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Abstract

In this paper we use the canonical complex structure J on R2n
to introduce a twist of the

symplectic Dirac operator. This can be interpreted as the bosonic analogue of the Dirac

operators on a Hermitian manifold. Moreover, we prove that the algebra of these Dirac

operators is isomorphic to the Lie algebra su(1, 2) which leads to the Howe dual pair

(U(n),su(1, 2)).

1 Introduction

The CCR (canonical commuting relation) and CAR (canonical anticommuting relation) alge-
bras are fundamental algebras in theoretical physics used for the study of bosons and fermions.
From a mathematical viewpoint, these algebras are named the Weyl algebra (or symplectic Clif-
ford algebra) and Clifford algebra. These algebras can be constructed in a very analogous way.
The Clifford algebra is constructed on a vector space V equipped with a symmetric bilinear
form B, whereas the Weyl algebra requires an even dimensional vector space equipped with a
skew-symmetric bilinear form (or symplectic form) !. In both cases, one then constructs the
tensor algebra T (V ) where an ideal I(V ) is divided out. In the orthogonal setting, this is the
ideal IB(V ) with elements subject to the relation {u, v} = 2B(u, v). In the symplectic setting,
this is the ideal I!(V ) generated by [u, v] = �!(u, v).

There is, however, a fundamental difference: the Clifford algebra is finite-dimensional,
whereas the Weyl algebra is infinite-dimensional. For the spinors (orthogonal versus symplec-
tic) the same infinite-dimensional principle holds as for the Clifford algebras. As a matter of
fact, the symplectic spinors are the smooth vectors in the metaplectic representation [2]. Using
the generators of the Clifford (resp. Weyl) algebra, one can associate a natural first order spin
(resp. metaplectic) invariant differential operator by contracting the Clifford algebra elements
using the bilinear form B (resp. the symplectic form !) with derivatives. This gives rise to
the Dirac operator @x =

P
n

k=1 ek@xk
where {ej , ek} = �2�i j and the symplectic Dirac operatorP

n

k=1

�
iqk@yk

� @qk
@xk

�
where [@qj

, iqk] = i� jk are the Heisenberg relations.
The theory which studies the solutions of the Dirac operator is known as Clifford analysis

and can be seen as a hypercomplex function theory. Moreover, quite some generalisations
have occurred in the last two decades. This involves e.g. Clifford analysis on superspace and
Clifford analysis on (hyper)Kähler spaces (see for instance [3]). It is in the latter framework
in which this paper is situated, but then from a symplectic point of view. More precisely, we
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provide the foundations of what we will call a hermitian variant of symplectic Clifford analysis,
where we incorporate the additional datum of a compatible complex structure J on the flat
symplectic space R2n. This leads to the study of the symplectic Dirac operator on a Kähler
manifold as was already initiated in [2,4]. However, the underlying invariance symmetry and
the algebra generated by these type of operators (and their duals) was never investigated.

2 Rudiments of symplectic Clifford analysis

Let us consider the canonical symplectic space R2n with coordinates (x , y) and the usual sym-
plectic form !0 =

P
n

j=1 d x j ^ d yj which has the matrix representation ⌦0 =
Ä

0 In

�In 0

ä
. Recall

that the symplectic group Sp(2n,R) is the group given by invertible linear transformations pre-
serving the non-degenerate skew-symmetric bilinear form from above and is given (in terms
of matrices) by

Sp(2n,R) = {M 2 GL(2n,R) | M T⌦0M = ⌦0}.
The group is non-compact and has dimension 2n

2 + n. Moreover, the corresponding Lie al-
gebra is denoted by sp(2n,R). The main difference with the orthogonal case, lies in the fact
that the metaplectic group (the double cover of the symplectic group) does not admit a finite
dimensional representation (it is not a matrix group). This is a strong contrast with the spin
representation in the orthogonal case. Moreover, the orthogonal spinors S are realised as a
idempotent left ideal in the Clifford algebra, which is not the case for the symplectic spinors.
As mentioned, the symplectic equivalent of the spin representations are infinite dimensional,
which means that one needs to work with the theory of unitary representations.

