted to avoid edge effects.

By keeping track of the Luttinger liquid exponent K we can now locate the boundaries of
the Floating-1 phase as shown in Fig. 4 (a). Note that due to exponentially slow opening of the
gap at the Kosterlitz-Thouless transition it is possible to extract an effective critical exponent
K on both sides of the transitions. We therefore associate the location of the transitions with
the crossing points of the obtained curve with the corresponding field theory predictions. An
important observation is that the wave-vector q is incommensurate on both sides of the floating
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Figure 3: Examples of the Friedel oscillations inside the Floating-1 phase obtained
on a finite-size system with N = 801 [54] sites with polarized boundary conditions.
Blue points are DMRG data, red points are the result of the fit with Eq. (5) (blue
dots are completely hidden under red ones). Note that the uniform part of the spin
density 〈σz

i 〉 has been subtracted, and the fitting window is restricted to the range
i ∈ [121,680] in order to avoid edge effects.

phase. Therefore the transition to the period-2 phase with spontaneously broken translation
symmetry is also in the Kosterlitz-Thouless universality class in contrast to the Pokrovsky-
Talapov commensurate-incommensurate transition to the period-2 phase with commensurate
long- and short-range orders [41].

Relying on the Kramers-Wanier duality, the location of the Kosterlitz-Thouless transition
for h > 1 can be deduced from the results obtained for h < 1. These results are in excellent
agreement with independent calculations performed for h > 1. In the paramagnetic phase
elementary excitations - spin flips - create domain walls in pairs and thus lead to the same
value of the critical Luttinger liquid parameter K = 1/2. For strong interaction g the same
symmetry is broken (the translation) and thus, very naturally, the critical parameter is the
same K = 1/4.

(b)
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Figure 4: (a) Luttinger liquid parameter K and (b) incommensurate wave-vector q
along the vertical cut at h= 0.8. The system is in the Luttinger liquid phase for 1/4<
K < 1/2 (white region). It is clear that the wave-vector remains incommensurate
on both sides of the floating phase. Blue diamonds and red squares are results of
the Friedel oscillations similar to those presented in Fig. 3; blue crosses state for the
wave-vector extracted from the density-density correlation inside the gapped phases.

3.2 Floating-1 vs Floating-2

Let us now focus on the similarities and differences between the two floating phases. Be-
cause of the self-duality of the model one might expect similar scaling the z component of
the correlations 〈σz

iσ
z
j 〉 − 〈σ

z
i 〉〈σ

z
j 〉 for a given point in the Floating-1 (h, g) and the pairing

correlations 〈σx
i σ

x
i+1σ

x
j σ

x
j+1〉 − 〈σ

x
i σ

x
i+1〉〈σ

x
j σ

x
j+1〉 in its dual point in Floating-2 (1/h, g/h),
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Figure 5: (a) Friedel oscillations of the local magnetization σz
i (blue) and of the

pairing operator σx
i σ

x
i+1 (magenta) inside the floating-1 phase (h = 0.8, g = 0.7).

Both have been centered around their mean values, the former has been re-scaled
with a non-universal pre-factor const ≈ 0.84. (b) Decay of the magnetization cor-
relations 〈σz

iσ
z
j 〉 − 〈σ

z
i 〉〈σ

z
j 〉 as a function of distance at the two dual points inside

the Floating-1 (blue) and Floating-2 (red). (c) Local magnetization along x direc-
tion inside the Floating-2 phase with boundaries x-polarized. The amplitude of the
oscillations A(σx

i ) is extracted as a difference between the largest and smallest val-
ues that 〈σx

i 〉 takes over an interval of length N/4 in the middle of the chain. (d)
The amplitude A(σx

i ), extracted as in panel (c) along an horizontal cut at g = 1, is
plotted upon approaching the Ising transition at h = 1. Extracted critical exponent
β ≈ 0.116 agree within 8% with the theory prediction for Ising transition β = 1/8.
Inset: the same plot in a log-log scale. (e) The amplitude A(σx

i ) along vertical cut at
h= 1.5 across the Kosterlitz-Thouless transition between Floating-2 and period-2-Z2.

and vice versa. But it turns out that the connection is even stronger since at the same point,
these two operators: local magnetizationσz

i and pairingσx
i σ

x
i+1 have the same scaling dimen-

sion K . This can be observed by comparing the profiles of the Friedel oscillations presented
in Fig. 5 (a). This connection also manifests itself in the same decay of the correlations, for
instance 〈σz

iσ
z
j 〉 − 〈σ

z
i 〉〈σ

z
j 〉 at the two dual points as shown in Fig. 5 (b). In both cases there

is a non-universal pre-factor in the correlators, see Fig. 5 (a-b).
What distinguishes the two floating phases is the Z2 symmetry broken in the Floating-2

phase. In order to demonstrate it we look at the order parameter that we associate with an
amplitude of the x-component of the magnetization A(σx

i ). To detect Ising transition at small g
one traditionally define the order parameter as |〈σx

i −σ
x
i+1〉|(with x-polarized boundaries, see

Appendix D). Here we have to adjust it to make it suitable for incommensurate correlations.
This is done by computing the maximal and minimal values of the x component of the local
magnetization in the middle of the chain and over an interval equal to the quarter of the
chain. The example is shown in Fig. 5 (c). Next, we keep track of the amplitude A(σx

i )
upon approaching the transition at h = 1, by fitting the data to ∝ (h − 1)β we extract the
corresponding critical exponent β ≈ 0.116. Our results are in a reasonable agreement with
β = 1/8 for the Ising transition. As mentioned above the pairing operator is relevant for
K > 1/2. Thus for h > J the pairing that appears in the Floating-2 and period-2-Z2 phases
never constitute a relevant perturbations and remains insensitive to the Kosterlitz-Thouless
transition at large-g as shown in Fig. 5 (e).
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Figure 6: Identification of the eight-vertex universality class. (a) Finite-size scaling of
the amplitude of oscillations in the local magnetization. Separatrix is associated with
the critical point, the slope corresponds to the scaling dimension d. (a) Upper and
lower bounds are identified. (b) Scaling of the order parameter with the distance
to the critical point. Symbols are DMRG data, lines are fits ∝ (g − g c)β . Inset:
Comparison between the extracted values of β and d for the interacting Majorana
chain (black point) with Baxter’s eight-vertex model prediction Eq. (7) (red line).

3.3 The eight-vertex point

At h= 0 the floating phase collapses into a single point, thus the transition between the period-
2 and the Z2 phase becomes direct. When written in terms of Dirac fermions, the model of
Eq. (2) obeys particle-hole symmetry along h = 0. Based on the previous study the transition
between the Z2 and the period-2 phases along the particle-hole symmetry line is expected to
be in the universality class of the eight-vertex model [15,41,50,51].

According to Baxter [55] all critical exponents of the eight vertex model depend on a single
parameter ρ1:

ν= π/(2ρ), β = (π−ρ)/(4ρ), (6)

In special cases, e.g. for the integrable model, the parameter ρ can be expressed in therms of
coupling constants [51,55], however in general this is not possible. Nevertheless, the special
relation between ν and β should hold for any value of ρ. It means that we can express one
exponent in terms of another, say β = β(ν) excluding ρ from the equation. In practice,
however, numerical estimate of the scaling dimension d = β/ν is way more accurate than
the estimate of the correlation length critical exponent ν. Note that by contrast to β and
ν that regulates the order parameter and the correlation length as a function of distance to
the transition, the scaling dimension d can be extracted at the critical point and reflect the
dependence on the system size. After a simple algebra, we got the following prediction for the
eight vertex model:

β = d/(2− 4d). (7)

In order to verify this prediction numerically we extract independently β and d. We extract
the scaling dimension d of the local order parameter that in the present case is given by the
alternation between local magnetization on even and odd sites |〈σz

i 〉 − 〈σ
z
i+1〉| - vanishing in

1In Baxter’s original notations this control parameter was called µ
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the Z2 phase and finite in the period-2 one. The critical point is associated with the separatrix
in a log-log scale and according to Fig. 6 (a) is located in the interval 0.41< g c < 0.411. The
slope corresponds to the scaling dimension and lies in the range 0.389® d ® 0.41.

We measure the second critical exponent β by looking how alternation of the local mag-
netization vanishes upon approaching the transition. The results are presented in Fig. 6 (b).
Note that the shift of the location of the critical point with system size is typical and has been
observed in the previous study of the eight-vertex point [41]. But the critical exponent β
changes very little with the system size and we take the maximal difference as an estimate for
the errorbar. The agreement between obtained numerical results and the theory prediction of
Eq. (7) is spectacular and is presented in the inset of Fig. 6 (b). Note that there is no fitting
or adjustment parameter and here the comparison between the numerics and the theory is
direct.

