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Abstract

Lieb-Schultz-Mattis (LSM) theorems impose non-perturbative constraints on the zero-
temperature phase diagrams of quantum lattice Hamiltonians (always assumed to be
local in this paper). LSM theorems have recently been interpreted as the lattice coun-
terparts to mixed ’t Hooft anomalies in quantum field theories that arise from a combi-
nation of crystalline and global internal symmetry groups. Accordingly, LSM theorems
have been reinterpreted as LSM anomalies. In this work, we provide a systematic diag-
nostic for LSM anomalies in one spatial dimension. We show that gauging subgroups of
the global internal symmetry group of a quantum lattice model obeying an LSM anomaly
delivers a dual quantum lattice Hamiltonian such that its internal and crystalline symme-
tries mix non-trivially through a group extension. This mixing of crystalline and internal
symmetries after gauging is a direct consequence of the LSM anomaly, i.e., it can be used
as a diagnostic of an LSM anomaly. We exemplify this procedure for a quantum spin-
1/2 chain obeying an LSM anomaly resulting from combining a global internal Z2 × Z2
symmetry with translation or reflection symmetry. We establish a triality of models by
gauging a Z2 ⊂ Z2 × Z2 symmetry in two ways, one of which amounts to performing a
Kramers-Wannier duality, while the other implements a Jordan-Wigner duality. We dis-
cuss the mapping of the phase diagram of the quantum spin-1/2 X Y Z chains under such
a triality. We show that the deconfined quantum critical transitions between Neel and
dimer orders are mapped to either topological or conventional Landau-Ginzburg tran-
sitions. Finally, we extend our results to Zn clock models with Zn × Zn global internal
symmetry, and provide a reinterpretation of the dual internal symmetries in terms of Zn
charge and dipole symmetries.
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1 Introduction

1.1 Motivation

The Lieb-Schultz-Mattis (LSM) Theorem [1] and its extensions [2–41] are no-go theorems
that constrain the low-energy properties of lattice Hamiltonians with certain combinations of
internal and crystalline symmetries. While in its original form the LSM Theorem applies to
spin-1/2 chains with SO(3) spin-rotation and translation symmetries, many generalizations
for general crystalline [11–13, 18, 19] and internal symmetries, for systems with bosonic and
fermionic [24, 35, 41] degrees of freedom, and for spatial dimensions greater than one [7–9,
15,18,28,30,34,35,37] have been proposed.

LSM Theorems rule out a ground state that is trivially gapped and symmetric, i.e., a ground
state that is simultaneously gapped, non-degenerate on any closed space manifold, and sym-
metric under the relevant internal and crystalline symmetries. Conversely, LSM Theorems
predict that ground states that are symmetric must support either gapless excitations or topo-
logical order.
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Global symmetries play a pivotal role in organizing various aspects of quantum systems. In
particular, operators and states organize into representations of the symmetry group, while the
phase diagrams and dynamics are constrained by symmetries. Global symmetries of quantum
systems can be anomalous. A quantum ’t Hooft anomaly [42] arises when the partition function
coupled to a symmetry background gauge field is not invariant under gauge transformations
of this background. Instead, the partition function transforms by a U(1) phase factor that
cannot be absorbed by the addition of local terms. While quantum anomalies were initially
investigated in continuum quantum field theories with fermions and Lie group symmetries
[43–45], in recent years there has been much progress in understanding anomalies in more
general contexts involving bosonic systems, finite symmetries [46–48], and lattice quantum
systems [39, 49–51]. The low-energy dynamics and phase diagrams of systems with ’t Hooft
anomalies are strongly constrained in a manner reminiscent of LSM Theorems. The anomaly
matching condition [42] requires that any trivially gapped ground state necessarily breaks the
full symmetry down to a subgroup that trivializes the anomaly.

This similarity between the constraints imposed at low energies by LSM Theorems for lat-
tice Hamiltonians, on the one hand, and by ‘t Hooft anomalies on the other hand, suggests a
close connection between LSM Theorems and ’t Hooft anomalies [15, 17, 23, 28, 39, 52, 53].
More precisely, LSM Theorems can be connected to mixed ’t-Hooft anomalies by showing that
the long-wavelength continuum descriptions of lattice Hamiltonians, for which an LSM The-
orem applies, support mixed ’t-Hooft anomalies between symmetries that originate from in-
ternal and crystalline symmetries participating in the LSM theorem. This means that, while
neither the internal nor the crystalline symmetry are individually anomalous, their combina-
tion is. This translates to the fact that, while there is no obstruction to a trivially gapped and
symmetric ground state under either internal or crystalline symmetry, any such state cannot be
gapped and symmetric under the full symmetry group that participates in the LSM Theorem.
Equivalently, the full internal symmetry group cannot be gauged, while preserving the crys-
talline symmetries. However, there is no obstruction to gauging a non-anomalous subgroup
of internal symmetries for which there is no LSM Theorem. Accordingly, LSM Theorems have
been reinterpreted as LSM anomalies, a terminology that we will follow in this paper.

In recent years, there has been much progress towards classifying topological phases of
matter with crystalline symmetries and understanding the corresponding quantum anomalies
[54–62]. Such classifications have often relied on the intuition that in the long wavelength
continuum description, some crystalline symmetries appear as internal symmetries. Despite
this progress, the lattice understanding of anomalies [50,51,63], in particular those involving
crystalline symmetries, is very much an evolving subject [39]. Challenges arise because it is
often unclear how to probe crystalline symmetries through coupling to crystalline backgrounds
[55,59,62,64], as is routinely done with internal symmetries and gauge fields. What is even
less clear is how to dynamically gauge a crystalline symmetry by summing over the crystalline
backgrounds. These issues make pinpointing LSM anomalies on the lattice a subtle task.

In this work, we circumvent these obstacles in local quantum lattice models by gauging
non-anomalous subgroups of their internal symmetries. This approach is always viable since
the chosen internal symmetry is non-anomalous, and methods to gauge internal symmetries
are well-known from lattice gauge theory.

Gauging global symmetries is a powerful way to manipulate the symmetry structure of a
quantum system [65–68]. By starting with a system with a known symmetry structure, like a
finite group with certain anomalies, and gauging non-anomalous sub-symmetries, one obtains
dual (gauged) theories with novel symmetry structures [51,66–82]. Generalized gauging pro-
cedures have recently emerged as effective methods to study generalized symmetry structures
in both continuous and lattice systems. For instance, in one spatial dimension, gauging a non-
anomalous finite symmetry that participates in a mixed anomaly results in a dual (gauged)
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theory with a non-anomalous global symmetry that extends the residual symmetries left after
gauging. In higher dimensions, this group extension becomes a higher group [66, 69]. In-
terestingly, these gauging procedures have also been used to furnish non-invertible symmetry
structures [83].

Another reason to study gauging of finite global symmetries is that such gaugings are real-
ized as dualities in quantum systems. For example, the well-known Kramers-Wannier [84–90]
and Jordan-Wigner [91] dualities are essentially gaugings of the Z2 internal and Z2 fermion-
parity symmetry in one-dimensional lattice models [92–113]. Dualities can be used to provide
profound non-perturbative insights into quantum systems and are therefore very valuable.

In this work, we study the gauging of subgroups of internal symmetry which participate in
LSM anomalies. More precisely, we choose a subgroup such that neither the gauged subgroup
nor the remaining symmetries have an LSM anomaly with the crystalline symmetries, while
an LSM anomaly applies for the full internal symmetry group. We track how the crystalline
and internal symmetries organize into the symmetry structure of the dual (gauged) theory.
We find that, as a direct consequence of an LSM anomaly in the pre-gauged theory, there
is necessarily a non-trivial mixing of internal and crystalline symmetries in the dual theory.
More concretely, we exemplify this procedure on a local quantum spin-1/2 chain that has a
global Z2 ×Z2 internal symmetry in addition to translation and reflection crystalline symme-
tries [26,31]. The local representatives of the internal symmetry operators satisfy a projective
representation of Z2×Z2 which, in turn, implies an LSM anomaly involving either translation
or reflection symmetry. We gauge a subgroup Z2 ⊂ Z2 × Z2 of the global internal symmetry
Z2×Z2 in two ways, which amounts to performing Kramers-Wannier (KW) or Jordan-Wigner
(JW) dualities, respectively. We establish a triality of the original model and its duals under KW
or JW dualities. After the KW duality, we find that the dual symmetry becomes non-Abelian,
more precisely a semi-direct product of the internal and crystalline symmetries. After the JW
transformation too, the LSM anomaly gets traded for a symmetry structure that involves a
non-trivial fermionic group extension of the internal and crystalline symmetry groups.

Starting with the original LSM Theorem [1], many LSM Theorems have been probed and
proven using background gauge fields (or equivalently twisted boundary conditions) of in-
ternal symmetries [1, 7, 34, 35, 37, 40]. Our work presents a novel method for probing LSM
anomalies based on dynamical gauging of internal sub-symmetries which provides an indi-
rect yet robust way to pin-point the existence of LSM anomalies. We, therefore, confirm that
gauging non-anomalous subgroups of finite symmetries with LSM anomalies leads to a non-
anomalous group extension in the dual theory, a fact known for finite internal symmetries with
mixed anomalies [66].

A deconfined quantum critical point (DQCP) describes a continuous transition between
phases with distinct symmetries. Such transitions are driven by deconfinement of point de-
fects of symmetry breaking order parameters such that the defects of the order parameter of
one phase bind a non-vanishing expectation value of the order parameter of the other phase
and vice versa [114–117]. DQCPs arise naturally in models with symmetries that carry mixed
anomalies, where the relationship between defects of the order parameters can be traced back
to the mixed anomaly between two subgroups. For instance, the paradigmatic example of
DQCP is the conjectured continuous transition between the Neel and valance-bond-solid (VBS)
orders of the Heisenberg antiferromagnet on the square lattice. The former order preserves
the crystalline C4 rotation symmetry and breaks the internal SO(3) symmetry, while the latter
order breaks the C4 symmetry and preservs the SO(3) symmetry. Indeed, there exists an LSM
anomaly between these symmetries, which rules out a trivially gapped ground state that is
symmetric under both SO(3) and C4 [18,21,28]. Under gauging a non-anomalous subgroup,
a DQCP is often mapped to conventional Landau-Ginzburg-type transitions, where symmetries
preserved by one phase is a subgroup of the other [51, 118–120]. Motivated by the relation
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between mixed anomalies and DQCP, we study the phase diagram of the quantum spin-1/2
X Y Z chain under the KW and JW dualities. This model features deconfined phase transitions
between Neel and dimer ordered phases [121]. We show that as the crystalline and inter-
nal symmetries are mixed after gauging, the DQCP between Neel and Dimer ordered phases
are mapped to either (i) topological phase transitions between two phases with same sym-
metries or (ii) conventional Landau-Ginzburg-type symmetry breaking transitions. Therein,
we demonstrate how dualities can be utilized to recast DQCPs and also understand the phase
diagrams of spin-1/2 and interacting Majorana chains.

1.2 Summary of the main results

Common to most LSM Theorems are quantum dynamical degrees of freedom defined on the
sites of a lattice with a quantum dynamics that is local and invariant under

• the symmetry group
Gtot = Gspa ×Gint (1.1a)

built from the direct product of a space (crystalline) symmetry group Gspa with a global
internal symmetry group Gint

• such that Gint cannot be gauged in its entirety, while preserving the symmetry under the
full space subgroup Gspa. 1

In this work, by way of explicit examples, we study the dualities induced by gauging a subgroup
of the internal symmetry Gint that does not participate in the LSM anomaly. The paradigmatic
example that we shall follow is the case of quantum spin-1/2 degrees of freedom at every site
of lattice Λ (a chain of even cardinality |Λ|) with

Gspa = Zt
|Λ| ⋊Z

r
2 (1.1b)

the space symmetry generated by translation (t) and site-centered reflection (r), and

Gint = Z
x
2 ×Z

y
2 (1.1c)

the global internal symmetry generated by π rotations along the x and y axes in internal spin-
1/2 space, respectively. It is known that both translation and reflection symmetries participate
in LSM anomalies with the global internal Zx

2 ×Z
y
2 symmetry. Our main results are as follows.

1. With the tools reviewed in Sec. 2, we show in Sec. 3 that, under both KW and JW duali-
ties, the LSM anomaly that was present before gauging is no longer operative for the dual
symmetries after gauging, instead the dual global symmetry group G∨tot is a group exten-
sion of the dual internal symmetry group G∨int by the dual crystalline symmetry group
G∨spa. For instance, the Abelian global symmetry group Zr

2 × Z
x
2 × Z

y
2 that is generated

by a site-centered reflection together with π rotations along x and y axes in internal
spin-1/2 space maps under KW duality to the non-Abelian group D8 (dihedral group of
order 8) defined in Eq. (3.18b).