2.1 The Schwartz space and metaplectic representation

For further convenience, we fix notation and define the Schwartz space, which plays a crucial
role in the construction of the metaplectic representation. On the space C1(Rn,C) we define
(using the multi-index notation) the norm || f ||↵,� := sup

q2Rn |q↵(D� f )(q)| for all ↵,� 2 Nn.
The Schwartz space S(Rn) is the subspace of L

p(Rn) (for 1  p  1) consisting of rapidly
decreasing functions and is given by

S(Rn,C) := { f 2 C1(Rn,C) : || f ||↵,� <1 for all ↵,� 2 Nn}.

We now describe (following [2]) the infinite-dimensional Segal-Shale-Weil representation (also
oscillator or metaplectic representation) of the metaplectic group. The smooth vectors of the
unitary representation m : Mp(2n)! U(L2(Rn)) coincide with the Schwartz space S(Rn) and
are a model for the symplectic spinors S1. Due to Stone-Von Neumann theorem the repre-
sentation is unique (up to unitary equivalence).

2.2 The symplectic Clifford algebra and the related Dirac operator

Let (V,!) be a symplectic vector space. The symplectic Clifford algebra Cls(V,!) is defined as
the quotient algebra of the tensor algebra T (V ) of V , by the two-sided ideal

I! := {v ⌦ u� u⌦ v +!(v, u) : u, v 2 V}.

In other words Cls(V,!) := T (V )/I! is the algebra generated by V in terms of the relation
[v, u] = �!(v, u), where we have omitted the tensor product symbols. We refer to the symplec-
tic Clifford algebra on R2n as the nth Weyl algebra Wn with generators iq1, . . . , iqn,@q1

, . . . ,@qn

satisfying the commutation relations [qj , qk] = 0 and [@qj
, qk] = � jk.
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Denote by F a suitable function space (e.g. the space of polynomials, or smooth funtions).
The symplectic Dirac operator on (R2n,!0) is the first-order (in the base variables x and y)
differential operator acting on a symplectic spinor-valued functions space F ⌦ S1 given by
Ds =
P

n

j=1(iq j@yj
� @qj

@x j
). With respect to the symplectic Fischer inner product (see [5]), we

obtain the dual operator Xs =
P

n

j=1(iq j x j + @qj
y j). These operators satisfy the relations:

[E+ n, Xs] = Xs

[E+ n, Ds] = �Ds

[Ds, Xs] = �i(E+ n)

where E =
P

n

j=1(x j@x j
+ yj@yj

) is the Euler operator. In other words, the three operators give
rise to a copy of the Lie algebra sl(2).

3 The interaction with a complex structure

3.1 Definition of the twisted symplectic Dirac operators

We will now introduce a complex structure J on the symplectic manifold (R2n,!0) which is
compatible with the symplectic form!0. This means that!0(x ,Jy) defines a Riemannian met-
ric g. Otherwise said, we will be working with the canonical Kähler manifold (R2n,!0, g,J).
By Darboux’s theorem, we obtain, with respect to the canonical symplectic basis {ej}2n

j=1 the

following complex structure J=
Ä

0 �In

In 0

ä
. This means that the action of the complex structure

J on R2n is given by

(x1, . . . , xn, y1, . . . , yn) 7! (y1, . . . , yn,�x1, . . . ,�xn).