4 h= 1 line

The h = 1 line is self-dual, and it hosts very rich critical behaviors. The exploration of the
extended phases away from this line helps us to get deeper insights into the criticalities realized
at h= 1. Although our numerical results in general agree with the numerical results provided
in Ref. [17] ( see the Appendix E for more comparison), by exploring the surroundings of the
critical line we arrived at a different conclusion regarding the nature of the critical phases
along h= 1 for large g. Below we provide a detailed overview of this very challenging line.

4.1 The boundaries of the Luttinger liquid

Let us come back to the original arguments regarding the stability of the floating phase. For the
operator that simultaneously create p domain walls the scaling dimension is given by p2/4K ,
the operator becomes relevant when the corresponding scaling dimension is smaller than 2.
This implies that the floating phase is stable against superconducting instability of the form
c†

i c†
i+1 + h.c. when 22/4K > 2, in other words, for K < 1/2. Similar argument applies in the

paramagnetic phase: an elementary excitation in this case is a spin flip that cannot create
a single domain wall but only a pair of them. Therefore, the transition to the Z2 or to the
paramagnetic phase takes place when the Luttinger liquid exponent reaches its critical value
K c = 1/2 [19]. However, these arguments are not valid along h= 1 critical line because none
of the two operators become relevant - the theory remains critical and the parity symmetry is
not broken along this line. We thus associate the transition along h = 1 with the point where
K reaches the value K = 1 of free-fermion theory.

We extract the Luttinger liquid parameter K by fitting the profile of the Friedel oscillations.
We polarize edge spins in z direction and fit the data as shown in Fig. 3. Note that the Ising
transition with the scaling dimension d = 1/8 is controlled by different operator that also
requires different boundary conditions (see for instance Appendix D). According to our data
presented in Fig. 7 (a) the Luttinger parameter reaches its critical value K c = 1 at g ≈ 0.29,
in good agreement with Ref. [17]. At the same point we observe that the central charge
jumps from c ≈ 1/2 typical for the Ising transition to c ≈ 3/2 as shown in Fig. 7 (c). Around
the same point, the incommensurability appears, therefore the multicritical point M is also a
Lifshitz point. In Fig.fig:h1(d) we show that the lowest excitation energies scale to zero as
1/N z with the dynamical critical exponent of the Lifshitz point z = 3. All these results agree
with the previous study by Rahmani et al. [17].

When does the Luttinger liquid terminate ? For large values of g the operator that becomes
relevant is the one that breaks translation symmetry and lead to the period-2 phases. This
happens for K < 1/4 [19]. By contrast to the low-g case, however, the translation symmetry
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Figure 7: (a) Luttinger liquid parameter K and (b) incommensurate wave-vector q ex-
tracted by fitting the Friedel oscillations along h= 1 line with open and fixed bound-
ary conditions. (c) Central charge as a function of coupling constant g extracted
from the entanglement entropy for chains with periodic boundary conditions. (d)
Finite-size scaling of the three lowest excitation energies at the multicritical point M
for systems with up to 19 sites with open and fixed boundary conditions. The scaling
is in excelent agreement with the theory prediction ∆∝ N−z for the Lifshitz point
with z = 3.

is broken in both surrounding gapped phases and at the critical line at h = 1 between them.
So the critical value of the Luttinger liquid exponent is always equal to K c = 1/4. According
to our data presented in Fig. 7 (a), along h = 1 the Luttinger liquid parameter reaches the
critical value K c = 1/4 around g ≈ 1.3.

Note that the central charge extracted from entanglement entropy in periodic system starts
to deviate from c = 3/2 for large g. As one can see in Fig. 7 (c) this deviation is very slow
(as expected for a Kosterlitz-Thouless transition) but it is also very systematic. According to
our finite-size data for the entanglement entropy (restricted to small lengths due to periodic
boundary conditions) the deviation starts around g ≈ 1.8. This overestimates the end of the
Luttinger liquid compared to the more reliable numerical estimates of Luttinger parameter. In
Ref. [17] such deviation starts in the interval 0.5 < g−1 < 0.75 (this corresponds to 1.33 <
g < 2). In both cases the deviation from the c = 3/2 starts much earlier than the expected
end point at g ≈ 3 (g ≈ 2.86 in Ref. [17]) where the transition turns into 1st order.

4.2 Continuation of the Ising transition and its end point

What happens along h = 1 line after the Luttinger liquid terminates ? For larger values of g
we expect the transition to continue in the Ising universality class in agreement with spon-
taneously broken Z2 symmetry between the two gapped phases. In order to confirm this
prediction numerically we extract the critical exponent β by fitting the order parameter upon
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Figure 8: Local magnetization along x direction inside the period-2-Z2 phase. The
amplitude of the oscillations A(σx

i ) is extracted as a difference between the largest
and smallest values that 〈σx

i 〉 takes over an interval of length N/4 in the middle of
the chain. Presented results are for N = 800 site with boundaries polarized in the x
direction.

approaching the transition. As discussed above in order to adjust the Ising order parameter to
the incommensurate case we consider an amplitude of the x-component of the magnetization
A(σx

i ) over the finite window in the middle of the chain. An example for the period-2-Z2 phase
is shown in Fig. 8. We keep track of the amplitude A(σx

i )when approaching the transition from
the period-2-Z2 phase, by fitting the data we extract the corresponding critical exponent β . In
Fig. 9 we show that along g = 2 and g = 2.5 the amplitude vanishes with the critical exponent
that is in excellent agreement with the prediction β = 1/8 for Ising critical line. According to
our results the end point of the Ising critical line is located around g ≈ 3 (which is within the
errorbar of the end point predicted in Ref. [17]). At this point the extracted critical exponent
β ≈ 0.0413 agrees within 1% with the CFT prediction β = 1/24 for the tri-critical Ising point.

Beyond this end point the amplitude remains finite (see Fig. 9) indicating the first order
transition between the phases. The possibility of the first order transition in an extended
version of the phase diagram has been already discussed in Rahmani et al. [17] but it was
suggested that the ground-state is four-fold degenerate along this line. We think that the
degeneracy is actually higher - six-fold - this corresponds to the level crossings of the two-fold-
degenerate state from the period-2 phase and four-fold degenerate one from the period-2-Z2
phase. Six-fold degeneracy, or in other words three-fold degeneracy in each sector of broken
translation would also agree with the tri-critical end point detected numerically.

4.3 The persistency of incommensurability

So far we have shown that the Luttinger liquid phase terminates at the point which is different
from the end point of the Ising critical line. Let us now show that at none of these two points
the incommensurability terminates. In Fig. 10 we show the scaling of the spin-spin correlation
with distance, where on top of the main decay one can clearly distinguish the helices typical
for incommensurate correlations. Note that on N = 801 the presence of incommensurability
is still clearly visible for g = 3.5. We expect that the correlations slowly approach but probably
never reach the commensurate value of q for any finite g.
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Figure 9: Scaling of the amplitude A(σx
i ) upon approaching the transition between

the period-2 and the period-2-Z2 phase. Symbols are DMRG data ; red, magenta and
green lines are fits of the results for N = 800 to the power-law A(σx

i )∝ (h− 1)β ;
blue and cyan lines are guide to the eyes. Along g = 2 and g = 2.5 the extracted
exponent β is in excellent agreement with the theory prediction for Ising critical
exponent β = 1/8, while for g = 3 the critical exponent agrees with the tri-critical
Ising end point with β = 1/24. For g = 4 and g = 6 the amplitude remains finite
up to h = 1 in agreement with a first order transition. Inset shows the same data in
log-log scale.
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Figure 10: Correlations as a function of distance for h= 1 and and various values of
g. The incommensurability persists even beyond the tri-critical end point at g ≈ 3.
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5 Majorana zero modes

5.1 Definition and properties of strong Majorana zero modes

The spontaneous breaking of Z2 symmetry, commonly signaled by a local (magnetic) order in
the thermodynamic limit, may take a non-local form in terms of fermions, as first observed
by Kitaev [2] for non-interacting chains. Indeed, in the ordered phase of the TFI chain (see
Eq. (1) with gx = gz = 0 and J > h), fermions display non-trivial topological properties, with
"unpaired" zero-energy Majorana edge states localized at the boundaries of an open chain.
This brought the notion of so-called strong zero-mode (SZM), popularized by Fendley [56].
This terminology "strong" refers to the fact that the entire many-body spectrum is concerned,
in contrast with "weak" zero modes which only touch the low-energy part [57,58]. We recall
that a SZM operator Ψzm must have the three following properties:

1) Normalizable: Ψ†
zmΨzm = 1.