2. As a concrete application, we study the zero-temperature phase diagram of the quantum
spin-1/2 antiferromagnetic X Y Z chain with nearest- and next-nearest-neighbor cou-
plings under the KW and JW dualities in Sec. 4. For this quantum X Y Z chain, the

1 This is so whenever the internal symmetry group is represented globally by a group homomorphism, while it
is represented locally by a non-trivial projective representation of the internal symmetry group. Indeed, whereas
it is possible to construct a many-body state that is a gauge singlet, the local Hilbert space does not admit a state
that is a gauge singlet.
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presence of LSM anomalies precludes a non-degenerate gapped ground state that is si-
multaneously symmetric under both the crystalline (translation or reflection) symmetry
group (1.1b) and the global internal symmetry group (1.1c). As such, in the parame-
ter space of interest, three gapped phases are realized that spontaneously break either
the crystalline symmetry or the global internal symmetry. The boundaries separating in
parameter space these gapped spontaneously symmetry broken (SSB) phases are con-
tinuous phase transitions that realize deconfined quantum criticality (DQC) [121]. We
present a triality of phase diagrams with Figs. 5 and 6 such that the dual phase diagrams
contain non-degenerate symmetric and gapped ground states due to the absence of any
LSM anomaly after gauging. We find that the continuous DQC phase transitions prior to
gauging the quantum X Y Z chain are to be reinterpreted as continuous phase transitions
that are either of the conventional Landau-Ginzburg type or of the topological type after
gauging.

3. To solidify the correspondence between LSM anomalies prior to gauging and mixing of
internal and crystalline symmetries after gauging, we study in Sec. 5 the family labeled
by n= 2, 3, · · · of Zn clock models with Zn×Zn global internal symmetry. We show that,
when a Zn ⊂ Zn ×Zn subgroup is gauged, the dual of the remaining Zn symmetry gen-
erator mixes with translation for any n, while a mixing occurs with reflection only when
n is even. This result is consistent with the following conjecture. The mixing induced
by gauging betwen dual crystallline symmetries and dual global internal symmetries oc-
curs if and only if the crystalline and global internal symmetries are subject to an LSM
anomaly prior to gauging.

4. We unravel a connection between Hamiltonians with spatially modulated internal sym-
metries, such as a Zn-dipole symmetry, and Hamiltonians with global (spatially uni-
form) internal symmetries, such as Zn × Zn symmetry. We show that gauging a Zn-
charge symmetry induces a duality between Hamiltonians with Zn-charge, Zn-dipole,
and translation (or link-centered reflection) symmetries, and Hamiltonians with global
uniform Zn × Zn symmetry, translation or (site-centered reflection) symmetry, and an
LSM anomaly.

1.3 Comparison with the literature

Since 2016, LSM Theorems have been reinterpeted as mixed ’t Hooft anomalies involving
crystalline symmetries in the following loose sense. On the one hand, it has been argued
that LSM Theorems can be understood as ’t Hooft anomalies of emergent internal symmetries
arising from crystalline symmetries in the low-energy continuum limit [17, 21, 25]. On the
other hand, Refs. [15, 18, 23, 28] have made the salient observation that LSM Theorems can
be applicable to the boundaries of crystalline topological phases in one higher dimension.

Most studies of mixed ’t-Hooft anomalies have treated the cases of internal symmetries in
relativistic quantum field theories for which the partial gauging leaves the space-time symme-
tries unaffected. In this context, the dualities induced by gauging a subgroup of a finite group
are worked out in Refs. [66, 67]. For instance, the duality between the Z2 × Z2 × Z2 global
internal symmetry with a mixed anomaly involving all three Z2 subgroups and the D8 internal
symmetry has been established in Ref. [66]. Our results in Sec. 3 parallels this fact for LSM
anomalies which involves crystalline symmetries. From this point of view, our results con-
firm the crystalline equivalence principle [55, 59] that suggests a one-to-one correspondence
between global internal and crystalline symmetries.

The connection between LSM anomalies with translation symmetry and mixed ’t Hooft
anomalies has been studied for lattice models [39,41,53] since late 2022. It has been shown
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in Refs. [41,53] that a dual non-invertible translation symmetry appears when global internal
symmetries that are participating in LSM anomalies are dynamically gauged. Here, we com-
plement this picture by studying the dualities that are induced by gauging a subgroup that
does not participate in the LSM anomaly.

We are unaware of prior derivations or studies of the KW and JW dual Hamiltonians (4.9)
and (4.19) of the quantum spin-1/2 antiferromagnetic X Y Z chain with nearest- and next-
nearest-neighbor antiferromagnetic couplings obeying periodic boundary conditions. This is
also true of the KW dual Hamiltonian (B.9) that is dictated by the choice of open boundary
conditions. To the best of our knowledge, KW dualization has been mostly applied in the
literature to the (classical) Ising limiting cases of quantum spin-1/2 antiferromagnetic X Y Z
chains or to the one-dimensional transverse-field Ising model, as is reviewed in Secs. 2 and 4.
The derivation and discussion of Figs. 5 and 6 are the main original results of this paper.

The KW and JW dual Hamiltonians (4.9) and (4.19) are examples of quantum Hamiltoni-
ans with simultaneous charge, dipole, and translation symmetries. Gauging the charge sym-
metry simply brings back Hamiltonians (4.9) and (4.19) to the quantum spin-1/2 XYZ chain
with the Hamiltonian (4.1) according to the triality encoded by Fig. 1. The study of Hamil-
tonians with charge and multipolar symmetries has gained popularity (see Refs. [?, ?, ?, ?, ?]
and references therein). However, our observation that gauging the charge symmetry in the
presence of the additional dipole and translation symmetries can produce a local Hamiltonian
with translation and global internal symmetry characterized by an LSM anomaly is another
original result of this paper.

1.4 Organization

The rest of the paper is organized as follows.
In Sec. 2, we review the implementation of the KW and JW dualities as bond-algebra

isomorphisms due to gauging an internal Z2 symmetry. Therein, we establish the triality of
three bond algebras.

In Sec. 3, we discuss how additional internal and crystalline symmetries are modified under
gauging an internal sub-symmetry. In particular, we show that the LSM anomaly disappears
after gauging at the cost of a group extension between crystalline and internal symmetries.

In Sec. 4, we study the phase diagram of the quantum spin-1/2 X Y Z chain and its fate
under the gauging-related dualities.

Section 5 showcases a generalization to the Zn-clock models, where we consider an LSM
anomaly between internal Zn ×Zn symmetry and translations and reflections. We conjecture
that the LSM anomaly with the reflection symmetry is present only when n is even. We confirm
this conjecture by showing that the mixing between reflection and internal symmetries only
appears when n is even while mixing with translation is always present. We conclude in Sec.
6.

2 Triality of Z2-symmetric bond algebras on a chain

The first incarnation of duality was discovered by Jordan and Wigner in 1928 [91], who
showed by algebraic means that there exists a one-to-one correspondence between creation
and annihilation operators of hard-core bosons on the one hand and spinless fermions on the
other hand, provided both can be labeled by an index belonging to an ordered set (as would
be the case when this label enumerates the sites of a one-dimensional lattice for example) 2.

2 Wigner and Jordan also introduced in Ref. [91] Majorana operators, i.e., Hermitian operators obeying a
Clifford algebra.
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The second incarnation of duality was discovered by Kramers and Wannier in 1941 [84–90],
who showed that the low- and high-temperature expansions of the classical Ising model on the
square lattice with nearest-neighbor interactions were related by a one-to-one transformation
of the temperature. Common to both incarnations of duality is the following defining property.
If there exists a correspondence between a set of observables bOι labeled by the index ι whose
(quantum) statistical properties are governed by the (quantum) partition function Z and a
second set of observables bO∨ι labeled by the index ι∨ whose (quantum) statistical properties
are governed by the (quantum) partition function Z∨ such that the equality

�

∏

ι

bOι

�

Z

=

®

∏

ι∨

bO∨ι∨

¸

Z∨

, (2.1)

between their correlation functions hold, then the pairs of observables (bO∨ι , bO∨ι∨) and the pair
of partition functions (Z , Z∨) form dual pairs. The Jordan-Wigner duality was used by Lieb,
Schultz, and Mattis to show that the quantum X Y spin-1/2 chain with nearest-neighbor anti-
ferromagnetic coupling is critical [1]. Kramers and Wannier predicted the value taken by the
transition temperature in the Ising model by postulating that it undergoes no more than one
transition between the high- and low-temperature phases.

It was recognized by McKean in 1964 that the Kramers-Wannier duality can be derived by
means of the Poisson summation formula for the Abelian group Z2 [92,100,107,108]. In the
1970’s, in connection with lattice gauge theories [101], the interplay between global and local
symmetries in establishing dualities took center stage starting with Kadanoff and Ceva on the
one hand and Wegner on the other hand [93–99, 102–106, 109]. The counterpart to lattice
dualities in field theory is bosonization [122–124]. Subtle signatures of lattice dualities in
massive field theories were investigated in Refs. [125,126]. An influential approach to dualities
was proposed by Fröhlich et al. in 2004 who sought to read off the possible strong/weak-
coupling dualities leaving a given critical model fixed solely from knowledge of its universality
class [65, 67, 127–131]. A field-theoretical generalization of this approach has been used to
study various possible strong/weak-coupling as well as boson/fermion dualities [110, 112,
113].

The goal of this section is to treat the Jordan-Wigner (JW) and Kramers-Wannier (KW)
dualities on equal footing. To this end, we are going to review the construction of Kramers-
Wannier and Jordan-Wigner dualities obeyed by lattice bond algebras [132, 133] following a
gauging approach [51, 111]. Equipped with theses tools, we will present our main results in
Sec. 3 in which we study the fate of crystalline transformations of the lattice such as translation
and reflection under the dualities (triality) of Sec. 2.

Starting from Z2-symmetric quantum spin-1/2 X Y Z chains defined on the lattice

Λ :=

�

j

�

�

�

�

j = 1, · · · , 2N

�

, (2.2a)

we are thus going to gauge the global Z2 symmetry in two ways. The first way delivers a
bosonic bond algebra with global Z2-symmetry that is supported on the dual lattice

Λ⋆ :=

�

j⋆ ≡ j +
1
2

�

�

�

�

j ∈ Λ
�

, (2.2b)

i.e., the links of the lattice Λ. The second way delivers a fermionic bond algebra with global
Z2 fermion parity symmetry that is supported on the lattice Λ 3. We will then establish a
triality between all three bond algebras, i.e., any pair of the three bond algebras form dual
pairs provided appropriate consistency conditions are imposed.

3 As we shall explain in Sec. 2.3, it will be convenient to implement a unitary transformation which renders the
dual fermionic bond algebra on the lattice Λ.
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2.1 The Z2 symmetric bond algebra

To each site j ∈ Λ, we assign the triplet σ̂ j of operators whose components σ̂αj with α= x , y, z
obey the Pauli algebra

σ̂αj σ̂
β
j = δ

αβ
b1Hb
+ iεαβγ σ̂γj ,

�

σ̂αi , σ̂βj
�

= 0, i < j ∈ Λ, (2.3a)

where α,β ,γ= x , y, z and the summation convention over repeated indices is implied. We will
be interested in organizing the sub-space of linear operators that are symmetric with respect
to a Zz

2 symmetry generated by

bUrz
π

:=
2N
∏

j=1

σ̂z
j . (2.3b)

Here, bUrz
π

implements a global rotation by π about the z axis in internal spin-1/2 space at-
tached to the lattice Λ. We consider general symmetry twisted boundary conditions labeled
by b = 0,1 ∈ Zz

2 as

σ̂x
j+2N =

�

bUrz
π

�b
σ̂x

j

�

bU†
rz
π

�b
= (−1)b bσx

j ,

σ̂
y
j+2N =

�

bUrz
π

�b
σ̂

y
j

�

bU†
rz
π

�b
= (−1)b bσ y

j ,

σ̂z
j+2N =

�

bUrz
π

�b
σ̂z

j

�

bU†
rz
π

�b
= bσz

j .

(2.3c)

These operators act on the 22N -dimensional Hilbert space

Hb := span

(

⊗

j∈Λ

�

σ̂x
j − iσ̂ y

j

2

�n j

| ↑〉 j

�

�

�

�

�

n j = 0, 1, σ̂z
j | ↑〉 j = | ↑〉 j

)

∼= C22N
. (2.3d)

We define the bond algebra

Bb ≡
D

σ̂z
j , σ̂x

j σ̂
x
j+1

�

�

� j ∈ Λ
E

, (2.4)

that is spanned by all complex-valued linear combinations of products of the generators σ̂z
i

and σ̂x
j σ̂

x
j+1 for any i, j ∈ Λ. The bond algebra Bb is equivalent to the algebra of all operators

acting on the Hilbert space Hb that are symmetric under the Zz
2 symmetry. Since the algebra

Bb is Zz
2-symmetric, all operators in it can be block diagonalized into eigenspaces of bUrz

π
.