The new differential operators acting on symplectic spinor-valued functions

D̃s =
nX

j=1

iq j@x j
+ @yj

@qj
X̃s =

nX

j=1

x j@qj
� i y jq j E =

nX

j=1

x j@x j
+ yj@yj

also give rise to a copy of the Lie algebra sl(2). We call these first two operators the twists of Ds

and Xs. Both sets of operators, i.e. (Ds, Xs) and (D̃s, X̃s), are symplectic invariant, albeit under
the following two different realisations of the symplectic Lie algebra given by:
8
>>>>><
>>>>>:

X jk = x j@xk
� yk@yj

� (qk@qj
+ 1

2� jk)
Yjk = x j@yk

+ xk@yj
+ i@qj

@qk

Zjk = yj@xk
+ yk@x j

+ iqjqk

Yj j = x j@yj
+ i

2@
2

qj

Zj j = yj@x j
+ i

2 q
2
j

and

8
>>>>><
>>>>>:

X̃ jk = x j@xk
� yk@yj

+ qk@qj
+ 1

2� jk 1 j  k  n

Ỹjk = x j@yk
+ xk@yj

� iqjqk j < k = 1, . . . , n

Z̃jk = yj@xk
+ yk@x j

� i@qj
@qk

j < k = 1, . . . , n

Ỹj j = x j@yj
� i

2 q
2
j

j = 1, . . . , n

Z̃j j = yj@x j
� i

2@
2

qj

j = 1, . . . , n

Of course, it is not very useful that Ds and eDs are invariant under different (yet isomorphic)
sp(2n,R)-realisations. Therefore, we will perform a symmetry reduction so that both opera-
tors become invariant under one and the same Lie algebra. To that end, we need to find the
symplectic matrices which commute with the complex structure. We claim that

SpJ(2n,R) := {M 2 Sp(2n,R) | MJ= JM}

defines a realisation for the unitary Lie group. In order to see this, assume that M is of the
block-form:
�

A B

C D

�
, where A, B, C and D are (n⇥ n)�matrices. The condition that M is sym-

plectic is equivalent to the one of the following conditions: the matrices A
T

C and B
T

D are
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symmetric and A
T

D � C
T

B = I . So, in order to determine SpJ(2n,R) we need to determine
the symplectic matrices M which commute with the complex structure J. The latter conditions
means that

MJ= JM () J�1
MJ= M

()
✓

0 I

�I 0

◆✓
A B

C D

◆✓
0 �I

I 0

◆
=
✓

A B

C D

◆

()
✓

D �C

�B A

◆
=
✓

A B

C D

◆

This implies A = D and B = �C . In other words the matrix M is of the form: M =
�

A B

�B A

�
.

Next, we still have the condition that M is symplectic, i.e.

M
T⌦M = ⌦ ()

✓
A

T
C

T

B
T

D
T

◆✓
0 I

�I 0

◆✓
A B

C D

◆
=
✓

0 I

�I 0

◆

()
✓
�C

T
A

T

�D
T

B
T

◆✓
A B

C D

◆
=
✓
�C

T
A+ A

T
C �C

T
B + A

T
D

�D
T
A+ B

T
C �D

T
B + B

T
D

◆
=
✓

0 I

�I 0

◆

()

8
>>><
>>>:

A
T

C = C
T
A

A
T

D� C
T

B = I

B
T

C � D
T
A= �I

B
T

D = D
T

B

This means that A
T

C and B
T

D should be symmetric matrices and A
T

D�C
T

B = I . But now, due
to the first condition this reduces to B

T
A= A

T
B and A

T
A+ B

T
B = I . In other words, the ma-

trices we are looking for must be of the form M =
�

A B

�B A

�
with B

T
A= A

T
B and A

T
A+B

T
B = I ,

i.e.
✓

A
T �B

T

B
T

A
T

◆✓
A B

�B A

◆
=
✓

A
T
A+ B

T
B A

T
B � B

T
A

B
T
A� A

T
B B

T
B + A

T
A

◆
=
✓

I 0
0 I

◆

Which is exactly the condition for a unitary matrix. The map

� : SpJ(2n,R)! U(n) : M 7! A+ iB

gives the wanted isomorphism.