2) Commuting with the Hamiltonian (at least in the thermodynamic limit) [H,Ψzm]→ 0.
3) Anti-commuting with the discrete symmetry : {P,Ψzm} = 0, where P =

∏

i σ
z
i is the

parity operator.
A striking consequence of these properties is that Ψzm provides a map between even and

odd sectors for the entire many-body spectrum of H which therefore displays a pairing de-
generacy that becomes exact in the thermodynamic limit. For a finite system, this pairing
degeneracy is usually lifted and a small residual finite-size parity gap exists between even and
odd sectors

∆p(N) =
�

�

�Eodd − Eeven

�

�

�∼ exp
�

−
N
ξzm

�

, (8)

exponentially vanishing with a correlation length ξzm which also controls the edge state lo-
calization [2, 56]. Below we discuss Majorana zero modes physics, first for non-interacting
systems where SZM operators can be exactly constructed. This will help us to understand
the behavior of the parity gap in the Z2 ground-state of the interacting problem at small g, a
regime well captured by a self-consistent mean-field decoupling.

5.2 Non-interacting Kitaev chains

5.2.1 Transverse-field Ising chain

There are only a few cases where exact expressions for SZM operators Ψzm are known, the
simplest and most famous example being the TFI chain model, defined for an open wire of N
sites by

H = J
N−1
∑

j=1

σx
j σ

x
j+1 − h

N
∑

j=1

σz
j = −i

 

J
N−1
∑

j=1

b ja j+1 − h
N
∑

j=1

a j b j

!

. (9)

With open boundary conditions, one can easily express the SZM operators, localized at the
edges

ΨLeft
zm =

N
∑

j=1

Θ ja j and ΨRight
zm =

N
∑

j=1

Θ j bN+1− j . (10)

The amplitude Θ j decays exponentially away from each open end

Θ j ∝ exp
�

−
j
ξzm

�

with ξzm =
1

ln(J/h)
. (11)
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5.2.2 Incommensurability and parity switches for Kitaev wires

One can also derive exact expressions in the more general case provided by the non-interacting
lattice model of p-wave superconducting wires [2], when hopping and pairing terms are not
necessarily equal t 6= ∆. This model can be written using the three equivalent languages
(spins, Majorana and Dirac fermions: see Appendix A.2), as follows

H =
∑

j

�

t
�

c†
j c j+1 + h.c.

�

+∆
�

c†
j c

†
j+1 + h.c.

�

+ 2hn j

�

=
∑

j

�

Xσx
j σ

x
j+1 + Yσ y

j σ
y
j+1 − hσz

j

�

= −i
∑

j

�

X b ja j+1 − Ya j b j+1 − ha j b j

�

,

(12)

where t = X + Y and ∆ = X − Y . The condition of existence for SZM is quite simple (see
Appendix B) as it simply requires X + Y > h. However, as first discussed for spin correlations
in their seminal work by Barouch and McCoy [59], there is an interesting oscillatory regime
for the pair-wise correlations where precisely the SZM also display incommensurate (IC) mod-
ulation [60,61]. This occurs under the simple condition h2 < 4X Y , with an IC wave-vector q
given by

cos q =
h

2
p

X Y
. (13)

The amplitude Θ j of the left and right zero-modes operators Eq. (10) then obeys

Θ j ∝ sin (q j)exp

�

−
j
ξIC

zm

�

with
1
ξIC

zm
= ln

√

√X
Y

. (14)

In such a case, one can show that the finite-size parity gap also displays some IC modulation. It
is straightforward to obtain an exact analytical expression for the parity gap (see Appendix B.2
for details), which in the incommensurate regime reads

∆(IC)p (N) = 2X
�

Ms
x

�2 sin [q(N + 1)]
sin q

exp

�

−
N
ξIC

zm

�

, (15)

where Ms
x is the surface magnetization (see Appendix B.2). Contrary to the TFI model, here

the finite-size parity gap may vanish exactly if sin [q(N + 1)] = 0 and q 6= 0. On a finite chain
of length N , this occurs N/2 times, i.e. when

h∗n
2
p

X Y
= cos

� nπ
N + 1

�

, n= 1 , . . . ,
N
2

, (16)

corresponding to a level crossing within each doublet of opposite parity p = ±1, associated
with a parity switch [61]. The commensurate-incommensurate crossover inside the Z2 phase
occurs for n = 0, i.e. when hIC = 2

p
X Y . On the other side (commensurate regime for

X + Y > h> hIC) one recovers a monotonous exponential decay of the form Eq. (8) with

1
ξC

zm
= ln

�

X

h+
p

h2 − 4X Y

�

. (17)

The SZM localization length ξzm and the incommensurate vector q, given by Eqs. (13), (40)
and (17), are both shown in Fig. 11 (a) for the non-interacting Kitaev chain model Eq. (12)
with hopping t = 1 and pairing ∆ = 0.8 (X = 0.9, Y = 0.1) as a function of the field h. The
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Figure 11: Free-fermion results for the non-interacting Kitaev chain model Eq. (12)
with open boundary conditions, hopping t = 1 and pairing ∆ = 0.8 (X = 0.9,
Y = 0.1). (a) Field h-dependence of the SZM localization length ξzm and the in-
commensurate vector q, given by Eqs. (13), (40) and (17), plotted together with the
surface magnetization Ms

x (see Appendix B.2). (b) The finite-size parity gap∆p (sym-
bols: exact diagonalization results ; lines: analytical expressions, see Appendix B.3)
displays incommensurate oscillations, as predicted by Eq. (15) for h< 2

p
X Y = 0.6,

followed by a commensurate Z2 topological phase, and then the PM (trivial) regime
for h> 1.

surface magnetization Ms
x (which plays the role of the order parameter of the Z2 phase, see

Appendix B.2) is also plotted. In panel (b) we show for the same set of parameters how the

parity gap
�

�

�Eodd − Eeven

�

�

� behaves as a function of h. For various system lengths, ∆p oscillates

in the incommensurate regime (with N/2 oscillations), as predicted.

5.3 Interacting case: DMRG results

In contrast with free-fermion systems, the situation is much more complicated in the inter-
acting case [13, 14]. Despite recent efforts addressing the very existence of possible SZM
operators in the presence of interaction [62–65], no explicit and exact construction of SZM is
known, except the notable exemple of the integrable XYZ chain [66]. For the interacting and
non-integrable model Eq. (1) with gx 6= gz 6= 0, Kemp et al. [38] have shown the existence
of an "almost" SZM that almost commutes with the Hamiltonian. Nevertheless, evidences for
edge modes have been provided for various interacting models, but only at low energy. In-
terestingly, incommensurability may help this detection with the possibility to continuously
tune the effective coupling (and therefore the parity gap) between the edges [7, 67, 68], and
eventually make it vanishing. However, the strong character of the SZMs turns out to be much
more difficult to grasp because it addresses the whole many-body spectrum, as recently dis-
cussed in the context of many-body localization at infinite temperature [31,69]. Here we will
focus on ground-state physics, and therefore will not address this issue.
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Figure 12: DMRG results for the ground-state zero modes of Z2 phases of the in-
teracting Majorana chain model Eq. (4). E0 states for the ground-state energy and
E1 is the energy of the in-gap excitation. (a) Weak interaction Z2 phase: relative
energy of the in-gap states as a function of field h along an horizontal cut at g = 0.2
computed for N = 30 sites. Incommensurate correlations tuned by h lead to exact
level crossings between the two in-gap states with even and odd parity. (b) Strongly
interacting regime Z2-period-2 phase: same as (a) but as a function of g for h= 1.5.
Exact crossings (also induced by incommensurability) are clearly visible, together
with an overall decay with increasing system sizes N = 30, 40, 80.

5.3.1 Z2 antiferromagnet at small g

We first numerically investigate the effect of weak interaction strength g on the Majorana zero-
modes of the TFI chain model in the Z2 regime h < 1 using DMRG simulations, addressing
the spectral pairing of the two lowest energy levels of the many-body spectrum. We detect the
presence of zero modes by computing finite-size energy difference between the two ground-
states with open boundary conditions. This is done by targeting multiple states of the effective
Hamiltonian and keeping track of the energy as a function of DMRG iterations. The method
is described in details in Ref. [49].