Correspondingly, it is also convenient to decompose the Hilbert space (2.3d) in terms of the
definite eigenvalues of the operator bUrz

π
, i.e., the decomposition

Hb =Hb;+ ⊕Hb;− , Hb;± :=
1
2

�

b1Hb
± bUrz

π

�

Hb . (2.5)

In what follows, we are going to construct two additional bond algebras Bb′ and B f and
explain under what conditions any pair of the triplet of bond algebras

Bb, Bb′ , B f (2.6)

are dual to each other. If we place each one of the three bond algebras at the vertices of a
triangle as is done in Fig. 1, we may interpret each side of this triangle as a duality relation.
We call this web of dualities triality. The strategy that we shall use to establish each of the
dualities consists of the following three steps:
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Bb

B f Bb′

Figure 1: Triality between the triplet of bond algebras (2.6).

1. We gauge the global Zz
2 symmetry by extending the Hilbert space to include gauge de-

grees of freedom. This is done in two ways which correspond to introducing bosonic or
fermionic gauge degrees of freedom, respectively.

2. We perform a unitary transformation on the extended Hilbert space, which includes both
the matter and gauge degrees of freedom. This unitary effectively localizes the Gauss
constraints on the matter degrees of freedom.

3. We solve the Gauss constraints and project onto the gauge invariant subspace of the
extended Hilbert space. Upon doing so, the matter degrees of freedom freeze out, thus
delivering the dual bond algebra.

These dualities are invertible and therefore the same procedure can be carried out starting
from either the bond algebra Bb′ or B f , as we shall detail below.

2.2 Bosonic gauging and the Kramers-Wannier duality

To gauge the global Zz
2 symmetry generated by the unitary operator (2.3b), we introduce Z2-

valued gauge fields on the links of the lattice Λ. In other words, to each site j⋆ ∈ Λ⋆ of the
dual lattice, we assign the triplet τ̂ j⋆ of operators whose components τ̂αj⋆ with α= x , y, z obey
the Pauli algebra

τ̂αj⋆ τ̂
β
j⋆ = δ

αβ
b1H

b′
+ iεαβγ τ̂γj⋆ ,

�

τ̂αi⋆ , τ̂
β
j⋆

�

= 0, i⋆ < j⋆ ∈ Λ⋆ . (2.7a)

In analogy with (2.3c), we also introduce the twisted boundary conditions

τ̂x
j⋆+2N = (−1)b

′
τ̂x

j⋆ , τ̂
y
j⋆+2N = (−1)b

′
τ̂

y
j⋆ , τ̂z

j⋆+2N = τ̂
z
j⋆ , b′ = 0,1. (2.7b)

In what follows, we will see that b′ plays an important role in understanding how symmetry
eigensectors map under gauging. These link operators act on the 22N -dimensional Hilbert
space

Hb′ := span

¨

⊗

j⋆∈Λ⋆

�

τ̂x
j⋆ − iτ̂y

j⋆

2

�n j⋆

| ↑〉 j⋆

�

�

�

�

�

n j⋆ = 0,1, τ̂z
j⋆ | ↑〉 j⋆ = | ↑〉 j⋆

«

∼= C22N
. (2.7c)

We define the extended bond algebra

Bb,b′ ≡
D

σ̂z
j , σ̂x

j τ̂
z
j⋆ σ̂

x
j+1

�

�

� j ∈ Λ
E

, (2.8a)

10
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where j⋆ := j + 1/2 as defined in Eq. (2.2b) (this is always assumed throughout the paper).
Any operator in Bb,b′ acts on the extended 24N -dimensional Hilbert space

Hb,b′ :=Hb ⊗Hb′ . (2.8b)

What distinguishes Bb,b′ from the set of all operators on Hb,b′ is that any element from Bb,b′

is invariant under conjugation with any one of the 2N local unitary operators (i.e., Gauss
operators)

bGb,b′; j := τ̂x
j⋆−1 σ̂

z
j τ̂

x
j⋆ = bGb,b′; j+2N , (2.9a)

that satisfy the conditions
�

bGb,b′; j

�2
= b1H

b,b′
,

�

bGb,b′;i , bGb,b′; j

�

= 0 ,
∏

j

bGb,b′; j = (−1)b
′
bUrz
π

. (2.9b)

Products of operators bGb,b′; j over subsets of Λ generate local Z2 gauge transformations. A
generic local Z2 gauge transformation

σ̂x
j 7→ (−1)λ j σ̂x

j , σ̂
y
j 7→ (−1)λ j σ̂

y
j , σ̂z

j 7→ σ̂
z
j , (2.10a)

τ̂x
j⋆ 7→ τ̂

x
j⋆ , τ̂

y
j⋆ 7→ (−1)λ j+1−λ j τ̂

y
j⋆ , τ̂z

j⋆ 7→ (−1)λ j+1−λ j τ̂z
j⋆ , (2.10b)

with λ j = 0,1 is implemented by the operator

bGb,b′;λ :=
2N
∏

j=1

�

bGb,b′; j

�λ j , λ= (λ1, · · · , λ2N ), (2.10c)

and specified by the string of Z2-valued scalars λ j = 0,1 with j = 1, · · · , 2N . While the
bond algebra (2.8a) is invariant under any local transformations (2.10), these are yet to be
associated to gauge symmetries or, equivalently, redundancies in our description 4. We elevate
the local transformations (2.10) to local gauge symmetries by requiring that any two states
in the Hilbert space Hb,b′ are equivalent if they are related by a gauge transformation. In
particular, we demand that any state |ψphys〉 is a physical one if and only if

bGb,b′; j |ψphys〉= +|ψphys〉, (2.11a)

for any j = 1, · · · , 2N . The choice of + sign for any j corresponds to a background with no Z2
matter, i.e., we have a pure gauge theory. Observe that Eqs. (2.11a) and (2.9b) imply that

bUrz
π
|ψphys〉= (−1)b

′
|ψphys〉. (2.11b)

We project the extended Hilbert space (2.8b) into the gauge invariant sector where condi-
tion (2.11) holds. This is facilitated by first performing the unitary transformation [51] (see
also Refs. [103,109,134–136])

bUb,b′ :=
2N
∏

j=1

bUb,b′; j⋆ , bUb,b′; j⋆ := bP +b,b′; j⋆ + τ̂
x
j⋆
bP −b,b′; j⋆ (2.12a)

with pairwise commuting projectors

bP ±b,b′; j⋆ :=
1
2

�

b1H
b,b′
± σ̂x

j σ̂
x
j+1

�

, j⋆ ∈ Λ⋆ . (2.12b)

4 To make the connection with gauge theories in (1 + 1)-dimensional spacetime continuum, we observe that
τ̂x

j⋆ is reminiscent of a Z2-valued electric field ∼ eiE , while τ̂z
j⋆ is reminiscent of a Z2-valued gauge field ∼ eiA.

Accordingly, under the local transformation specified by a Z2-valued scalar field λ, the electric field is invariant,
while the gauge field changes by πdλ.

11



SciPost Physics Submission

For any j = 1, · · · , 2N , there follows the transformation laws

bUb,b′ σ̂
x
j

�

bUb,b′

�†
= σ̂x

j , bUb,b′ σ̂
z
j

�

bUb,b′

�†
= τ̂x

j⋆−1 σ̂
z
j τ̂

x
j⋆ , (2.13a)

bUb,b′ τ̂
x
j⋆
�

bUb.b′
�†
= τ̂x

j⋆ , bUb,b′ τ̂
z
j⋆

�

bUb,b′

�†
= σ̂x

j τ̂
z
j⋆ σ̂

x
j+1, (2.13b)

for the generators of the Pauli algebras on the lattices Λ and Λ⋆ together with the image

bUb,b′
bGb,b′; j

�

bUb,b′

�†
= σ̂z

j (2.13c)

of the local Gauss operator.
Thus, projection onto the subspace where the condition (2.11) holds amounts to setting

the action of σ̂z
j on physical states to the identity (σ̂z

j ≡ 1) after the unitary transformation
(2.13). More concretely, if we define the projector

bPb,b′;G :=
∏

j∈Λ

1
2

�

b1H
b,b′
+ bUb,b′

bGb,b′; j

�

bUb,b′

�†
�

, (2.14a)

onto the 22N -dimensional gauge-invariant subspace

H∨b′ := bPb,b′;G Hb,b′ ⊂Hb,b′ , (2.14b)

we find that the 2N triplets of projected operators

τ̂x ∨
j⋆ := bPb,b′;G

h

bUb,b′ τ̂
x
j⋆

�

bUb,b′

�†i
bPb,b′;G

= bPb,b′;G τ̂
x
j⋆
bPb,b′;G , (2.15a)

τ̂
y ∨
j⋆ := bPb,b′;G

h

bUb,b′ σ̂
x
j τ̂

y
j⋆ σ̂

x
j+1

�

bUb,b′

�†i
bPb,b′;G

= bPb,b′;G τ̂
y
j⋆
bPb,b′;G , (2.15b)

τ̂z∨
j⋆ := bPb,b′;G

h

bUb,b′ σ̂
x
j τ̂

z
j⋆ σ̂

x
j+1

�

bUb,b′

�†i
bPb,b′;G

= bPb,b′;G τ̂
z
j⋆
bPb,b′;G , (2.15c)

realize a Pauli algebra on the Hilbert space H∨b′ that is isomorphic to the Pauli algebra (2.7a)
on the Hilbert space Hb′ . This implies that the projection to H∨b′ of the bond algebra Bb,b′

delivers the dual bond algebra

Bb′ := bPb,b′;G

h

bUb,b′Bb,b′

�

bUb,b′

�†i
bPb,b′;G

=
D

τ̂x ∨
j⋆−1 τ̂

x ∨
j⋆ , τ̂z∨

j⋆

�

�

� j⋆ ∈ Λ⋆
E

. (2.16)

This is the bond algebra of operators that are symmetric under the dual Zz∨
2 symmetry with

the generator
bU ∨rz
π

:=
∏

j⋆∈Λ⋆
τ̂z∨

j⋆ (2.17)

of the global rotation by π about the z axis in internal spin-1/2 space attached to the dual
lattice Λ⋆. Note that the twisted boundary conditions in (2.7b) were nothing but symmetry
twisted boundary conditions with respect to Zz∨

2 . As was done for the Hilbert space Hb in Eq.
(2.5), it is convenient to decompose the Hilbert space H∨b′ in terms of the definite eigenvalue
sectors of the operator bU∨rz

π
, i.e., the decomposition

H∨b′ =H∨b′;+ ⊕H∨b′;−, (2.18a)

12



SciPost Physics Submission

holds, where

H∨b′;± :=
1
2

�

b1H∨
b′
± bU∨rz

π

�

H∨b′ . (2.18b)

The duality between the bond algebras (2.4) and (2.16) demands the following consistency
conditions. Because of the twisted boundary conditions (2.3c) and (2.7b), the pair of operators

�

σ̂z
j , τ̂x ∨

j⋆−1 τ̂
x ∨
j⋆

�

(2.19a)

and the pair of operators
�

σ̂x
j σ̂

x
j+1, τ̂z∨

j⋆

�

(2.19b)

each form a dual pair if and only if the pair of operators
 

2N
∏

j=1

σ̂z
j = bUrz

π
,

2N
∏

j=1

�

τ̂x ∨
j⋆−1 τ̂

x ∨
j⋆

�

= (−1)b
′
b1H∨

b′

!

(2.20a)

and the pair of operators
 

2N
∏

j=1

�

σ̂x
j σ̂

x
j+1

�

= (−1)b b1Hb
,

2N
∏

j=1

τ̂z∨
j⋆ =: bU ∨rz

π

!

(2.20b)

each form a dual pair, respectively. This is to say that duality between the bond algebras (2.4)
and (2.16) holds only on the 22N−1-dimensional subspaces

H
b; (−1)b′

=
1
2

h

b1Hb
+ (−1)b

′
bUrz
π

i

Hb, (2.21a)

H∨b′; (−1)b =
1
2

�

b1H∨
b′
+ (−1)b bU ∨rz

π

�

H∨b′ , (2.21b)

of 22N -dimensional Hilbert spaces Hb and H∨b′ , respectively. This duality between the bond
algebras (2.4) and (2.16) acting on Hilbert spaces (2.21a) and (2.21b), respectively, is noth-
ing but the Kramers-Wannier (KW) duality. Under the KW duality, the boundary conditions
(b = 0, 1) of the bond algebra (2.4) dictates the eigenvalue of the generator bU∨rz

π
of the global

dual symmetry, while the eigenvalue of the generator bUrz
π

of the global symmetry that was

gauged dictates the boundary conditions (b′ = 0, 1) of the dual bond algebra (2.16). Table 1
summarizes this correspondence (see Ref. [110] for an alternative field-theoretical derivation
of this mapping of the symmetry eigensectors under the KW duality).

2.3 Fermionic gauging and the Jordan-Wigner duality

We now describe a distinct fermionic gauging of the globalZz
2 symmetry with generator Eq. (2.3b).