3.2 Unitary invariant symplectic Dirac operators

One can now check that the symplectic Dirac operator and its twist, are unitary invariant
differential operators. This can be done by verifying that the operators commute with the
following realisation of unitary Lie algebra u(n):
8
><
>:

Ajk = yj@xk
+ yk@x j

� x j@yk
� xk@yj

+ i(qjqk � @qj
@qk
) 1 j < k  n

Bj j = yj@x j
� x j@yj

+ i

2

Ä
q

2
j
� @ 2

qj

ä
1 j  n

Cjk = x j@xk
� xk@x j

+ yj@yk
� yk@yj

+ qj@qk
� qk@qj

1 j < k  n

This means that we can refine the sp(2n)-invariant PDE Ds f = 0 into two u(n)-invariant PDEs
given by Ds f = 0 and eDs f = 0, for a symplectic spinor valued polynomial f 2 P(R2n,C)⌦S(Rn).
In analogy with the orthogonal case, we call the solutions hermitian symplectic monogenics (or
h-symplectic monogenics in short).
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3.3 Symplectic Dolbeault operators

Moreover, there is a second way of introducing the twist of the symplectic Dirac operator. Let
us define the following operators which are known in the literature as the symplectic Dolbeault

operators [4] defined by means of Dz =
Ds+ieDs

2 and D
†
z

:= Ds�ieDs

2 . One easily verifies that

1
2
(Ds + ieDs) = �

nX

j=1

F j@zj
and

1
2
(Ds � ieDs) =

nX

j=1

F†
j
@z j

.

where we have introduced the symbols F j = (qj + @qj
), F†

j
= (qj � @qj

) and @z j
:= 1

2(@x j
+ i@yj

)
is the Cauchy-Riemann operator in the relevant variable with conjugate @zj

:= 1
2(@x j
� i@yj

).
The structure of the operators Dz and D

†
z

is similar to the orthogonal case. However, the
raising/lowering operators F j and F†

j
are used instead of isotropic Witt vectors f j and f†

j
(see

for instance [6] and the references therein).

3.4 Class of simultaneous solutions of D
s

and eD
s

We will now describe a wide class of examples of h-symplectic monogenics, by making the
link with holomorphic functions in several variables. Let f : ⌦ ⇢ Cn ! C be a complex-
valued function in several complex variables which is of the class C1(⌦) (i.e. continuously
differentiable). We say that f is holomorphic (in several variables) if @z j

f (z1, . . . , zn) = 0 for
all 1 j  n. Moreover, we denote the set of holomorphic functions in ⌦ by Hol(⌦).

In order not to overload notations, we use the summation convention. Suppose that we
have a function of the form F(x , y, q) = e

� 1
2 |q|2 H(x , y). Letting the symplectic Dirac operator

act on F gives:

Ds

Ä
e
� 1

2 |q|2 H(x , y)
ä
= (iqk@yk

� @xk
@qk
)
Ä
e
� 1

2 |q|2 H(x , y)
ä

= iqke
� 1

2 |q|2@yk
H(x , y) + e

� 1
2 |q|2qk@xk

H(x , y)

= e
� 1

2 |q|2qk(@xk
+ i@yk

)H(x , y)

We note that this equals zero if (@xk
+ i@yk

)H(x , y) = 0 for all k = 1, . . . , n, i.e. if H(x , y) is a
holomorphic function in several variables. Completely similar,

eDs

Ä
e
� 1

2 |q|2 H(x , y)
ä
= (iqk@xk

+ @yk
@qk
)
Ä
e
� 1

2 |q|2 H(x , y)
ä

= e
� 1

2 |q|2qk(i@xk
� @yk

)H(x , y)

= ie
� 1

2 |q|2qk(@xk
+ i@yk

)H(x , y),

which is zero for holomorphic H(x , y).
This means that every function of the form e

� 1
2 (q

2
1+···+q

2
n
)
H(x , y) with H an holomorphic

function in several variables is a solution of both Ds and eDs. This observation generalises the
class of solutions obtained by Habermann in [2] for n = 1. It turned out that there are much
more solutions than the ones of this form. In order to describe these systematically, we will
need the notion of Howe dualities and corresponding Fischer decompositions. This will be
done in full detail in our upcoming paper [7]. In the following section we will reveal the
algebraic structures required for this approach.
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4 A unitary Howe duality associated with Ds and eDs

Recall that the Lie algebra su(1,2) is a quasi-split real form of the complex Lie algebra sl(3)
and is defined in terms of matrices as

su(1,2) =

8
<
:

0
@
↵ � ic

� ↵�↵ ��
id �� �↵.