In Fig. 12 (a) we present results for the parity gap ∆p along an horizontal cut in the phase
diagram (Fig. 2) at g = 0.2 as a function of h. Results, shown for N = 30 sites, are displayed
with respect to the average energy of the two lowest levels, such that exact level crossings
are clearly visible. Note that similar oscillations (and level crossings) have been observed in
Ref. [39] with small chains for the interacting spin model Eq. (1) with gx = 0 and gz > 0. This
is a nice example of field-induced parity switches, as already discussed above for the IC regime
of the non-interacting Kitaev chain, see Fig. 11 (b) and Eq. (15). In this exactly solvable case,
the parity switch condition Eq. (16) yielded N/2 level crossings. In the present interacting case,
our DMRG results strongly suggest a similar condition with N/2 parity switches, as observed
numerically in Fig. 12 (a). This conjecture is also supported by the self-consistent MF approach
at weak interaction, as we will explain below in Section 5.4.

This exact level crossing regime with parity switches is dictated by the incommensurability
vector q on top of the AF Z2 order. Upon increasing further h, this oscillatory regime disap-
pears and is replaced by the more conventional commensurate Z2 topological order with a
monotonous parity gap, but still exponentially vanishing with N as in Eq. (8) ; this occurs for
h > hIC with hIC ≈ 0.87 for g = 0.2. Below in Fig. 14 we also discuss similar effects for other
values of the parameters.

5.3.2 Z2 period-2 antiferromagnet at large g

Majorana zero-modes are also expected for the upper right part of the phase diagram (see
Fig. 2) in the strong interaction regime for h > 1. Indeed, we expect two discrete symmetries
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to be spontaneously broken there: the translation and the Z2. A sketchy representation of the
4 associated ground-states would be for the two sectors of translation

| →→←←→→← · · · 〉 ± | ←←→→←←→ · · · 〉 (18)

| ←→→←←→→ · · · 〉 ± | →←←→→←← · · · 〉 (19)

Although the translation is explicitly broken in our DMRG simulations on open chains, one
can still probe the breaking of Z2 by monitoring the parity gap. Panel (b) of Fig. 12 provides
DMRG results in this strong interaction regime for h = 1.5. One sees exact crossings induced
by the incommensurability. Due to proximity of the wave-vector to its commensurate value
(at the Kosterlitz-Thouless transition the wave-vector is q ¦ 0.95π) we can detect only one
crossing for N = 30 and N = 40 and two crossings for N = 80. As expected the location of
the crossing changes with the system size. Of course, one might expect more crossings for
larger systems but the accuracy of our simulations are not sufficient to resolve in-gap states in
this part of the phase diagram for longer chains. Qualitatively our results are consistent with
exponential decay of the amplitude of the energy difference with the system-size N .

5.4 Self-consistent mean-field theory

We now present a self-consistent mean-field (MF) treatment of the interacting terms which
gives surprisingly good results. This approach allows us to gain some physical insight and a
better understanding of the interacting Z2 topological regime, at least for weak interactions.

5.4.1 Mean-field Hamiltonian

We perform a MF decoupling of the g interaction terms (see Appendix C) in the weakly inter-
acting limit. This leads to the following effective Hamiltonian in terms of Dirac and Majorana
fermions (up to irrelevant constant terms)

HMF =
∑

j

�

t j

�

c†
j c j+1 + h.c.

�

+∆ j

�

c†
j c

†
j+1 + h.c.

�

+ 2h jn j + eX j

�

c†
j c j+2 + c†

j c
†
j+2 + h.c.

��

= −i
∑

j

�

X j b ja j+1 − Yja j b j+1 − h ja j b j + eX j b ja j+2

�

(20)

where t j = X j+Yj and∆ j = X j−Yj . Rewriting the same MF Hamiltonian in the spin language
is also useful:

HMF =
∑

j

�

X jσ
x
j σ

x
j+1 + Yjσ

y
j σ

y
j+1 − h jσ

z
j + eX jσ

x
j σ

z
j+1σ

x
j+2

�

. (21)

Interestingly, the non-interacting MF Hamiltonian is very close to a non-interacting Kitaev
chain model Eq. (12), with an additional second neighbor hopping term −ieX j b ja j+2 which
takes the form of an α-chain model [70] with α = 22. A sketch of the MF model is given in
Fig. 13.

5.4.2 Numerical results

The new couplings
¦

X j ; Yj ; h j ; eX j

©

of the MF Hamiltonian Eqs. (49) and (21) are obtained
from the self-consistent equations (see Eqs. (50) in Appendix C where some technical details
about the microscopic and convergence aspects are also discussed, OBC are used for the MF
parameters). One can easily reach a converged MF solution at weak interaction g, which is

2Also equivalent to the so-called cluster model in spin language [71,72].
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Figure 13: Schematic picture for the MF Majorana Hamiltonian where the interaction
terms now correspond to 2-body Majorana couplings at distance 3. The MF model
becomes self-dual when Y = eX , which precisely occurs if X = h.

the target regime of such Hartree-Fock decouplings, but we also observe a breakdown of the
MF convergence when g exceeds a certain value ∼ 0.25, see below in Section 5.4.3 where the
MF phase diagram is shown.

HMF is numerically diagonalized iteratively till the convergence of the MF parameters
¦

X j ; Yj ; h j ; eX j

©

. In Fig. 14, we illustrate the exact diagonalization results of the converged
Hamiltonian HMF for the parity gap ∆p. A direct comparison with DMRG calculations is pro-
vided for the evolution of ∆p (a) vs. g for h = 0.5, and (b) against h for g = 0.1 and 0.2.
The agreement is quantitatively excellent for weak interaction strength, typically below ∼ 0.2,
with both the amplitudes and the incommensurate oscillations very well captured despite the
approximation. Interestingly the parity gap displays a similar behavior as compared to the
standard non-interacting Kitaev chain (Fig. 11), which undoubtedly captures the essential
features of this Z2 regime of the phase diagram.
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Figure 14: Quantitative comparison between DMRG (symbols) and self-consistent
mean-field (SCMF) (lines) for the parity gap ∆p. (a) Vertical scan in the phase dia-
gram of Fig. 2 at h = 0.5: data are shown for N = 20, 30, 40. The agreement for g
not too large is quite remarkable, the green shaded area signals the region where no
MF convergence can be obtained. (b) Horizontal scan at g = 0.1 (upper panel) and
g = 0.2 (bottom panel): the agreement, quantitatively excellent for g = 0.1, slightly
deteriorates as g increases, but the periodicity of the oscillations remains perfectly
captured by the SCMF approach.

5.4.3 Mean-field phase diagram

One can further gain insights about the qualitative effects produced by the interactions on the
non-interacting Z2 line of the TFI model, by looking more closely to the MF decoupling in
Eqs. (50). Indeed, keeping only the dominant corrections, we approximate the new couplings
by

X j ≈ J − g
�

|C x x
j−1|+ |C

x x
j+1|

�

Yj ≈ g|C x x
j | h j ≈ h− g

�

mz
j−1 +mz

j+1

�

eX j ≈ gmz
j+1, (22)
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where mz
j = 〈σ

z
j 〉 and C x x

j = 〈σx
j σ

x
j+1〉. These expressions can be even more simplified in

the limit of small field h, where mz
j is small and C x x

j ≈ −1 (AF order). Assuming uniform

couplings, the toy-model with
¦

X j ; Yj ; h j ; eX j

©

∀ j
=
¦

J − 2g ; g ; h ; 0
©

, exactly solvable, is

expected to capture some features of the interacting Majorana chain model in the Z2 regime
at small enough interaction g and field h.
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Figure 15: SCMF phase diagram in the weak-interaction regime displayed in the
plane field h – interaction g. (a) The C-IC disorder line, computed using SCMF for
various chain lengths (as indicated on the plot), is found in excellent agreement with
DMRG data (the magenta line is a guide to the eyes).The full line g = h2/4 is the
toy-model estimate for the C-IC line (see text) which gives an excellent description.
Green diamonds show the boundary of the SCMF convergence: in the top green area
SCMF does not converge anymore. (b) Color map of the parity gap ∆p, numerically
obtained for N = 16. The parity switches lines are clearly visible where the parity
gap vanishes.

In Fig. 15 (a) we verify that the disorder line separating commensurate and incommensu-
rate regions of the Z2 phase, trivially given by h2

IC = 4g for the toy-model, reproduces very well
the more involved SCMF results. Quite remarkably, this remains true for the entire Z2 regime,
well beyond the h� 1 limit. A direct comparison with DMRG results for the commensurate-
incommensurate line is also is excellent agreement.

The right panel of Fig. 15 (b) provides the MF phase diagram of HMF as a color map of the
parity gap in the plane field h – interaction g. In addition to the disorder line, one sees N/2
dark lines showing the minima of ∆p which signal N/2 parity switches. For readability and
clarity, this is shown for a small system size N = 16.