In contrast to the previous section, we introduce a pair of Majorana operators on every link
of the lattice Λ. These represent fermionic gauge degrees of freedom. More precisely, to each
site j⋆ ∈ Λ⋆, we assign the pair β̂ j⋆ = β̂

†
j⋆ and α̂ j⋆ = α̂

†
j⋆ of Majorana operators obeying the

Clifford algebra
¦

α̂i⋆ , α̂ j⋆

©

=
¦

β̂i⋆ , β̂ j⋆

©

= 2δi⋆, j⋆
b1H f

,
¦

α̂i⋆ , β̂ j⋆

©

= 0, i⋆, j⋆ ∈ Λ⋆. (2.22a)

We also introduce the fermion parity operator

bPF :=
∏

j⋆∈Λ⋆

�

iβ̂ j⋆ α̂ j⋆
�

, (2.22b)

13
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Table 1: The four Kramers-Wannier dualizations that follow from the consistency
conditions (2.21). The first column specifies the twisted boundary conditions. The
choice of twisted boundary conditions is selected by b = 0,1 prior to dualization.
The choice of twisted boundary conditions is selected by b′ = 0,1 after dualization.
The second column gives the dual subspace of the Hilbert space prior to dualization.
The third column gives the dual subspace of the Hilbert space after dualization.

(b, b′) H
b; (−1)b′

H∨b′; (−1)b

(0, 0) 1
2

�

b1Hb
+ bUrz

π

�

Hb
1
2

�

b1H∨
b′
+ bU ∨rz

π

�

H∨b′

(1, 0) 1
2

�

b1Hb
+ bUrz

π

�

Hb
1
2

�

b1H∨
b′
− bU ∨rz

π

�

H∨b′

(0, 1) 1
2

�

b1Hb
− bUrz

π

�

Hb
1
2

�

b1H∨
b′
+ bU ∨rz

π

�

H∨b′

(1, 1) 1
2

�

b1Hb
− bUrz

π

�

Hb
1
2

�

b1H∨
b′
− bU ∨rz

π

�

H∨b′

together with the cyclic group
ZF

2 =
¦

pF,
�

pF

�2 ≡ e
©

, (2.22c)

of order two with pF represented by bPF. The pair bPF and ZF
2 will play a central role in what

follows. We work in a Hilbert space with boundary conditions twisted with respect to the
fermion parity operator, i.e.,

α̂ j⋆+2N =
�

bPF

� f
α̂ j⋆

�

bP†
F

� f
= (−1) f α̂ j⋆ ,

β̂ j⋆+2N =
�

bPF

� f
β̂ j⋆
�

bP†
F

� f
= (−1) f β̂ j⋆ ,

(2.22d)

where f = 0,1. These 2N doublets of Majorana operators act on the 22N -dimensional Hilbert
space

H f := span











∏

j⋆∈Λ⋆

 

β̂ j⋆ − iα̂ j⋆

2

!n j⋆


 |0〉

�

�

�

�

�

�

n j⋆ = 0, 1,
β̂ j⋆ + iα̂ j⋆

2
|0〉= 0







∼= C22N
.

(2.22e)

We define the extended bond algebra

Bb, f ≡
D

σ̂z
j , σ̂x

j

�

iβ̂ j⋆ α̂ j⋆

�

σ̂x
j+1

�

�

� j ∈ Λ
E

, (2.23a)

that is spanned by all complex-valued linear combinations of products of the generators σ̂z
i and

σ̂x
j

�

iβ̂ j⋆ α̂ j⋆

�

σ̂x
j+1 for any i, j ∈ Λ. Any element of Bb, f acts on the extended 24N -dimensional

Hilbert space
Hb, f :=Hb ⊗H f . (2.23b)

What distinguishes Bb, f from the set of all operators on Hb, f is that any element from Bb, f
is invariant under conjugation with any one of the 2N local unitary operators (i.e., Gauss
operators)

bGb, f ; j := iβ̂ j⋆−1 σ̂
z
j α̂ j⋆ = bGb, f ; j+2N , (2.24a)

that satisfy the conditions
�

bGb, f ; j

�2
= b1Hb, f

,
�

bGb, f ;i , bGb, f ; j

�

= 0,
∏

j∈Λ

bGb, f ; j = (−1) f bPF bUrz
π

. (2.24b)
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Products of operators bGb, f ; j over subsets ofΛ generateZ2 gauge transformations. A generic
Z2 gauge transformation

σ̂x
j 7→ (−1)λ j σ̂x

j , σ̂
y
j 7→ (−1)λ j σ̂

y
j , σ̂z

j 7→ σ̂
z
j , (2.25a)

α̂ j⋆ 7→ (−1)λ j α̂ j⋆ , β̂ j⋆ 7→ (−1)λ j+1 β̂ j⋆ , (2.25b)

with λ j = 0,1 is implemented by the operator

bGb, f ;λ :=
2N
∏

j=1

�

bGb, f ; j

�λ j , λ= (λ1, · · · , λ2N ), (2.25c)

and specified by the string of Z2-valued scalars λ j = 0, 1 with j = 1, · · · , 2N . While the
bond algebra (2.23a) is invariant under any local transformations (2.25), these are yet to be
associated to gauge symmetries or, equivalently, redundancies in our description 5. We elevate
the local transformations (2.25) to local gauge symmetries by requiring that any two states
in the Hilbert space Hb, f are equivalent if they are related by a gauge transformation. In
particular, we demand that any state |ψphys〉 is a physical one if and only if

bGb, f ; j |ψphys〉= +|ψphys〉 (2.26a)

for any j = 1, · · · , 2N . The choice of + sign for any j corresponds to a background with no Z2
matter, i.e., we have a pure gauge theory. Observe that Eqs. (2.26a) and (2.24b) imply that
(compare with Eq. (2.11b))

bUrz
π
|ψphys〉= (−1) f bPF |ψphys〉 . (2.26b)

We project the extended Hilbert space (2.23b) into the gauge invariant sector where con-
dition (2.26) holds. This is facilitated by first performing the unitary transformation

bUb, f :=
2N
∏

j=1

bUb, f ; j , (2.27a)

where

bUb, f ; j :=
�

σ̂x
j

�
bP −b, f ; j = bP +b, f ; j + σ̂

x
j
bP −b, f ; j = bUb, f ; j+2N , (2.27b)

with pairwise commuting projectors

bP ±b, f ; j :=
1
2

�

b1Hb, f
± iβ̂ j⋆−1 α̂ j⋆

�

, j ∈ Λ. (2.27c)

For any j ∈ Λ, there follows the transformation rules

bUb, f σ̂
x
j

�

bUb, f

�†
= σ̂x

j , bUb, f σ̂
z
j

�

bUb, f

�†
= iβ̂ j⋆−1 σ̂

z
j α̂ j⋆ ,

bUb, f β̂ j⋆

�

bUb, f

�†
= β̂ j⋆ σ̂

x
j+1, bUb, f α̂ j⋆

�

bUb, f

�†
= σ̂x

j α̂ j⋆ ,
(2.28a)

for the spin operators on the lattice Λ and Majorana operators on the dual lattice Λ⋆ together
with the image

bUb, f
bGb, f ; j

�

bUb, f

�†
= σ̂z

j . (2.28b)

5 To make the connection with gauge theories in (1+1)-dimensional continuum, we observe that both iβ̂ j⋆−1 α̂ j⋆

and iβ̂ j⋆ α̂ j⋆ are reminiscent of a Z2-valued electric field ∼ eiE and a Z2-valued gauge field ∼ eiA in that they obey
the same transformation laws under local Z2 gauge transformations, respectively.
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Thus, projection onto the subspace where the condition (2.26) holds amounts to setting the
action of σ̂z

j on physical states to the identity (σ̂z
j ≡ 1) after the unitary transformation (2.28).

More concretely, if we define the projector

bPb, f ;G :=
∏

j∈Λ

1
2

h

b1Hb, f
+ bUb, f

bGb, f ; j

�

bUb, f

�†i

(2.29a)

onto the 22N -dimensional gauge-invariant subspace

H∨f := bPb, f ;G Hb, f ⊂Hb, f , (2.29b)

we find that the 2N doublets of projected operators

β̂∨j+1 := bPb, f ;G

h

bUb, f

�

β̂ j⋆ σ̂
x
j+1

��

bUb, f

�†i
bPb, f ;G

= bPb, f ;G β̂ j⋆
bPb, f ;G , (2.30a)

α̂∨j := bPb, f ;G

h

bUb, f

�

σ̂x
j α̂ j⋆

��

bUb, f

�†i
bPb, f ;G

= bPb, f ;G α̂ j⋆
bPb, f ;G, (2.30b)

realize a Clifford algebra on the Hilbert space H∨f that is isomorphic to the Clifford algebra

(2.22a) on the Hilbert space H f . The lattice label that we choose for β̂∨j+1 and α̂∨j is a matter

of convention since the relation between j and j⋆ = j+ 1
2 is one to one 6. We also find that the

projection to H∨f of the bond algebra Bb, f is the bond algebra

B f :=
D

iβ̂∨j α̂
∨
j , iβ̂∨j+1 α̂

∨
j

�

�

� j ∈ Λ
E

, (2.31a)

which is the algebra of operators invariant under conjugation by the generator

bP ∨F :=
∏

j∈Λ

�

iβ̂∨j α̂
∨
j

�

. (2.31b)

of a global fermion-parity symmetry ZF
2. As was done for the Hilbert space Hb in Eq. (2.5),

it is convenient to decompose the Hilbert space H∨f to the definite eigenvalue sectors of the

operator bP∨F , i.e., the decomposition

H∨f =H∨f ;+ ⊕H∨f ;−, (2.32a)

holds where

H∨f ;± :=
1
2

�

b1H∨f
± bP∨F

�

H∨f . (2.32b)

The duality between the bond algebras (2.4) and (2.31) demands certain consistency condi-
tions. In particular, the twisted boundary conditions (2.3c) and (2.22d) require that the pairs
of operators

�

σ̂z
j , iβ̂∨j α̂

∨
j

�

(2.33a)

and
�

σ̂x
j σ̂

x
j+1, iβ̂∨j+1 α̂

∨
j

�

(2.33b)

6 This choice implies a relative translation of the β̂∨j operators compared to the α̂∨j operators. It is done to
simplify the discussion of the phase diagram in Sec. 4. As we shall see in Sec. 2.4, while such a “half”-translation is
a unitary transformation on the fermionic bond algebras, it corresponds to implementing the KW duality described
in Sec. 2.2 on the bosonic bond algebras obtained by gauging fermion parity.
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Table 2: The four Jordan-Wigner dualizations that follow from the consistency condi-
tions (2.34). The first column specifies the twisted boundary conditions. The choice
of twisted boundary conditions is selected by b = 0,1 prior to dualization. The choice
of twisted boundary conditions is selected by f = 0,1 after dualization. The second
column gives the dual subspace of the Hilbert space prior to dualization. The third
column gives the dual subspace of the Hilbert space after dualization.

(b, f ) H
b; (−1)b+ f +1 H∨

f ; (−1)b+ f +1

(0, 0) 1
2

�

b1Hb
− bUrz

π

�

Hb
1
2

�

b1H∨f
− bP ∨F

�

H∨f

(1, 0) 1
2

�

b1Hb
+ bUrz

π

�

Hb
1
2

�

b1H∨f
+ bP ∨F

�

H∨f

(0, 1) 1
2

�

b1Hb
+ bUrz

π

�

Hb
1
2

�

b1H∨f
+ bP ∨F

�

H∨f

(1, 1) 1
2

�

b1Hb
− bUrz

π

�

Hb
1
2

�

b1H∨f
− bP ∨F

�

H∨f

each form a dual pair if and only if the pairs of operators
 

2N
∏

j=1

σ̂z
j = bUrz

π
,

2N
∏

j=1

�

iβ̂∨j α̂
∨
j

�

= bP ∨F

!

(2.33c)

and
 

2N
∏

j=1

�

σ̂x
j σ̂

x
j+1

�

= (−1)b b1Hb
,

2N
∏

j=1

�

iβ̂∨j+1 α̂
∨
j

�

= (−1) f +1
bP ∨F

!

(2.33d)

each form a dual pair, respectively. This is to say that the duality between the bond algebras
(2.4) and (2.31) holds only on the 22N−1-dimensional subspaces

Hb; (−1)b+ f +1 =
1
2

h

b1Hb
+ (−1)b+ f +1

bUrz
π

i

Hb , (2.34a)

H∨f ; (−1)b+ f +1 =
1
2

�

b1H∨f
+ (−1)b+ f +1

bP ∨F

�

H∨f , (2.34b)

of 22N -dimensional Hilbert spaces Hb and H∨f , respectively. This is the Jordan-Wigner (JW)
duality. Table 2 summarizes the correspondence between symmetry eigensectors on either side
of this duality (see Refs. [41,110] for an alternative field-theoretical derivation of the mapping
of symmetry eigensectors under the JW duality).

2.4 A triality of bond algebras

In Sec. 2.2, we gauged the internal global symmetry group Zz
2 of the bond algebra Bb defined

in Eq. (2.4) by minimal coupling to the local generator τ̂z
j⋆ of rotation by π about the z axis in

internal spin-1/2 space of the site j⋆ ∈ Λ⋆ with the help of the local Gauss operator defined in
Eq. (2.9). In Sec. 2.3, we gauged instead the internal global symmetry group Zz

2 by minimal
coupling to the local generator iβ̂ j⋆ α̂ j⋆ of fermion-parity on the site j⋆ ∈ Λ⋆, with the help of
the local Gauss operator defined in Eq. (2.24).