1
A | c, d 2 R & ↵,� ,� 2 C

9
=
;

Some calculations now lead to observation that the Lie algebra generated by the symplectic
Dirac operators Ds, eDs and their duals Xs, eXs gives rise to a copy of the Lie algebra su(1, 2). In
order to close the algebra, we introduce the following differential operators:

O :=
nX

j=1

i(x j@yj
� yj@x j

) + @ 2
qj

� q
2
j
, � :=

nX

j=1

@ 2
x j

+ @ 2
yj

and r
2 :=

nX

j=1

x j

2 + yj

2.

Together with symplectic Dirac operators Ds, eDs and their duals Xs, eXs these operators satisfy
the commutator relations of su(1, 2). Moreover, their commutators are given by:

[·, ·] Ds
eDs � Xs E O eXs r

2

Ds 0 � 0 -E Ds �3eDs �O �2eXs

eDs �� 0 0 O eDs 3Ds �E 2Xs

� 0 0 0 eDs � 0 �2Ds E
Xs E �O �eDs 0 Xs �3eXs �r

2 0
E �Ds �eDs �� �Xs 0 0 �eXs 0
O 3eDs �3Ds 0 3eXs 0 0 �3Xs 0
eXs O E 2Ds r

2 eXs �3Xs 0 0
r

2 2eXs �2Xs �E 0 �2r
2 0 0 0

1. We have two copies of the Heisenberg algebra:

Alg{Ds, D̃s,�}⇠= Alg{Xs, eXs, r
2}⇠= h3.

2. We have three copies of the Lie algebra sl(2):

Alg{D, D
†,E}⇠= Alg{D̃, D̃

†,E}⇠= Alg{�, N ,E}⇠= sl(2).

This means that there is a canonical su(1, 2)-action on the space of spinor valued polynomials
P(R2n,C) ⌦ S(Rn) where restricting to the subalgebra Alg(Ds, Xs) corresponds to sl(2)-copy
obtained in the Howe duality for symplectic Clifford analysis (see [5] for more details). Now,
taking into account the symplectic Dirac operators and its twists, we obtain the dual pair
U(n)⇥ su(1,2) (i.e. the underlying group of invariance, together with the algebra generated
by the operators and their duals).

We now focus on the reduction of the symplectic spinor space. In the orthogonal case, the
spinor space S decomposes under the action of the unitary group U(n) as S=Lr S(r), with S(r)
inequivalent irreducible pieces, which are eigenspaces of the fermionic quantum oscillator (also
called spin-Euler operator, see for instance [6]). In the symplectic case, the relevant operator
for decomposing the infinite dimensional spinor space is the bosonic quantum oscillator. The
hamiltonian of the quantum oscillator, the so-called Hermite operator, is given by

H : S(Rn)! S(Rn), f (q) 7! 1
2

nX

j=1

(@ 2
qj

� q
2
j
) f (q).