6 Discussions and conclusions

In this work we have presented an extended phase diagram of the interacting Majorana chain
in the case of symmetric interaction gz = gx , as overviewed in Fig. 2. The obtained phase
diagram is very rich and contains four gapped phases and two floating phases, i.e. Luttinger
liquid regimes with incommensurate correlations. In addition, our results motivated us to
revisit the nature of the effective critical theories along the self-dual critical line at h = 1. We
argue that there is no generalized commensurate-incommensurate transition where Ising and
Luttinger liquid criticalities both terminate. We demonstrate that the Luttinger liquid phase
stops at g ≈ 1.3, while the Ising critical line persists beyond it up to g ≈ 3 where it ends with
a tri-critical Ising point. Incommensurability persists beyond these two points and, if it ends,
it does so for a much stronger g interaction.

We have also provided numerical evidence of a multi-critical point in the eight-vertex uni-
versality class at h= 0 and g ≈ 0.41. Note that due to duality one can expect a second critical
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point in the eight-vertex universality class at h → ∞ (or J → 0) and g/h ≈ 0.41 between
the paramagnetic and the period-2-Z2 phases. This implies that both, translation and parity,
symmetries will be broken on one side of the transition and, quite surprisingly this does not
change the nature of the critical point.

Interestingly, the floating phases in the present phase diagram are separated from the
phases with broken translation symmetry by Kosterlitz-Thouless transitions, by contrast to
previous studies where a Pokrovsky-Talapov transition has been reported [19,41]. This is be-
cause the short-range order in the gapped phases is characterized by incommensurate wave-
vectors, and thus the transition between floating and period-2 phases are incommensurate-
incommensurate (and not commensurate-incommensurate as in the case of Pokrovsky-Talapov
transition). This short-range incommensurability is realized when gz = gx and absent when
gx = 0. Therefore by tuning gx/gz one might expect a crossover between the Pokrovsky-
Talapov and the Kosterlitz-Thouless transitions similar to the one reported recently in a chain
of spinless fermions with next-nearest-neighbor interactions [73]. It would be interesting to
check this prediction numerically.

The tri-critical Ising conformal field theory is supersymmetric, thus we might expect that
the end point of the Ising critical line will have the features of the supersymetric critical point,
for example, doubly degenerate excitation spectra. But the tri-critical Ising point is not the
only place in this phase diagram where one might expect supersymmetry to appear. The Ising
critical line that lies within the gapless region with U(1) and Z2 symmetry might have an
emergent N = (1,1) supersymmetry [74, 75]. In the present case, the Z2 is satisfied by the
Hamiltonian, while the U(1) symmetry is an emergent symmetry stabilizing the Luttinger liq-
uid phase [17,19]. Moreover, at the multicritical point where Ising transition exit the Luttinger
liquid phase and hits the Kosterlitz-Thouless transition one might expect the spontaneously
emergent N = (3, 3) supersymmetry. According to Ref. [76] this higher supersymmetry can
be realized under the following three conditions: i) the system has to be invariant with re-
spect to U(1) and Z2 symmetry ; ii) it has to be tuned to the multicritical point where Ising
and Kosterlitz-Thouless transitions coincide ; and iii) the velocity of the fermionic degree of
freedom should be smaller than or equal to the velocity of the bosonic degree of freedom.
The first two conditions are formally satisfied at the both multicritical points terminating the
c = 3/2 line (see points M and S at the phase diagram of Fig. 2). Although these two points
appears very differently: point S appears as an intersection between the Ising the Kosterlitz-
Thouless lines; while due to continuity of the equal-K lines the Kosterlitz-Thouless transition
is expected to approach the point M at an infinite slope. The last condition on the velocities
requires further investigation. We leave this problem for future studies.

Finally, we have explored the topological properties of the systems by looking at the possi-
ble existence of Majorana zero-modes, signalled by the (two-fold) parity degeneracy. The Z2
topological order of the (Kitaev) free-fermion (for h < 1) remains robust against weak inter-
actions, as unambiguously shown by large-scale DMRG simulations, and remarkably captured
by a self-consistent fermionic mean-field theory. Due to incommensurability, one observes a
succession of exact zero-mode level crossings already for finite chain lengths. A similar obser-
vation is also reported at large g in the Z2 period-2 regime. Despite such good evidences for
the existence of Majorana edge modes at low energy, their existence at higher energies, as it
is the case in the absence of interaction, remains highly hypothetical.
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A Useful transformations

A.1 Duality

The model defined by the Hamiltonian Eq. (1) up to boundary terms transforms into itself by
Kramers-Wannier duality transformation:

σx
i σ

x
i+1→ τ

z
i and σz

i → τ
x
i τ

x
i+1, (23)

where σ and τ are Pauli matrices. Then the duality transformation is given by:

H =
∑

i

σx
i σ

x
i+1 + h

∑

i

σz
i + g

∑

i

(σx
i (σ

x
i+1)

2σx
i+2 +σ

z
iσ

z
i+1)

= h

�

∑

i

1
h
τz

i +
∑

i

τx
i τ

x
i+1 +

g
h

∑

i

(τz
iτ

z
i+1 +τ

x
i τ

x
i+2)

�

, (24)

where we used that (σx
i+1)

2 = I and the fact that the model is symmetric with respect to the
sign of the field h. Up to a pre-factor the Hamiltonian of Eq. (24) is equivalent to the original
Hamiltonian in Eq. (1) with h→ h−1 and g → g/h. This duality transformation allows us to
study the nature of the quantum phase transitions only for h ≤ 1, and re-use these results for
h> 1.

A.2 Jordan-Wigner and Majorana fermions

The Jordan-Wigner transformation maps Pauli operators to Dirac fermions

σz
j = 1− 2c†

j c j (25)

σx
j = K j

�

c†
j + c j

�

(26)

σ
y
j = iK j

�

c†
j − c j

�

(27)

with K j =
j−1
∏

k=1

σz
k. (28)

Therefore the original spin model Eq. (1) can be rewritten as an interacting fermions problem,
see Eq. (2). One can also introduce two Majorana fermion operators a j and b j

a j = c†
j + c j = K jσ

x
j (29)

b j = i(c†
j − c j) = K jσ

y
j , (30)

a j b j = i(1− 2c†
j c j) = iσz

j , (31)

which satisfy the usual rules: (a/b)† = (a/b), (a/b)2 = 1, {ai , a j} = {bi , b j} = 2δi j , and
{ai , b j}= 0. Then the interacting problem can be re-written in terms of Majorana variables as
given by the Hamiltonian Eq. (3).
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B Strong zero modes for the non-interacting Kitaev model

B.1 SZM construction: iterative procedure

In the Majorana representation, the Kitaev model reads

H = −i
∑

j

�

X b ja j+1 − Ya j b j+1 − ha j b j

�

(32)

Assuming simple linear combinations for the (normalized) SZM operators

Ψleft =
1
NN

N
∑

j=1

Θ j a j and Ψright =
1
NN

N
∑

j=1

Θ j bN+1− j , (33)

and using
�

H, a j

�

= 2i
�

X b j−1 − hb j + Y b j+1

�

and
�

H, b j

�

= 2i
�

−Ya j−1 + ha j − X a j+1

�

, we
iteratively arrive at the simple recursion relation for Θ j:

Θ j+1 =
h
X
Θ j −

Y
X
Θ j−1, (34)

such that

[H,Ψleft] = 2i
1
NN
(YΘN−1 − hΘN ) bN and

�

H,Ψright

�

= 2i
1
NN
(YΘN−1 − hΘN ) a1. (35)

It is easy to solve the above recursion Eq. (34) with initial conditions Θ0 = 0 and Θ1 = 1. We
restrict the present discussion to positive couplings h, X , Y ≥ 0 and X ≥ Y (it is straightforward
to get results for the other cases).

The phase diagram of the Kitaev chain model can simply be infered from the existence of
normalizable SZM, which requires h< X + Y . Contrary to the TFIM case, here the topological
regime is richer as one can distinguish two types of SZM decays.

(i) Commensurate regime if h2 ≥ 4XY.

Θ j =
X
αh

�

h
2X

� j

×
�

(1+α) j − (1−α) j
�

−−→
j�1

¨

∞ if h> X + Y
X
αhe− j/ξC

zm if X + Y > h> 2
p

X Y ,

where α=
p

1− 4X Y /h2, and the edge mode localization length given by

1
ξC

zm
= ln

�

2X
(1+α)h

�

. (36)

Note that in the limit α→ 0 (h→ 2
p

X Y from above)

Θ j −−→
α→0

j
�

h
2X

� j−1

. (37)

The SZM normalization factor can be expressed in the large N limit:

1
N
−−−−→
N→∞

2α
� 1

(1+α)−2 −
� h

2X

�2 +
1

(1−α)−2 −
� h

2X

�2 −
2

(1−α2)−1 −
� h

2X

�2

�−1/2
. (38)
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(ii) Incommensurate (IC) regime if h2 < 4XY.