To complete the triality 7, we construct the two dualizations Bb′ and Bb of the bond
algebra

B f ≡
D

iβ̂ j α̂ j , iβ̂ j+1 α̂ j

�

�

� j ∈ Λ
E

, (2.35a)

7 We leave it to the reader to construct the two dualizations Bb and B f by gauging the bond algebra Bb′ .
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where the Majorana operators α̂ j = α̂
†
j and β̂ j = β̂

†
j with i, j ∈ Λ satisfy the Clifford algebra

¦

α̂ j , α̂ j′

©

=
¦

β̂ j , β̂ j′

©

= 2δ j, j′ ,
¦

α̂ j , β̂ j′

©

= 0, (2.35b)

and obey the fermion-parity twisted boundary conditions

α̂ j+2N = (−1) f α̂ j , β̂ j+2N = (−1) f β̂ j , f = 0, 1, (2.35c)

for any j, j′ ∈ Λ. The domain of definition of these 2N doublets of Majorana operators is the
Hilbert space

H f := span











2N
∏

j=1

 

β̂ j − iα̂ j

2

!n j



 |0〉

�

�

�

�

�

�

n j = 0,1,
β̂ j + iα̂ j

2
|0〉= 0







∼= C22N
. (2.35d)

The bond algebra (2.35a) is symmetric under conjugation by the global fermion parity 8

bPF :=
2N
∏

j=1

iβ̂ j α̂ j (2.36a)

=(−1) f +1
2N
∏

j=1

iβ̂ j α̂ j+1. (2.36b)

We are going to show that gauging the global fermion parity symmetry generated by the rep-
resentation (2.36a) of bPF delivers the bond algebra Bb′ on the dual lattice, while gauging the
global fermion parity symmetry generated by the representation (2.36b) of bPF delivers the
bond algebra Bb on the dual lattice.

2.4.1 Unit-cell preserving gauging of fermion parity

We trade the bond algebra B f defined in Eq. (2.35) by the minimally coupled bond algebra

B f ,b′ :=
D

iβ̂ j α̂ j , iβ̂ j+1 τ̂
z
j⋆ α̂ j

�

�

� j ∈ Λ
E

(2.37a)

with the tensor product
H f ,b′ :=H f ⊗Hb′ (2.37b)

as domain of definition [here, Hb′ was defined in Eq. (2.7)]. This extended bond algebra is
symmetric with respect to any one of the 2N pairwise-commuting Gauss operators

bG f ,b′; j := τ̂x
j⋆−1

�

iβ̂ j α̂ j

�

τ̂x
j⋆ = bG f ,b′; j+2N , j ∈ Λ. (2.38)

These are Gauss operators since they will soon be used to define kinematic constraints on the
Hilbert space as is standard in the gauging procedure. We call these Gauss operators (2.38)
unit-cell preserving, for the local transformation it implements on the Majorana operators only
acts non-trivially on a single site of the direct lattice Λ. One verifies that

∏

j∈Λ

bG f ,b′; j =
∏

j∈Λ
τ̂x

j⋆−1

�

iβ̂ j α̂ j

�

τ̂x
j⋆ = (−1)b

′
∏

j∈Λ

�

iβ̂ j α̂ j

�

≡ (−1)b
′
bPF. (2.39)

8 The rational for choosing the multiplicative real-valued phase factor on the right-hand side of Eq. (2.31b) will
be given in Sec. 3.3.
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In words, the product of all local Gauss operators equals the global fermion parity up to a sign
fixed by the twisted boundary conditions b′ = 0, 1.

We define the unitary transformation of the Hilbert space (2.37b) through

bU f ,b′ :=
∏

j∈Λ

bU f ,b′; j , bU f ,b′; j :=
�

τ̂x
j⋆

�
bP −

f ,b′; j = bP +f ,b′; j + τ̂
x
j⋆
bP −f ,b′; j , (2.40a)

with the 2N pairwise-commuting projectors

bP ±j :=
1± iβ̂ j+1 α̂ j

2
= bP ±j+2N . (2.40b)

For any j = 1, . . . , 2N , the following transformation laws hold

bU f ,b′ τ̂
x
j⋆

�

bU f ,b′

�†
= τ̂x

j⋆ , bU f ,b′ τ̂
z
j⋆

�

bU f ,b′

�†
= iβ̂ j+1 τ̂

z
j⋆ α̂ j , (2.41a)

bU f ,b′ β̂ j

�

bU f ,b′

�†
= τ̂x

j⋆−1 β̂ j , bU f ,b′ α̂ j

�

bU f ,b′

�†
= α̂ j τ̂

x
j⋆ , (2.41b)

for the operators on the lattices Λ and Λ⋆ together with the image

bU f ,b′
bG f ,b′; j

�

bU f ,b′

�†
= iβ̂ j α̂ j (2.41c)

of the local Gauss operator. Thus, if we define the projector

bPf ,b′;G :=
∏

j∈Λ

1
2

�

b1H
f ,b′
+ bU f ,b′

bG f ,b′; j

�

bU f ,b′

�†
�

(2.42a)

onto the 22N -dimensional gauge-invariant subspace

H∨b′ := bPf ,b′;G H f ,b′ ⊂H f ,b′ , (2.42b)

we find that the 2N triplets of projected operators

τ̂x ∨
j⋆ := bPf ,b′;G

h

bU f ,b′ τ̂
x
j⋆

�

bU f ,b′

�†i
bPf ,b′;G

= bPf ,b′;G τ̂
x
j⋆
bPf ,b′;G, (2.43a)

τ̂
y ∨
j⋆ := bPf ,b′;G

h

bU f ,b′ iβ̂ j+1 τ̂
y
j⋆ α̂ j

�

bU f ,b′

�†i
bPf ,b′;G

= bPf ,b′;G τ̂
y
j⋆
bPf ,b′;G, (2.43b)

τ̂z∨
j⋆ := bPf ,b′;G

h

bU f ,b′ iβ̂ j+1 τ̂
z
j⋆ α̂ j

�

bU f ,b′

�†i
bPf ,b′;G

= bPf ,b′;G τ̂
z
j⋆
bPf ,b′;G, (2.43c)

realize the same Pauli algebra and obey the same twisted boundary conditions as the 2N
triplets τ̂ j⋆ on the dual lattice. We also find that the projection to H∨b′ of the bond algebra
B f ,b′ is the bond algebra

Bb′ := bPf ,b′;G

h

bU f ,b′B f ,b′

�

bU f ,b′

�†i
bPf ,b′;G

=
D

τ̂x ∨
j⋆−1 τ̂

x ∨
j⋆ , τ̂z∨

j⋆

�

�

� j⋆ ∈ Λ⋆
E

, (2.44a)

which is symmetric with respect to a Z2 symmetry generated by

bU ∨rz
π

:=
∏

j⋆∈Λ⋆
τ̂z∨

j⋆ (2.44b)

of the global rotation by π about the z axis in internal spin-1/2 space attached to the dual
lattice Λ⋆. We have recovered Eq. (2.16) starting from the bond algebra B f instead of the
bond algebra Bb. The duality from B f to Bb′ is summarized in Tables 3 and 4.
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Table 3: Operator dualities for the triality between the bond algebras B f defined
in Eq. (2.37), Bb′ defined in Eq. (2.44), and Bb defined in Eq. (2.52). Any two
operators from the same column form a dual pair.

Symbol for bond algebra Generator Generator Symmetry group generated by

B f iβ̂ j α̂ j iβ̂ j+1 α̂ j
bPF =

∏

j∈Λ

�

iβ̂ j α̂ j

�

Bb′ τ̂x ∨
j⋆−1 τ̂

x ∨
j⋆ τ̂z∨

j⋆
bU ∨rz
π
=
∏

j⋆∈Λ⋆
τ̂z∨

j⋆

Bb σ̂z∨
j⋆ σ̂x ∨

j⋆ σ̂
x ∨
j⋆+1

bU ∨rz
π
=
∏

j⋆∈Λ⋆
σ̂z∨

j⋆

2.4.2 Unit-cell non-preserving gauging of fermion parity

Next, we trade the bond algebra B f defined in Eq. (2.35) by the minimally coupled bond
algebra

B f ,b :=
D

iβ̂ j σ̂
z
j⋆ α̂ j , iβ̂ j+1 α̂ j

�

�

� j ∈ Λ
E

(2.45a)

with the tensor product
H f ,b :=H f ⊗Hb (2.45b)

as domain of definition [here, Hb is defined as in Eq. (2.3d) except for the substitution of
Λ by Λ⋆]. This extended bond algebra is invariant under conjugation by any one of the 2N
pairwise-commuting Gauss operators

bG f ,b; j := σ̂x
j⋆+1

�

iβ̂ j+1 α̂ j

�

σ̂x
j⋆ = bG f ,b; j+2N , j ∈ Λ. (2.46)

We call the Gauss operator (2.46) unit-cell non-preserving, for the local transformation it im-
plements on the Majorana operators only acts non-trivially on two consecutive sites of the
direct lattice Λ. We observe that the Gauss operator (2.46) can be obtained from the Gauss
operator (2.38) by translating only the β̂ j operators by one unit-cell. As we shall see, such
a “half”-translation of the bond algebra (2.35) will deliver the KW dual of the bosonic bond
algebra (2.44). One verifies that

∏

j∈Λ

bG f ,b; j =
∏

j∈Λ
σ̂x

j⋆+1

�

iβ̂ j+1 α̂ j

�

σ̂x
j⋆ = (−1)b

∏

j∈Λ

�

iβ̂ j α̂ j+1

�

≡ (−1)b+ f +1
bPF. (2.47)

In words, the product of all local Gauss operators equals the global fermion parity up to a sign
fixed by the twisted boundary conditions f , b = 0,1.

We define the unitary transformation of the Hilbert space (2.45b) through

bU f ,b :=
∏

j∈Λ

bU f ,b; j , bU f ,b; j :=
�

σ̂x
j⋆

�
bP −f ,b; j = bP +f ,b; j + σ̂

x
j⋆
bP −f ,b; j , (2.48a)

with the 2N pairwise-commuting projectors

bP ±j :=
1± iβ̂ j α̂ j

2
= bP ±j+2N . (2.48b)
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For any j = 1, · · · , 2N , there follows the transformation laws

bU f ,b σ̂
x
j⋆

�

bU f ,b

�†
= σ̂x

j⋆ , bU f ,b σ̂
z
j⋆

�

bU f ,b

�†
= iβ̂ j σ̂

z
j⋆ α̂ j , (2.49a)

bU f ,b β̂ j

�

bU f ,b

�†
= β̂ j σ̂

x
j⋆ , bU f ,b α̂ j

�

bU f ,b

�†
= α̂ j σ̂

x
j⋆ , (2.49b)

for the operators on the lattices Λ and Λ⋆ together with the image

bU f ,b
bG f ,b; j

�

bU f ,b

�†
= iβ̂ j+1 α̂ j (2.49c)

of the local Gauss operator. Thus, if we define the projector

bPf ,b;G :=
∏

j∈Λ

1
2

h

b1H f ,b
+ bU f ,b

bG f ,b; j

�

bU f ,b

�†i

(2.50a)

onto the 22N -dimensional gauge-invariant subspace

H∨b := bPf ,b;G H f ,b ⊂H f ,b, (2.50b)

we find that the 2N triplets of projected operators

σ̂x ∨
j⋆ := bPf ,b;G

h

bU f ,b σ̂
x
j⋆

�

bU f ,b

�†i
bPf ,b;G

= bPf ,b;G σ̂
x
j⋆
bPf ,b;G, (2.51a)

σ̂
y ∨
j⋆ := bPf ,b;G

h

bU f ,b iβ̂ j σ̂
y
j⋆ α̂ j

�

bU f ,b

�†i
bPf ,b;G

= bPf ,b;G σ̂
y
j⋆
bPf ,b;G, (2.51b)

σ̂z∨
j⋆ := bPf ,b;G

h

bU f ,b iβ̂ j σ̂
z
j⋆ α̂ j

�

bU f ,b

�†i
bPf ,b;G

= bPf ,b;G σ̂
z
j⋆
bPf ,b;G, (2.51c)

realize the same Pauli algebra and obey the same twisted boundary conditions as the 2N
triplets σ̂ j⋆ on the dual lattice. We also find that the projection to H∨b of the bond algebra B f ,b
is the bond algebra

Bb := bPf ,b;G

h

bU f ,b B f ,b

�

bU f ,b

�†i
bPf ,b;G

=
D

σ̂z∨
j⋆ , σ̂x ∨

j⋆ σ̂
x ∨
j⋆+1

�

�

� j⋆ ∈ Λ⋆
E

(2.52a)

with the generator
bU ∨rz
π

:=
∏

j⋆∈Λ⋆
σ̂z∨

j⋆ (2.52b)

of the global rotation byπ about the z axis in internal spin-1/2 space attached to the dual lattice
Λ⋆. We have recovered Eq. (2.4) starting from the bond algebra B f (up to the substitution
Λ→ Λ⋆). The duality from B f to Bb is summarized in Tables 3 and 4.