6
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Note that we can write

O =
nX

j=1

i(x j@yj
� yj@x j

) + 2H,

so that the Hermite operator is in fact the spinor-valued part of the operator O, i.e. the differ-
ential operator in @qj

and the variables qj . Moreover, the eigenspaces can be identified with
the irreducible decomposition of S1 into u(n)-irreducible representations. This means that
the symplectic spinor space S1 decomposes into u(n)-irreducible representations eS1(k) of di-

mension
�

n+k�1
k

�
which can be thought of as k-homogeneous polynomials or the eigenspaces

of the Hermite operator H.
Moreover, the solutions of the corresponding Dirac operators, called monogenics, can be

introduced from a purely representation theoretical viewpoint. In general, this boils down to
determining the decomposition (this is called a Fischer decomposition) Pk(Rm,C)⌦ S where S

is the spinor space, which is S in the orthogonal case and S1 in the symplectic case, where we
take m = 2n in particular. Moreover, the space of k-homogeneous polynomials Pk coincides
with the k-symmetric power of the fundamental representation of resp. the orthogonal or
symplectic algebra. We denote by Mk the k-homogeneous solutions of the Dirac operator @x ,
these are called monogenics. They can be defined as follows:

Mk$ (k, 0, . . . , 0)ÇS= (k)Ç
Å

1
2

, . . . ,
1
2

ã
⇠=
Å

k+
1
2

, . . . ,
1
2

ã
,

where Ç denotes the Cartan product of the so(m)-representations. In the symplectic case, we
analoguously obtain:

Ms

k
$ (k, 0, . . . , 0)s ÇS1 = (k)s Ç

ÅÅ
�1

2
, . . . ,�1

2

ã
�
Å
�1

2
, . . . ,�3

2

ãã

⇠=
Å

k� 1
2

, . . . ,�1
2

ã
�
Å

k� 1
2

, . . . ,�3
2

ã
.

In order to obtain an algebraic characterisation of the space of h-symplectic monogenics, one
proceeds as follows. First of all, we note that we need to consider the symplectic spinors S1
from an unitary viewpoint. We saw that S1 decomposes as an infinite direct sum of finite
dimensional u(n)-modules eS1(k) which are in fact eigenspaces of the Hermite operator. We de-

note the branched spinor space (which is in fact a direct sum of u(n)-irreps) bygS1. However,
the space of k-homogeneous polynomials is not irreducible as a u(n)-module and we denote
the branched module by ›(k). This means that we are left with the following Cartan product
Mhs

k
$›(k)ÇgS1 as a representation theoretical definition of the h-symplectic monogenics.

Recall that these are the symplectic spinor-valued polynomial functions f 2 P(R2n,C)⌦S(Rn)
that satisfy the system of unitary unitary-invariant partial differential equations

®
Ds f = 0
eDs f = 0

The explicit calculation of the Cartan product (and more generally the tensor product) will be
done in [7]. Moreover, as an application we will prove a Fischer decomposition for the Howe
dual pair we obtained in this paper.

5 Conclusion

In this paper we investigated a new Howe dual pair occurring in symplectic Clifford analysis
by allowing a compatible complex structure. This Howe duality is of the form (G,g0) where G
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is the underlying invariance group for which the relevant Dirac operators are invariant and g0

is the algebra generated by the Dirac operators and their duals. Depending on the orthogonal
or symplectic framework, we have the following ‘types’ of Clifford analysis and refinements

thereof:

1. Orthogonal geometry (giving rise to a Clifford algebra)

(a) Clifford analysis: SO(n)⇥ osp(1|2)
(b) Hermitian Clifford analysis U(n)⇥ osp(2|2)
(c) Quaternionic Clifford analysis USp(n)⇥ osp(4|2)

2. Symplectic geometry (giving rise to a Weyl algebra)

(a) Symplectic Clifford analysis: Sp(2n)⇥ sl(2)
(b) Hermitian symplectic Clifford analysis: U(n)⇥ su(1,2)
(c) Quaternionic symplectic Clifford analysis: USp(n)⇥?

Thus far, we extended the framework of hermitian Clifford analysis in the presence of a sym-
plectic structure in the case of the (flat) Kähler manifold R2n. It is an interesting question to
further reduce the symmetry to the compact symplectic groupUSp(n) so that we have the chain
Sp(2n) � U(n) � USp(n). In our furture work [7], we will describe the Fischer decomposition
accompanying this new Howe dual pair.
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