Θ j =
2X

p
4X Y − h2

sin (q j) e− j/ξIC
zm (39)

displays oscillations and exponential decay, controlled by

cos q =
h

2
p

X Y
and

1
ξIC

zm
= ln

√

√X
Y

. (40)

The normalization factor is given by

1
N
−−−−→
N→∞

p
2sin q





1

1− Y
X

+
Y
X − cos (2q)

1− 2 Y
X cos (2q) +

� Y
X

�2





−1/2

, (41)

B.2 Surface magnetization

An hallmark of the topological phase is the presence of edge states. The surface magnetization,
a key-quantity in that respect, is defined by [77]

Ms
x = 〈E

− |σx
1,L|E

+ 〉, (42)

where |E± 〉 are many-body eigenstates of parity p = ± associated to a partner |E∓ 〉 of opposite
parity−p, obtained by acting the SZM operator, i.e. Ψleft/right|E± 〉 ≈ |E∓ 〉. From the definition
of the SZM operators Eq. (33), we easily arrive at

Ms
x =

1
N

, (43)

for which we have analytical expressions in both C and IC regimes, see Eqs. (38), (41).

B.3 Finite size parity gap and parity switches

The (finite-size) parity gap is obtained from the simple expression

∆parity = 〈E− |H|E− 〉 − 〈E+ |H|E+ 〉 ≈ 〈E− | [H , Ψzm] |E+ 〉

≈
X
N

�

〈E− |a1|E+ 〉 − i〈E− |bN |E+ 〉
�

�

h
X
ΘN −

Y
X
ΘN−1

�

≈ 2X
�

Ms
x

�2
�

h
X
ΘN −

Y
X
ΘN−1

�

. (44)

We then obtain closed forms for both regimes. In the commensurate case

∆
(C)
parity ≈ 2X

�

Ms
x

�2
�

1+α
2α

��

h
2X

�N

×
�

(1+α)N − (1−α)N
�

≈

¨

2X
�

Ms
x

�2 �1+α
2α

�

e−N/ξC
zm if α 6= 0

2X
�

Ms
x

�2
e−N/ξC

zm × N if α→ 0,
(45)

where α=
p

1− 4X Y /h2 and ξC
zm is given by Eq. (36). For the incommensurate case we get

∆
(IC)
parity ≈ 2X

�

Ms
x

�2 sin [q(N + 1)]
sin q

e
− N
ξIC

zm , (46)

where ξIC
zm and q are given by Eq. (40).
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C Self-consistent mean-field

Mean-field decoupling and self-consistent equations. We start from the interacting Majo-
rana chain model

H = −i
∑

j

�

J b ja j+1 − ha j b j

�

− g
∑

j

�

a j b ja j+1 b j+1 + b ja j+1 b j+1a j+2

�

, (47)

where the quartic term that cannot be treated exactly. We make a mean-field decoupling which
leads to a noninteracting system quadratic fermionic problem, with new coupling constants
which are self-consistently determined. The quartic terms are decoupled in all mean-field
channels which are consistent with the Wick’s theorem [39]:

a j b ja j+1 b j+1 ≈ a j b j〈a j+1 b j+1〉+ 〈a j b j〉a j+1 b j+1

+ a j b j+1〈b ja j+1〉+ 〈a j b j+1〉b ja j+1

b ja j+1 b j+1a j+2 ≈ b ja j+1〈b j+1a j+2〉+ 〈b ja j+1〉b j+1a j+2

+ b ja j+2〈a j b j+1〉+ 〈b ja j+2〉a j b j+1. (48)

This leads to the following mean-field Hamiltonian (up to irrelevant constant terms)

HMF = −i
∑

j

�

X j b ja j+1 − Yja j b j+1 − h ja j b j + eX j b ja j+2

�

(49)

where the parameters are computed from the following self-consistent equations

h j = h+ ig
�

〈a j−1 b j−1〉+ 〈a j+1 b j+1〉+ 〈b j−1a j+1〉
�

= h− g
�

mz
j−1 +mz

j+1 + C xzx
j−1, j, j+1

�

X j = J − ig
�

〈b j−1a j〉+ 〈b j+1a j+2〉+ 〈a j b j+1〉
�

= J + g
�

C x x
j−1, j + C x x

j+1, j+2 − C y y
j, j+1

�

Yj = ig〈b ja j+1〉= −gC x x
j, j+1

eX j = −ig〈a j+1 b j+1〉= gmz
j+1. (50)

The local magnetization mz
j = 〈σ

z
j 〉, the correlators at distance one (involving two sites)

Cββj, j+1 = 〈σ
β
j σ

β
j+1〉, and at distance two (involving three sites) C xzx

j−1, j, j+1 = 〈σ
x
j−1σ

z
jσ

x
j+1〉 are

computed in the ground-state of HMF. We use OBC and therefore there is a dependence on the
position along the open chain, which dies off exponentially away from the boundaries. How-
ever, we have checked that such a dependence is a finite-size effect which does not influence
the MF phase diagram. The self-consistent loop is performed numerically, and convergence is
obtained when a stationary solution is reached for the coupling parameters in Eq. (50).

In Fig. 16 we show the evolution of the effective MF parameters (evaluated in the middle
of the open chain for j = N/2) as a function of the interaction g for a three values of the
transverse field h = 0.1, 0.5, 0.9. Several remarks are in order here. Both the transverse
magnetic field and the nearest neighbor coupling X decrease with g, while in the same time the
newly generated terms Y and eX both grow. This can be naturally understood from the SCMF
equations Eq. (50), which can be approximated by h j ≈ h− 2gm, X j ≈ J + 2gC, Yj ≈ −gC,
and eX j ≈ gm, where in the limit of small field h� J , the on-site magnetization m≈ h and the
nearest-neighbor antiferromagnetic correlator C ≈ −1.

Convergence. In panel (d) of Fig. 16 we also show for number of MF iterations τMF required
to globally converge all local MF parameters (to a relative precision of 10−5). τMF gradually
increases with g, with a notable enhancement at not too large interaction strength, due to tiny
parity gap in the system, but MF still converge (at least provided the parity gap does not reach
machine precision). However there is a clear breakdown of MF theory at larger g where τMF
diverges (vertical arrows).
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Figure 16: Mean-field parameters obtained after numerically solving the SCMF equa-
tions Eq. (50) for h= 0.1, 0.5, 0.9 plotted against g.

D Ising transition for small g

In the main text we extracted Luttinger liquid exponent K by fitting the local magnetization in
the z direction that in terms of bosons/fermions corresponds to the local density. For this we
fix the boundary condition to be polarized along z. However, in order to detect Ising transition
breaking Z2 symmetry we have to look at the different local operator - 〈σx

i −σ
x
i+1〉. It is very

intuitive to see why this term plays a role of an order parameter for the Ising transition: for
small g and h the ground-state corresponds to the antiferromagnetic alignment of spins along
x-direction, thus the absolute difference between the two projection is large in the Z2 phase,
while it vanishes in the paramagnetic phase. Important to notice, that in order to use this local
operator one has to fix the boundary conditions by applying the boundary field along x . In
order to keep the profile symmetric we apply the same boundary field at each edge and take
odd number of sites N = 801. The results are presented in Fig. 17. From the DMRG data (blue
and green) one can see that the difference between the profiles at g = 0 and upon approach-
ing the floating phase g = 0.25 is negligible. In both cases fit to the theory prediction of the
profile gives the estimate of the scaling dimension d ≈ 0.126 which is in excellent agreement
with the CFT prediction for the Ising model d = 1/8.
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Figure 17: Fridel oscillation profile at the Ising transition at h= 1 and g = 0 (green)
and g = 0.25 (blue). Red line is the result of the fit with d ≈ 0.126.

E Comparison to the previous study at h= 1

In the main text we mentioned that although we arrived to a different conclusions regard-
ing critical regimes along h = 1 line our numerical results to a large extent agrees with the
previous study by Rahmani et al [17]. In Fig. 18 we compare our results for the Luttinger
liquid parameter K extracted in the present paper by fitting the Friedel oscillations and those
computed from the finite-size energy spectra by Rahmani et al. [17]. Overall we see a very
good agreement between the results. There is slight discrepancy on where the Luttinger liquid
parameter crosses 1/4 line: according to our data this happens around g ≈ 1.3 (1/g ≈ 0.75),
according to Rahmani et al’s data, this happens at 1/g ≈ 0.5 or g = 2. The main source of
this discrepancy is probably associated the finite-size effects in the energy spectra computed
on systems with up to 200 Majoranas (100 spins) and used in Ref. [17] to extract Luttinger
liquid exponent K . But in any case, according to all available data K reaches its critical value
1/4 well below the end point of the continuous Ising transition located at g ≈ 3.