Demanding the triality of the three bond algebras B f , Bb′ , and Bb that are defined in
Eqs. (2.35a), (2.44a), and (2.52a), respectively, puts a constraint on the possible boundary
conditions specified by the triplet (b, b′, f ) of twisted boundary conditions. Indeed, this tri-
ality implies that one may start from any one of these bond algebras located at the vertices in
Fig. 1 and execute two successive dualities in such a way that the two remaining vertices from
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Table 4: Compatibility conditions for the triality between the bond algebras B f de-
fined in Eq. (2.37), Bb′ defined in Eq. (2.44), and Bb defined in Eq. (2.52). The

Hilbert space on which the bond algebra B f is defined is H f
∼= C22N

with f = 0, 1
selecting the twisted boundary conditions. The Hilbert space on which the bond al-
gebra Bb′ is defined is H∨b′ ∼= C

22N
with b′ = 0, 1 selecting the twisted boundary

conditions. The Hilbert space on which the bond algebra Bb is defined is H∨b ∼= C
22N

with b = 0,1 selecting the twisted boundary conditions. Choosing two out of the
triplet ( f , b′, b) determines the third according to the rule f = b+ b′+1 mod 2. Tri-
ality is defined by the fact that duality holds between any two bond algebras B f , Bb′ ,

and Bb provided their domain of definitions are restricted to H
f ; (−1)b+ f +1

∼= C22N−1
,

H∨b′; (−1)b
∼= C22N−1

, and H∨
b; (−1)b′

∼= C22N−1
, respectively.

( f , b′, b) H
f ; (−1)b+ f +1 H∨b′; (−1)b H∨

b; (−1)b′

(0, 1,0) 1
2

�

b1H f
− bPF

�

H f
1
2

�

b1H∨
b′
+ bU∨rz

π

�

H∨b′
1
2

�

b1H∨b
− bU∨rz

π

�

H∨b

(0, 0,1) 1
2

�

b1H f
+ bPF

�

H f
1
2

�

b1H∨
b′
− bU∨rz

π

�

H∨b′
1
2

�

b1H∨b
+ bU∨rz

π

�

H∨b

(1, 0,0) 1
2

�

b1H f
+ bPF

�

H f
1
2

�

b1H∨
b′
+ bU∨rz

π

�

H∨b′
1
2

�

b1H∨b
+ bU∨rz

π

�

H∨b

(1, 1,1) 1
2

�

b1H f
− bPF

�

H f
1
2

�

b1H∨
b′
− bU∨rz

π

�

H∨b′
1
2

�

b1H∨b
− bU∨rz

π

�

H∨b

Fig. 1 are visited. The duality between the bond algebras B f and Bb′ holds on the restricted
subspaces

H
f ;(−1)b′

←→H∨
b′;(−1) f +b′+1 , (2.53a)

while the duality between the bond algebras B f and Bb holds on the restricted subspaces

H f ;(−1)b+ f +1 ←→H∨b;(−1)b+ f +1 . (2.53b)

Let us choose the corresponding subspaces of H f in Eqs. (2.53a) and (2.53b) to be identical.
We then find that the triality of all three bond algebras holds when

H∨
b′;(−1) f +b′+1 ←→H

f ;(−1)b′
≡H f ;(−1)b+ f +1 ←→H∨b;(−1) f +b+1 , (2.54a)

which implies the relation

f = b+ b′ + 1 mod 2. (2.54b)

The duality betweenH∨
b′;(−1) f +b′+1 andH∨

b;(−1) f +b+1 follows since one can first dualize the former

to obtain H
f ;(−1)b′

and then dualize H
f ;(−1)b+ f +1 to obtain H∨

b;(−1) f +b+1 if the condition (2.54b)
holds.

3 LSM anomalies and triality

In Sec. 2, we have established dualities between any two of the three bond algebras Bb, Bb′ ,
and B f . What is common to all three bond algebras is the presence of a cyclic symmetry group
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of order two, namely Zz
2, Zz∨

2 , and ZF
2, respectively. Any Hamiltonian ÒHb that is an element of

the bond algebra Bb has a Zz
2 symmetry generated by bUrz

π
. It follows that its duals ÒH∨b′ and

ÒH∨f obtained by KW and JW dualities, respectively, are symmetric under the dual symmetries

Zz∨
2 and ZF

2, respectively. The question that we address in this section is the fate of additional
crystalline and internal symmetries of such a Hamiltonian ÒHb under the dualities described
in Sec. 2. In particular, we show how the presence of an LSM anomaly manifests itself in the
dual bond algebras Bb′ and B f .

3.1 Symmetry structure with an LSM anomaly

We consider the bond algebra Bb with b = 0 9 and impose two independent crystalline sym-
metries of the lattice Λ, namely translation and (site-centered) reflection

bUt σ̂ j
bU†

t = σ̂t( j), t( j) := j + 1 mod 2N ,

bUr σ̂ j
bU†

r = σ̂r( j), r( j) := 2N − j mod 2N ,
(3.1a)

implemented by the unitary operators

bUt :=
2N−1
∏

j=1

1
2

�

b1Hb=0
+ σ̂ j · σ̂t( j)

�

, bUr :=
N−1
∏

j=1

1
2

�

b1Hb=0
+ σ̂ j · σ̂r( j)

�

, (3.1b)

respectively. The product on the second term in Eq. (3.1b) has the upper bound N − 1 since
the reflection has two fixed points N and 2N in Λ. The pair of operators bUt and bUr generates
a 22N -dimensional representation of the space group

Gspa := Zt
2N ⋊Z

r
2 (3.2a)

with

Zt
2N ≡

¦

t, t2, · · · , t2N−1, t2N ≡ e
©

, Zr
2 ≡

¦

r, r2 ≡ e
©

, r t = t2N−1 r. (3.2b)

Next, we impose the global internal symmetries implemented by the unitary operators

bUr x
π

:=
2N
∏

j=1

σ̂x
j , bU

r y
π

:=
2N
∏

j=1

σ̂
y
j , bUrz

π
:= (−1)N bUr x

π

bU
r y
π
=

2N
∏

j=1

σ̂z
j . (3.3)

The pair of operators bUr x
π

and bU
r y
π

generates a 22N -dimensional representation of the global
internal symmetry group

Gint ≡ Z
x
2 ×Z

y
2 (3.4a)

with
Zx

2 ≡
¦

r x
π, (r x

π)
2 ≡ e

©

, Zy
2 ≡

¦

r y
π , (r y

π)
2 ≡ e

©

. (3.4b)

Note that the Zz
2 symmetry of the bond algebra (2.4) corresponds to the diagonal element

in the group Zx
2 × Z

y
2 , i.e., rz

π = r x
π r y
π . Importantly, the total symmetry group has the direct

product structure
Gtot ≡ Gspa ×Gint. (3.5)

While the global representation of the Zx
2 ×Z

y
2 group in Eq. (3.3) is a group homomorphism,

it is locally projective due to the Pauli algebra

σ̂x
j σ̂

y
j = −σ̂

y
j σ̂

x
j , σ̂

y
j σ̂

z
j = −σ̂

z
j σ̂

y
j , σ̂z

j σ̂
x
j = −σ̂

x
j σ̂

z
j , (3.6)

9 This choice ensures that the total symmetry group is a direct product of crystalline and internal symmetries.
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for any j ∈ Λ. Therefore, it follows that the presence of the Gtot symmetry constrains the phase
diagram of any symmetric Hamiltonian owing to the (generalized) Lieb-Schultz-Mattis (LSM)
Theorems. We are going to invoke two LSM Theorems [1,26,31] that apply to one-dimensional
spin chains with translation and reflection symmetries, respectively. Importantly, the proofs
of these two theorems make use of the fact that the total symmetry group (3.5) is a direct
product of the crystalline space group with the internal group. This is another motivation for
choosing b = 0. In what follows, |Λ| denotes the cardinality (2N) of the set Λ.

Theorem 1 (Translation LSM). Consider a one-dimensional lattice Hamiltonian with the sym-
metry group Gtot ≡ Zt

|Λ| ×Z
x
2 ×Z

y
2 , where the subgroup Zt

|Λ| generates lattice translations and

the subgroup Zx
2 ×Z

y
2 generates internal discrete spin-rotation symmetry. If the unit cell with

respect to the translation symmetry Zt
|Λ| hosts a half-integer spin representation of Zx

2 × Z
y
2 ,

then the ground states cannot be simultaneously gapped, non-degenerate, and Gtot-symmetric.

Definition 1 (Translation LSM anomaly). When Theorem 1 holds, we say that there is a trans-
lation LSM anomaly.

Theorem 2 (Reflection LSM). Consider a one-dimensional lattice Hamiltonian with the sym-
metry group Gtot ≡ Zr

2 × Z
x
2 × Z

y
2 , where the subgroup Zr

2 generates site-centered reflection
and the subgroup Zx

2×Z
y
2 generates internal discrete spin-rotation symmetry. If each reflection

center hosts a half-integer spin representation of Zx
2 × Z

y
2 , then the ground states cannot be

simultaneously gapped, non-degenerate, and Gtot-symmetric.

Definition 2 (Reflection LSM anomaly). When the reflection LSM Theorem 2 holds, we say
that there is a reflection LSM anomaly.

Remark (LSM anomaly versus mixed ’t Hooft anomaly). The translation LSM and reflection
LSM Theorems (anomalies) have been interpreted as the presence of a mixed ’t Hooft anomaly
between crystalline symmetry groups, either Zt

2N or Zr
2, and internal symmetry group Zx

2 ×Z
y
2

[15,17,23,28,39]. Accordingly, one cannot gauge the full internal symmetry group Gint, while
maintaining the space group Gspa. However, a non-anomalous subgroup Hint ⊂ Gint can still
be consistently gauged.

In what follows, we will show that under the KW and JW dualities introduced in Secs. 2.2
and 2.3, respectively, the direct product structure of Gtot is altered through a mixing of crys-
talline and internal symmetries. As both dualities correspond to gauging the non-anomalous
diagonal subgroup Zz

2 ⊂ Z
x
2 × Z

y
2 , our main result can be interpreted as the incompatibility

between gauge-invariant representations of elements in the subgroup (Zx
2 ×Z

y
2 )/Z

z
2 and crys-

talline symmetries Zt
2N and Zr

2 under the KW or JW dualities. We conjecture that an analogue
of this result holds for general space groups Gspa and internal symmetry groups Gint if an LSM
anomaly is present. In Sec. 5, we confirm that this conjecture is true for the generalization to
Gint = Zn ×Zn and Hint = Zn.

3.2 Kramers-Wannier dual of the LSM anomaly

We are going to construct the dual total symmetry group G∨tot under the KW duality introduced
in Sec. 2.2. To this end, we define the action of the crystalline and internal symmetries on the
extended Hilbert space Hb,b′ defined in Eq. (2.8b) and then project these symmetries onto the
dual Hilbert space H∨b′ . For simplicity, we set b′ = 0.