References

[1] T. Giamarchi, Quantum physics in one dimension, Clarendon Press, Oxford,
doi:10.1093/acprof:oso/9780198525004.001.0001 (2004).

[2] A. Y. Kitaev, Unpaired majorana fermions in quantum wires, Physics-Uspekhi 44, 131
(2001), doi:10.1070/1063-7869/44/10s/s29.

[3] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. A. M. Bakkers and L. P. Kouwenhoven,
Signatures of majorana fermions in hybrid superconductor-semiconductor nanowire devices,
Science 336, 1003 (2012), doi:10.1126/science.1222360, https://www.science.org/
doi/pdf/10.1126/science.1222360.

29

https://doi.org/10.1093/acprof:oso/9780198525004.001.0001
https://doi.org/10.1070/1063-7869/44/10s/s29
https://doi.org/10.1126/science.1222360
https://www.science.org/doi/pdf/10.1126/science.1222360
https://www.science.org/doi/pdf/10.1126/science.1222360


SciPost Physics Submission

0 0.5 1 1.5 2 2.5 3 3.5 4
0.2

0.4

0.6

0.8

1

1.2

from Rahmani et al.

Figure 18: Comparison between the Luttinger liquid parameter K extracted in this
paper with Friedel oscillations (blue and red) versus Luttinger liquid parameter ex-
tracted frpm the plots presented in Ref. [17] and obtained with energy of the low-
lying excitations.

[4] L. P. Rokhinson, X. Liu and J. K. Furdyna, The fractional a.c. Josephson effect in a
semiconductor-superconductor nanowire as a signature of Majorana particles, Nature
Physics 8, 795 (2012), doi:10.1038/nphys2429.

[5] M. T. Deng, C. L. Yu, G. Y. Huang, M. Larsson, P. Caroff and H. Q. Xu, Anomalous zero-bias
conductance peak in a nb–InSb nanowire–nb hybrid device, Nano Letters 12, 6414 (2012),
doi:10.1021/nl303758w.

[6] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum and H. Shtrikman, Zero-bias peaks and
splitting in an al–InAs nanowire topological superconductor as a signature of majorana
fermions, Nature Physics 8, 887 (2012), doi:10.1038/nphys2479.

[7] R. Toskovic, R. van den Berg, A. Spinelli, I. S. Eliens, B. van den Toorn, B. Bryant, J.-
S. Caux and A. F. Otte, Atomic spin-chain realization of a model for quantum criticality,
Nature Physics 12, 656 (2016), doi:10.1038/nphys3722.

[8] C. Beenakker, Search for majorana fermions in superconductors, Annual Review of
Condensed Matter Physics 4, 113 (2013), doi:10.1146/annurev-conmatphys-030212-
184337.

[9] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Reports
on Progress in Physics 75, 076501 (2012), doi:10.1088/0034-4885/75/7/076501.

[10] C. Nayak, S. H. Simon, A. Stern, M. Freedman and S. Das Sarma, Non-abelian
anyons and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008),
doi:10.1103/RevModPhys.80.1083.

[11] S. D. Sarma, M. Freedman and C. Nayak, Majorana zero modes and topological quantum
computation, npj Quantum Inf 1, 1 (2015), doi:10.1038/npjqi.2015.1.

[12] P. Marra, Majorana nanowires for topological quantum computation,
doi:10.48550/ARXIV.2206.14828 (2022).

[13] L. Fidkowski and A. Kitaev, Effects of interactions on the topological classification of free
fermion systems, Phys. Rev. B 81, 134509 (2010), doi:10.1103/PhysRevB.81.134509.

30

https://doi.org/10.1038/nphys2429
https://doi.org/10.1021/nl303758w
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys3722
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1038/npjqi.2015.1
https://doi.org/10.48550/ARXIV.2206.14828
https://doi.org/10.1103/PhysRevB.81.134509


SciPost Physics Submission

[14] L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B
83, 075103 (2011), doi:10.1103/PhysRevB.83.075103.

[15] E. Sela, A. Altland and A. Rosch, Majorana fermions in strongly interacting helical liquids,
Phys. Rev. B 84, 085114 (2011), doi:10.1103/PhysRevB.84.085114.

[16] A. Rahmani, X. Zhu, M. Franz and I. Affleck, Emergent supersymmetry from
strongly interacting majorana zero modes, Phys. Rev. Lett. 115, 166401 (2015),
doi:10.1103/PhysRevLett.115.166401.

[17] A. Rahmani, X. Zhu, M. Franz and I. Affleck, Phase diagram of the interacting majorana
chain model, Phys. Rev. B 92, 235123 (2015), doi:10.1103/PhysRevB.92.235123.

[18] H. Katsura, D. Schuricht and M. Takahashi, Exact ground states and topologi-
cal order in interacting kitaev/majorana chains, Phys. Rev. B 92, 115137 (2015),
doi:10.1103/PhysRevB.92.115137.

[19] R. Verresen, A. Vishwanath and F. Pollmann, Stable Luttinger liquids and emergent U(1)
symmetry in constrained quantum chains, arXiv e-prints arXiv:1903.09179 (2019).

[20] A. M. Lobos, R. M. Lutchyn and S. Das Sarma, Interplay of Disorder and In-
teraction in Majorana Quantum Wires, Phys. Rev. Lett. 109, 146403 (2012),
doi:10.1103/PhysRevLett.109.146403.

[21] F. Crépin, G. Zaránd and P. Simon, Nonperturbative phase diagram of in-
teracting disordered Majorana nanowires, Phys. Rev. B 90, 121407 (2014),
doi:10.1103/PhysRevB.90.121407.

[22] A. Milsted, L. Seabra, I. C. Fulga, C. W. J. Beenakker and E. Cobanera, Statistical transla-
tion invariance protects a topological insulator from interactions, Phys. Rev. B 92, 085139
(2015), doi:10.1103/PhysRevB.92.085139.

[23] N. M. Gergs, L. Fritz and D. Schuricht, Topological order in the Kitaev/Majorana
chain in the presence of disorder and interactions, Phys. Rev. B 93, 075129 (2016),
doi:10.1103/PhysRevB.93.075129.

[24] M. McGinley, J. Knolle and A. Nunnenkamp, Robustness of majorana edge modes and
topological order: Exact results for the symmetric interacting kitaev chain with disorder,
Phys. Rev. B 96, 241113 (2017), doi:10.1103/PhysRevB.96.241113.

[25] J. F. Karcher, M. Sonner and A. D. Mirlin, Disorder and interaction in chiral
chains: Majoranas versus complex fermions, Phys. Rev. B 100, 134207 (2019),
doi:10.1103/PhysRevB.100.134207.

[26] B. Roberts and O. I. Motrunich, Infinite randomness with continuously varying crit-
ical exponents in the random XYZ spin chain, Phys. Rev. B 104, 214208 (2021),
doi:10.1103/PhysRevB.104.214208, Publisher: American Physical Society.

[27] J. A. Kjäll, J. H. Bardarson and F. Pollmann, Many-Body Localization in
a Disordered Quantum Ising Chain, Phys. Rev. Lett. 113, 107204 (2014),
doi:10.1103/PhysRevLett.113.107204.

[28] R. Sahay, F. Machado, B. Ye, C. R. Laumann and N. Y. Yao, Emergent Ergodicity at the
Transition between Many-Body Localized Phases, Phys. Rev. Lett. 126, 100604 (2021),
doi:10.1103/PhysRevLett.126.100604.

31

https://doi.org/10.1103/PhysRevB.83.075103
https://doi.org/10.1103/PhysRevB.84.085114
https://doi.org/10.1103/PhysRevLett.115.166401
https://doi.org/10.1103/PhysRevB.92.235123
https://doi.org/10.1103/PhysRevB.92.115137
https://doi.org/10.1103/PhysRevLett.109.146403
https://doi.org/10.1103/PhysRevB.90.121407
https://doi.org/10.1103/PhysRevB.92.085139
https://doi.org/10.1103/PhysRevB.93.075129
https://doi.org/10.1103/PhysRevB.96.241113
https://doi.org/10.1103/PhysRevB.100.134207
https://doi.org/10.1103/PhysRevB.104.214208
https://doi.org/10.1103/PhysRevLett.113.107204
https://doi.org/10.1103/PhysRevLett.126.100604


SciPost Physics Submission

[29] S. Moudgalya, D. A. Huse and V. Khemani, Perturbative instability towards delocalization
at phase transitions between MBL phases, arXiv:2008.09113 (2020).