The extension of the crystalline symmetries (3.1) on the Hilbert space Hb,b′ are obtained
by demanding the covariance of the Gauss operators (2.9a) under translation and reflection.
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We thus define the unitary operators

bUext
t :=





2N−1
∏

j=1

1
2

�

b1H
b=0, b′=0

+ σ̂ j · σ̂t( j)

�









2N−1
∏

j=1

1
2

�

b1H
b=0, b′=0

+ τ̂ j⋆ · τ̂t( j⋆)

�



 , (3.7a)

bUext
r :=





N−1
∏

j=1

1
2

�

b1H
b=0, b′=0

+ σ̂ j · σ̂r( j)

�









N
∏

j=1

1
2

�

b1H
b=0, b′=0

+ τ̂ j⋆ · τ̂r( j⋆)

�



 , (3.7b)

that implement the transformation rules (3.1) for the σ̂ operators on lattice Λ, and the trans-
formation rules

bUext
t τ̂ j⋆

�

bUext
t

�†
= τ̂t( j⋆), t( j⋆) := j⋆ + 1 mod 2N , (3.7c)

bUext
r τ̂ j⋆

�

bUext
r

�†
= τ̂r( j⋆), r( j⋆) := 2N − j⋆ mod 2N , (3.7d)

for the τ̂ operators on the dual lattice Λ⋆. Transformation rules (3.7c) and (3.7d) corre-
spond to two independent crystalline symmetries of the dual lattice Λ⋆, namely translation
and (link-centered) reflection symmetries. As promised, the operators bUext

t and bUext
r are not

gauge invariant but transform the local Gauss operators (2.9) according to the covariant rules

bUext
t
bG j

�

bUext
t

�†
= bGt( j), (3.8a)

bUext
r
bG j

�

bUext
r

�†
= bGr( j), (3.8b)

respectively, for any j ∈ Λ. After the projection to the dual Hilbert space H∨b′=0, the counter-
parts to the translation (3.7a) and reflection (3.7b) are implemented by the unitary operators

bU∨t :=
2N−1
∏

j=1

1
2

�

b1H∨
b′=0
+ τ̂∨j⋆ · τ̂

∨
t( j⋆)

�

, (3.9a)

bU ∨r :=
N
∏

j=1

1
2

�

b1H∨
b′=0
+ τ̂∨j⋆ · τ̂

∨
r( j⋆)

�

, (3.9b)

respectively. The product on the right-hand side of Eq. (3.9b) has the upper bound N since
the reflection has no fixed points in Λ⋆. The pair of operators bU ∨t and bU ∨r generates a 22N -
dimensional representation of the space group Gspa through the semi-direct product

G∨spa := Zt
2N ⋊Z

r
2 (3.10a)

with
Zt

2N ≡
¦

t, t2, · · · , t2N−1, t2N ≡ e
©

, Zr
2 ≡

¦

r, r2 ≡ e
©

. (3.10b)

We note that the dual space group G∨spa is isomorphic to the space group Gspa defined in Eq.
(3.2). However, the action of the dual reflection symmetry (3.9b) differs from that of reflection
symmetry (3.1b) in the sense that it acts as a link-centered reflection on the dual lattice Λ⋆

and does not admit any fixed points on Λ⋆.
The duals of the internal symmetries (3.3) are constructed by using the isomorphism be-

tween the bond algebras (2.4) and (2.16) 10. However, the corresponding local representations
10 The fact that internal symmetries are tensor products over all sites of some local symmetry is crucial to

validate the use of the dual bond algebra. For example, applying the isomorphism between the bond algebras
(2.4) and (2.16) on the generators of the crystalline symmetries produces operators that are gauge invariant, i.e.,
they commute with the local Gauss operators. This is quite different from Eq. (3.8), according to which the local
Gauss operators transform non-trivially but in a covariant manner under conjugation by bUext

t and bUext
r .
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σ̂x
j and σ̂ y

j do not belong to the bond algebra (2.4). In other words, they are not invariant

under the global symmetry bUrz
π
. Therefore, when extending to the Hilbert space Hb=0, b′=0,

the operators bUr x
π

and bU
r y
π

must be minimally coupled by the appropriate insertions of τ̂z
j⋆ op-

erators. We focus on the operator bUr x
π

as the case of bU
r y
π

is treated analogously. We can extend

the action of bUr x
π

to the Hilbert space Hb=0, b′=0 either according to the definition

bUext
r x
π

:=
N
∏

j=1

σ̂x
2 j−1 τ̂

z
(2 j−1)⋆ σ̂

x
2 j , (3.11a)

where τ̂z
(2 j)⋆−1 are inserted only on odd sites of the dual latticeΛ⋆, or according to the definition

bUext
r x
π

:=
N
∏

j=1

σ̂x
2 j τ̂

z
(2 j)⋆ σ̂

x
2 j+1, (3.11b)

where τ̂z
(2 j)⋆−1 are inserted only on even sites of the dual latticeΛ⋆. Crucially, neither definition

(3.11a) nor definition (3.11b) are invariant under translation (3.7a) or reflection (3.7b), i.e.,
the extended operator bUext

r x
π

is not invariant under the action of translation by one unit cell or
by reflection. This incompatibility is rooted in the non-trivial local projective representation
(3.6). Equivalently, this is a result of the two LSM Theorems 1 and 2 with translation and
reflection symmetries, respectively.

By projecting onto the Hilbert space Hb′=0 operators (3.11a) and (3.11b) 11, we identify
the following dual internal symmetries

bU ∨o =
N
∏

j=1

τ̂z∨
2 j−1+ 1

2
, bU ∨e =

N
∏

j=1

τ̂z∨
2 j+ 1

2
, bU ∨rz

π
= bU ∨o bU ∨e =

2N
∏

j=1

τ̂z∨
j+ 1

2
. (3.12)

Note that the product of bU ∨o and bU ∨e delivers the dual symmetry of the bond algebra Bb′=0
defined in Eq. (2.17). The pair of operators bU ∨o and bU ∨e generates a 22N -dimensional repre-
sentation of the symmetry group Gint through the direct product

G∨int ≡ Z
o
2 ×Z

e
2 (3.13a)

with
Zo

2 ≡
¦

ro, (ro)
2 ≡ e

©

, Ze
2 ≡

¦

re, (re)
2 ≡ e

©

. (3.13b)

Unlike the case in Sec. 3.1 with the space group Gspa, the action of G∨spa on G∨int is now
non-trivial as it is given by the composition rules

bU∨t bU
∨
o

�

bU ∨t
�†
= bU ∨e , bU∨t bU

∨
e

�

bU ∨t
�†
= bU ∨o , (3.14a)

and

bU∨r bU
∨
o

�

bU ∨r
�†
= bU ∨e , bU∨r bU

∨
e

�

bU ∨r
�†
= bU ∨o . (3.14b)

In other words, the dual symmetry group

G∨tot ≡ G∨spa ⋉G∨int (3.15)

11 Operators bU ∨o and bU ∨e also follow from similarly dualizing bU
r y
π
. Only τ̂z∨

j enters in the products making up

bU ∨e and bU ∨o in Eq. (3.12). Hence, these dual generators of the internal symmetries are not realized projectively
locally.
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of the Hamiltonian ÒH ∨b′=0 in the bond algebra (2.16) with b′ = 0 that is dual to the Hamiltonian
ÒHb=0 in the bond algebra (2.4) with b = 0 is a semi-direct product of crystalline symmetries
G∨spa and internal symmetries G∨int.

One observes that the two LSM Theorems 1 and 2 do not apply to the dual symmetry group
G∨tot. This is because the local representation of G∨int is not projective (see footnote 11) unlike
that of Gint. We further note that while being isomorphic to Gspa the dual crystalline symmetry
group G∨spa is such that

1. the “natural” unit cell on which the internal symmetry group G∨int acts onsite is associated

with the generator
�

bU∨t
�2

of translations, i.e., it is twice that of the unit cell associated
with the generator bU∨t of translations 12,

2. the operator bU∨r acts as a link-centered reflection on lattice Λ⋆ such that there are no
invariant unit cells.

Both properties can be interpreted as a trivialization of mixed anomalies between internal and
spatial symmetries under the gauging of a subgroup of the internal symmetries.

There is another useful reinterpretation of the dual internal symmetries whose generators
are defined in Eq. (3.12). First, we have the identity

bU∨rz
π
=: eiπ bQ∨ , bQ∨ :=

∑

j⋆∈Λ⋆
bQ∨j⋆ ,

�

bQ∨i⋆ , bQ
∨
j⋆

�

= 0, ∀i⋆, j⋆ ∈ Λ⋆, (3.16)

where the local Hermitean operator bQ∨j⋆ has the Z2-valued local charge eigenvalue q j⋆ = 0,1.
Second, we have the identity

bU∨o = (−i)2N eiπ bD∨ = bU∨t bU
∨
e

�

bU ∨t
�†

, bD∨ :=
∑

j⋆∈Λ⋆
bQ∨j⋆ j⋆. (3.17)

The symmetry generator bU∨o can thus be thought of as the exponential of the conserved global
Z2-dipole operator bD∨ associated to the conserved global Z2-charge operator bQ∨. The punch-
line is now the following. Gauging the Z2 charge symmetry generated by bU∨rz

π
induces a du-

ality between Hamiltonians invariant under both Z2-dipole and translation (or link-centered
reflection) symmetries 13 that are free from LSM anomalies and Hamiltonians invariant under
Zx

2 ×Z
y
2 internal and translation (or site-centered reflection) symmetries with LSM anomalies.

In other words, spatially modulated symmetries, such as a dipole symmetry, can be mapped
to a global uniform symmetry at the cost of introducing an LSM anomaly.

In anticipation of the discussion of the phase diagram of the quantum spin-1/2 X Y Z chain
in Sec. 4, we close this discussion by focusing on the reflection symmetry subgroup Zr

2 of G∨spa.
As a consequence of the underlying LSM anomaly, the Abelian group

Zr
2 ×Z

x
2 ×Z

y
2 (3.18a)

formed by the subgroup of reflection symmetry Zr
2 together with the group of internal sym-

metries Gint ≡ Z
x
2 ×Z

y
2 is mapped to the non-Abelian dihedral group of order eight

D8 :=
¦

r, r2 ≡ e
©

⋉
n

e, ro, re, ro re

�

�

�

�

ro

�2 ≡
�

re

�2 ≡ e, ro re = re ro

o

=
n

e, a, a2, a3, r, r a, r a2, r a3
�

�

� a ≡ r ro, a4 ≡ r2 ≡ e, r a r = a3
o

,
(3.18b)

after gauging the diagonal subgroup Zz
2 ⊂ Z

x
2 ×Z

y
2 by KW duality.

12 The factor of two here is directly related to the fact that the local non-trivial projective representation (3.6)
becomes a trivial representation on doubled unit cells.

13The presence of both translation (or link-centered reflection) and dipole symmetries imply the presence of a
charge symmetry.
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3.3 Jordan-Wigner dual of the LSM anomaly

We are going to construct the dual total symmetry group G∨, F
tot under the JW duality introduced

in Sec. 2.3. To this end, we define the action of the crystalline and internal symmetries on the
extended Hilbert space Hb, f defined in Eq. (2.23b) and then project these symmetries onto
the dual Hilbert space H∨f . We keep the boundary condition f unspecified for the time being.

The extension of the crystalline symmetries (3.1) on the Hilbert space Hb, f are obtained
by demanding the covariance of the Gauss operators (2.24a) under translation and reflection.
We thus define the unitary operators

bU ∨t, f :=
�

iβ̂1 α̂1

� f
2N−1
∏

j=1

i
2

��

β̂∨j − β̂
∨
t( j)

��

α̂∨j − α̂
∨
t( j)

��

, (3.19a)

bU ∨r, f :=
�

iβ̂2N α̂2N

� f
2N
∏

j=1

1
p

2

�

b1H∨f
+ β̂∨r( j) α̂

∨
j

�

, (3.19b)

where the global fermion parity bP ∨F takes the form (2.31b). For any j ∈ Λ, conjugation of α̂∨j
and β̂∨j by bU ∨t, f and bU ∨r, f implement the maps

α̂∨j 7→ (−1) f δ j,2N α̂∨t( j), β̂∨j 7→ (−1) f δ j,2N β̂∨t( j), (3.20a)

α̂∨j 7→ +(−1) f δ j,2N β̂∨r( j), β̂∨j 7→ −(−1) f δ j,2N α̂∨r( j), (3.20b)

respectively.
We note that, unlike the dual spin operators τ̂ j⋆ defined on the dual lattice Λ⋆ in Sec. 3.2,

the Majorana operators are defined on the direct lattice Λ. This is due to the fact that we
applied an isomorphism implementing an additional half lattice translation in the process of
JW duality [see Eq. (2.30)]. Due to this nuance, the reflection symmetry acts differently on the
Majorana degrees of freedom than it did on the spins from Sec. 3.2, since none of the sites of
Λ⋆ are invariant under reflection, while the sites j = N , 2 N ∈ Λ are left fixed under reflection.
Furthermore, in the fermionic case, reflection is not an order two operation. Instead, one
verifies that

�

bU ∨r, f

�2
= −bP ∨F . (3.21a)

Similarly, translation is not an order 2N operator if f = 1, instead

�

bU ∨t, f

�2N
=
�

bP ∨F
� f

. (3.21b)

This leads to a mixing of crystalline symmetries with the fermion parity. We denote the crys-
talline group obtained after JW duality as G∨, F

spa . This group is obtained by the central extension
of G∨spa defined in Eq. (3.10) by fermion parity ZF

2 specified by the short exact sequence

0→ ZF
2→ G∨, F

spa → G∨spa→ 0 , (3.22)

with the extension class [γ f ] ∈ H2(G∨spa,ZF
2) and the extension map

γ f (r, r) := pF , γ f (t
a , t b) =

�

pF

� f ⌊(a+b)/2N⌋
, γ f (r , t) =

�

pF

� f
, (3.23)

where pF was defined in Eq. (2.22c) and ⌊·⌋ is the lower floor function. All other maps can be
derived using these relations and the cocycle condition for γ f . Having defined the crystalline
symmetries, we now turn to the internal symmetries.
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After the JW duality, the internal symmetry operators are obtained by dualizing bUr x
π

and
bU

r y
π

in Eq. (3.3). More precisely, under the JW duality 14

bUr x
π
=

N
∏

j=1

σ̂x
2 j−1 σ̂

x
2 j 7−→ bU ∨o :=

N
∏

j=1

�

iα̂∨2 j−1 β̂
∨
2 j

�

, (3.24a)

bU
r y
π
=

N
∏

j=1

σ̂
y
2 j−1 σ̂

y
2 j 7−→ bU ∨e :=

N
∏

j=1

�

iβ̂∨2 j−1 α̂
∨
2 j

�

. (3.24b)

The pair bU ∨o and bU ∨e of dual internal symmetry operators compose to the fermion parity op-
erator,

bU ∨o bU ∨e = bP
∨

F . (3.24c)

The pair of operators bU ∨o and bU ∨e generates a 22N -dimensional representation of the internal
symmetry group

G∨, F
int ≡ Z

o
2 ×Z

e
2 , (3.25a)

with
Zo

2 ≡
¦

ro, (ro)
2 ≡ e

©

, Ze
2 ≡

¦

re, (re)
2 ≡ e

©

. (3.25b)

The generators (3.19) of the dual crystalline symmetries act on the operators bU ∨o and bU ∨e
according to the composition rules

bU∨t bU
∨
o

�

bU ∨t
�†
= (−1) f +1

bU ∨e , bU∨r bU
∨
o

�

bU ∨r
�†
= (−1) f +1

bU ∨e ,

bU∨t bU
∨
e

�

bU ∨t
�†
= (−1) f +1

bU ∨o , bU∨r bU
∨
e

�

bU ∨r
�†
= (−1) f +1

bU ∨o ,

bU∨t bP
∨

F

�

bU ∨t
�†
= bP ∨F , bU∨r bP

∨
F

�

bU ∨r
�†
= bP ∨F .