[30] T. B. Wahl, F. Venn and B. Béri, Local integrals of motion detection of localization-protected
topological order, Phys. Rev. B 105, 144205 (2022), doi:10.1103/PhysRevB.105.144205.

[31] N. Laflorencie, G. Lemarié and N. Macé, Topological order in random interacting Ising-
Majorana chains stabilized by many-body localization, Phys. Rev. Research 4, L032016
(2022), doi:10.1103/PhysRevResearch.4.L032016.

[32] E. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain, Annals
of Physics 16, 407 (1961), doi:10.1016/0003-4916(61)90115-4.

[33] P. Pfeuty, The one-dimensional ising model with a transverse field, Annals of Physics 57,
79 (1970), doi:http://dx.doi.org/10.1016/0003-4916(70)90270-8.

[34] S. Gangadharaiah, B. Braunecker, P. Simon and D. Loss, Majorana Edge States
in Interacting One-Dimensional Systems, Phys. Rev. Lett. 107, 036801 (2011),
doi:10.1103/PhysRevLett.107.036801, Publisher: American Physical Society.

[35] E. M. Stoudenmire, J. Alicea, O. A. Starykh and M. P. Fisher, Interaction effects in topologi-
cal superconducting wires supporting Majorana fermions, Phys. Rev. B 84, 014503 (2011),
doi:10.1103/PhysRevB.84.014503.

[36] F. Hassler and D. Schuricht, Strongly interacting Majorana modes in an array of Josephson
junctions, New J. Phys. 14, 125018 (2012), doi:10.1088/1367-2630/14/12/125018.

[37] R. Thomale, S. Rachel and P. Schmitteckert, Tunneling spectra simulation of interacting
Majorana wires, Phys. Rev. B 88, 161103 (2013), doi:10.1103/PhysRevB.88.161103.

[38] J. Kemp, N. Y. Yao, C. R. Laumann and P. Fendley, Long coherence times for edge spins, J.
Stat. Mech. 2017, 063105 (2017), doi:10.1088/1742-5468/aa73f0.

[39] G. Vionnet, B. Kumar and F. Mila, Level crossings induced by a longitudinal
coupling in the transverse field Ising chain, Phys. Rev. B 95, 174404 (2017),
doi:10.1103/PhysRevB.95.174404.

[40] I. Mahyaeh and E. Ardonne, Study of the phase diagram of the Kitaev-Hubbard chain,
Phys. Rev. B 101, 085125 (2020), doi:10.1103/PhysRevB.101.085125.

[41] N. Chepiga and F. Mila, Eight-vertex criticality in the interacting Kitaev chain, arXiv e-
prints arXiv:2206.11754 (2022), 2206.11754.

[42] S. Jalal and B. Kumar, Edge modes in a frustrated quantum ising chain, Phys. Rev. B 90,
184416 (2014), doi:10.1103/PhysRevB.90.184416.

[43] J. Ruhman and E. Altman, Topological degeneracy and pairing in a one-dimensional gas of
spinless fermions, Phys. Rev. B 96, 085133 (2017), doi:10.1103/PhysRevB.96.085133.

[44] L. Gotta, L. Mazza, P. Simon and G. Roux, Two-Fluid Coexistence in a Spin-
less Fermions Chain with Pair Hopping, Phys. Rev. Lett. 126, 206805 (2021),
doi:10.1103/PhysRevLett.126.206805.

[45] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

32

https://doi.org/10.1103/PhysRevB.105.144205
https://doi.org/10.1103/PhysRevResearch.4.L032016
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/http://dx.doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1103/PhysRevLett.107.036801
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1088/1367-2630/14/12/125018
https://doi.org/10.1103/PhysRevB.88.161103
https://doi.org/10.1088/1742-5468/aa73f0
https://doi.org/10.1103/PhysRevB.95.174404
https://doi.org/10.1103/PhysRevB.101.085125
2206.11754
https://doi.org/10.1103/PhysRevB.90.184416
https://doi.org/10.1103/PhysRevB.96.085133
https://doi.org/10.1103/PhysRevLett.126.206805
https://doi.org/10.1103/PhysRevLett.69.2863


SciPost Physics Submission

[46] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259
(2005), doi:10.1103/RevModPhys.77.259.

[47] S. Östlund and S. Rommer, Thermodynamic limit of density matrix renormalization, Phys.
Rev. Lett. 75, 3537 (1995), doi:10.1103/PhysRevLett.75.3537.

[48] U. Schollwöck, The density-matrix renormalization group in the age
of matrix product states, Annals of Physics 326(1), 96 (2011),
doi:http://dx.doi.org/10.1016/j.aop.2010.09.012.

[49] N. Chepiga and F. Mila, Excitation spectrum and density matrix renormalization group
iterations, Phys. Rev. B 96, 054425 (2017), doi:10.1103/PhysRevB.96.054425.

[50] R. J. Baxter, Partition function of the eight-vertex lattice model, Annals of Physics 70, 193
(1972), doi:https://doi.org/10.1016/0003-4916(72)90335-1.

[51] M. den Nijs, The domain wall theory of two-dimensional commensurate-incommensurate
phase transitions, Phase Transitions and Critical Phenomena 12, 219 (1988).

[52] N. Chepiga and F. Mila, Lifshitz point at commensurate melting of chains of rydberg atoms,
Phys. Rev. Research 3, 023049 (2021), doi:10.1103/PhysRevResearch.3.023049.

[53] Similar results can be obtained for the local pairing term 〈σx
j σ

x
j+1〉 under appropriate

boundary conditions.

[54] Odd number of sites is chosen to realize symmetric boundary conditions in the period-2
phase with antiferromagnetic order along σz . Inside the floating phases the even-odd
effect is relaxed due to incommensurate wave-vector q but whenever we polarize edges
in the longitudinal direction we always take the odd number of sites for consistency.

[55] R. J. Baxter, One-dimensional anisotropic heisenberg chain, Annals of Physics 70, 323
(1972), doi:https://doi.org/10.1016/0003-4916(72)90270-9.

[56] P. Fendley, Parafermionic edge zero modes inZn-invariant spin chains, Journal of Sta-
tistical Mechanics: Theory and Experiment 2012, P11020 (2012), doi:10.1088/1742-
5468/2012/11/P11020.

[57] A. Alexandradinata, N. Regnault, C. Fang, M. J. Gilbert and B. A. Bernevig, Parafermionic
phases with symmetry breaking and topological order, Phys. Rev. B 94, 125103 (2016),
doi:10.1103/PhysRevB.94.125103.

[58] K. Wada, T. Sugimoto and T. Tohyama, Coexistence of strong and weak Majorana zero
modes in an anisotropic XY spin chain with second-neighbor interactions, Phys. Rev. B 104,
075119 (2021), doi:10.1103/PhysRevB.104.075119.

[59] E. Barouch and B. M. McCoy, Statistical Mechanics of the X Y Model. II. Spin-Correlation
Functions, Phys. Rev. A 3, 786 (1971), doi:10.1103/PhysRevA.3.786.

[60] H.-c. Kao, Chiral zero modes in superconducting nanowires with Dresselhaus spin-orbit
coupling, Phys. Rev. B 90, 245435 (2014), doi:10.1103/PhysRevB.90.245435.

[61] S. S. Hegde and S. Vishveshwara, Majorana wave-function oscillations, fermion
parity switches, and disorder in Kitaev chains, Phys. Rev. B 94, 115166 (2016),
doi:10.1103/PhysRevB.94.115166.

[62] G. Kells, Many-body Majorana operators and the equivalence of parity sectors, Phys. Rev.
B 92, 081401 (2015), doi:10.1103/PhysRevB.92.081401.

33

https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevLett.75.3537
https://doi.org/http://dx.doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.96.054425
https://doi.org/https://doi.org/10.1016/0003-4916(72)90335-1
https://doi.org/10.1103/PhysRevResearch.3.023049
https://doi.org/https://doi.org/10.1016/0003-4916(72)90270-9
https://doi.org/10.1088/1742-5468/2012/11/P11020
https://doi.org/10.1088/1742-5468/2012/11/P11020
https://doi.org/10.1103/PhysRevB.94.125103
https://doi.org/10.1103/PhysRevB.104.075119
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1103/PhysRevB.90.245435
https://doi.org/10.1103/PhysRevB.94.115166
https://doi.org/10.1103/PhysRevB.92.081401


SciPost Physics Submission

[63] G. Kells, Multiparticle content of Majorana zero modes in the interacting p -wave wire,
Phys. Rev. B 92, 155434 (2015), doi:10.1103/PhysRevB.92.155434.
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