(3.26)

The total symmetry group G∨, F
tot is obtained by taking the semi-direct product of G∨, F

spa and G∨, F
int

together with coseting by the fermion parity group ZF
2 defined in Eq. (2.22c), i.e.,

G∨, F
tot =

�

G∨, F
spa ⋉G∨, F

int

� À

ZF
2. (3.27a)

Here, the semi-direct product G∨, F
spa ⋉G∨, F

int is specified by the action

t ro t−1 = re , r ror−1 = re ,

t re t−1 = ro , r rer−1 = r0 ,

t pF t−1 = pF , r pFr−1 = pF.

(3.27b)

of dual crystalline symmetry group G∨, F
spa on the dual internal symmetry group G∨, F

int . We empha-

size that the structure of G∨, F
tot is different from G∨tot in Eq. (3.15) obtained via the KW duality.

More precisely, under the JW duality the resulting dual total symmetry group G∨, F
tot is assem-

bled from the crystalline G∨, F
spa and internal G∨, F

int symmetry groups using a nontrivial central
extension in addition to the semi-direct product structure. In contrast, the dual of Gtot under
the KW duality described in Sec. 3.2 is a semi-direct product of the crystalline and internal
symmetry groups. Having set b = b′ = 0, in Secs. 3.1 and 3.2, triality of the bond algebras
enforces f = 1 as prescribed in Eq. (2.54). Finally, we observe that the two LSM Theorems 1
and 2 do not apply to the dual symmetry group G∨, F

tot . This is because the local representation

14 We obtain the operator bU ∨o from dualizing bUr x
π

and multiplying with (−1)N . This multiplicative factor simplifies
the algebra.
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of G∨, F
int is not projective, unlike that of Gint. As was the case with the KW dual G∨int generated by

the operators in Eq. (3.12), the trivialization of mixed anomalies between internal and spatial
symmetries under the JW gauging of a subgroup of the internal symmetries can be attributed
to a doubling of the natural unit cell for the JW dual internal symmetries.

It is possible to reinterpret the dual symmetries that are defined in Eq. (3.24) as Z2-charge
and Z2-dipole symmetries, respectively. To see this, we employ a “half”-translation

α̂∨j 7→ β̂
∨
j+1, β̂∨j 7→ α̂

∨
j , (3.28)

after which the operators bU∨o and bU∨e act on only even and only odd sites, respectively. If so,
the dual internal symmetries satisfy

bP ∨F =: eiπ bQ∨ , bQ∨ :=
∑

j⋆∈Λ⋆
bQ∨j⋆ ,

�

bQ∨i⋆ , bQ
∨
j⋆

�

= 0, (3.29a)

bU ∨o = eiπ bD∨ = (−1) f +1
bU ∨t bU ∨e

�

bU ∨t
�†

, bD∨ :=
∑

j⋆∈Λ⋆
bQ∨j⋆ j⋆. (3.29b)

where the local Hermitean operator bQ∨j⋆ has the Z2-valued local charge eigenvalue q j⋆ = 0,1,

for any i⋆, j⋆ ∈ Λ⋆. As was in Sec. 3.2, the symmetry generator bU ∨o can thus be thought of as a
fermion dipole parity operator. As we have discussed in Sec. 2.4, there are two ways of gauging
fermion parity symmetry. These result in either (i) Hamiltonians with Zx

2 × Z
y
2 internal and

translation (or site-centered reflection) symmetries with LSM anomalies, or (ii) Z2-charge,
Z2-dipole, and translation (or link-centered reflection) symmetries. Notice that both dual
Hamiltonians are bosonic, however, the former is invariant under global uniform symmetries
with LSM anomalies while the latter is invariant under spatially modulated symmetries.

4 Triality and the phase diagram of the quantum spin-1/2 X Y Z
chain

We apply the triality derived in Secs. 2 and 3 to the study of the zero-temperature phase
diagram of the quantum spin-1/2 X Y Z chain. This model is dualized to a spin-1/2 cluster
model and a model of interacting Majorana degrees of freedom under the KW and JW dualities,
respectively. The triality allows to give three equivalent interpretations of the zero-temperature
phase diagram with an emphasis on the symmetry structure of the bond algebras Bb, Bb′ , and
B f , respectively.

4.1 Quantum spin-1/2 X Y Z chain

Consider the quantum spin-1/2 antiferromagnetic chain with nearest- and next-nearest-neighbor
antiferromagnetic couplings with periodic boundary conditions described by the Hamiltonian

ÒHb=0 := J1

∑

j∈Λ

�

∆x σ̂
x
j σ̂

x
j+1 +∆y σ̂

y
j σ̂

y
j+1 +∆z σ̂

z
j σ̂

z
j+1

�

+ J2

∑

j∈Λ

�

∆x σ̂
x
j σ̂

x
j+2 +∆y σ̂

y
j σ̂

y
j+2 +∆z σ̂

z
j σ̂

z
j+2

�

,
(4.1)

with the domain of definition Hb=0 defined in Eq. (2.3). Both the dimensionful couplings J1
and J2 together with the dimensionless couplings ∆x , ∆y , and ∆z are taken to be real-valued
and non-negative. For convenience, we set the cardinality of the lattice to be

|Λ| ≡ 2N = 0 mod 4, (4.2)
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Majumdar-Ghosh line

0≤ tanh(∆)≤ 1

0
≤

ta
nh
(J
)≤

1

Figure 2: Exactly soluble points in the phase diagram of Hamiltonian (4.1) in the re-
duced coupling space (4.3). The small squares at the lower left and right corners of
the phase diagram each realize the antiferromagnetic nearest-neighbor Ising chain.
The large squares at the upper left and right corners of the phase diagram each realize
two identical and decoupled antiferromagnetic nearest-neighbor Ising chains. The
ground states are long-range ordered, gapped, and two-fold (four-fold) degenerate
for the lower (upper) corners. The line (∆, J = 0) realizes non-interacting fermions
without fermion-number conservation, except when ∆ = 1. The small circle at
(∆= 1, J = 0) realizes non-interacting spinless fermions at half filling with a nearest-
neighbor uniform hopping amplitude. The ground state is gapless with a quantum
criticality encoded by a c = 1 conformal field theory in (1 + 1)-dimensional space-
time in the thermodynamic limit. The large circle at (∆ = 1, J =∞) realizes two
decoupled chains of non-interacting spinless fermions at half filling with a nearest-
neighbor uniform hopping amplitude. The ground state is gapless with a quantum
criticality behavior encoded by a c = 2 conformal field theory in (1+1)-dimensional
spacetime in the thermodynamic limit. The diamonds at (∆, J) = (0, 1/2), (∞, 1/2)
are first-order boundaries between the phases governed by the Ising fixed points
(small and large squares) at ∆ = 0 and ∆ =∞, respectively. The open Majumdar-
Ghosh (dashed) line at (∆, 1/2) with 0 < ∆ <∞ realizes the dimer phase. The
dimer ground states are gapped and two-fold degenerate along the Majumdar-Ghosh
(dashed) line.

i.e., N is an even integer. The symmetries of ÒHb=0 that we shall keep track of are given in Sec.
3.1. We choose to work with periodic boundary conditions for the same reasons as in Sec.
3.1, i.e., for b = 0, the total relevant symmetry group Gtot is a direct product of a crystalline
symmetry group Gspa and of an internal symmetry group Gint. Accordingly, the spectrum of
ÒHb=0 is constrained by LSM Theorems 1 and 2. Either one of Theorems 1 and 2 requires that
any gapped phase in the parameter space of the model either breaks spontaneously the global
internal symmetry Gint or the crystalline symmetry Gspa, or it is infinitely degenerate in the
thermodynamic limit [87–89, 137, 138]. The question that will be answered in Sec. 4 is that
of the fate of Theorems 1 and 2 under the triality of Secs. 2 and 3. To this end, we shall
reinterpret the zero-temperature phase diagram of ÒHb=0 after it has undergone a KW and JW
dualization to the Hamiltonians ÒH ∨b′ and ÒH ∨f , respectively.

We define the ratios

J :=
J2

J1

, ∆ :=
∆y

∆x
, (4.3a)
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and consider, for simplicity, the reduced parameter space 15

0≤∆≤∞, ∆z = 0, 0≤ J ≤∞. (4.3b)

The energy eigenvalues and eigenvectors of Hamiltonian (4.1) are known in closed forms at
the four corners

(∆, J) = (0, 0), (∆, J) = (∞, 0), (∆, J) = (0,∞), (∆, J) = (∞,∞), (4.4a)

and the pair of points [1]

(∆, J) = (1,0), (∆, J) = (1,∞). (4.4b)

The gapped ground states are also known in closed form along the so-called Majumdar-Ghosh
(MG) line [139–142]

0≤∆≤∞, J =
1
2

. (4.4c)

The nature of the ground states of the Hamiltonian (4.1) at all these points in the reduced
coupling space (4.3) is summarized in Fig. 2. The ground states at the four corners (4.4a) and
along the open MG line 0 < ∆ <∞, J = 1/2 are gapped and degenerate. Even though the
exact degeneracies for any finite cardinality 2N = |Λ| are lifted by small perturbations away
from the four corners or away from the open MG line, these degeneracies are restored in the
thermodynamic limit 2N →∞.

Below the MG line (4.4c), there are three gapped phases [121,143], each of which sponta-
neously breaks Gtot in the thermodynamic limit through the spontaneous selection of a ground
state from two-fold degenerate ground states. The Neelx phase is adiabatically connected to
the fixed-point limit at the lower left corner (∆, J) = (0, 0) and spontaneously breaks transla-
tion symmetry by one lattice spacing and the rotation symmetry about the y-axis in spin-1/2
space. Similarly, the Neely phase is adiabatically connected to the fixed-point limit at the
lower right corner (∆, J) = (∞, 0) and spontaneously breaks translation symmetry and rota-
tion symmetry about the x-axis in spin-1/2 space. The dimer phase is adiabatically connected
to the MG line and spontaneously breaks the symmetries under translation by one lattice spac-
ing and the site-centered reflection, while preserving the internal symmetries. This pattern
of spontaneous symmetry breaking precludes a continuous phase transition governed by the
reduction of a symmetry in one direction across the transition between any two of these three
phases that would follow the Landau-Ginzburg paradigm of phase transitions. Nevertheless,
the boundaries between any two of these three gapped phases when 0<∆<∞ realize con-
tinuous quantum phase transitions. In fact, they are examples of deconfined quantum critical
transitions [121, 144]. A deconfined quantum critical transition is driven by the deconfine-
ment of point defects in one phase that nucleate locally the local order of the phase on the
other side of the transition [114–117]. The two end points

(∆, J) = (0, 1/2), (∆, J) = (∞, 1/2) (4.4d)

of the MG line are gapped with a degeneracy proportional to the cardinality 2N = |Λ|. Each
becomes the phase boundary in the antiferromagnetic Ising chain with competing nearest-
and next-nearest-neighbor interactions at which a first-order phase transition takes place in

15 The full coupling space, if expressed in terms of dimensionless couplings only, is
(∆x ,∆y ,∆z , J) ∈ [0,∞[×[0,∞[×[0,∞[×[0,∞[. A detailed study of the corresponding zero-temperature
phase diagram for 0 ≤ J ≤ 1/2 can be found in Ref. [121]. Knowledge of the phase diagram for the
cut (∆x ,∆y , 0, J) ∈ [0,∞[×[0,∞[×[0,∞[ is equivalent to knowledge of the phase diagram for the cut
(∆x , 0,∆z , J) ∈ [0,∞[×[0,∞[×[0,∞[ through the application of a unitary SU(2)-rotation about the x axis in
spin-1/2 space.
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Figure 3: Phase diagram of Hamiltonian (4.1) in the reduced coupling space (4.3)
with 0 ≤ J ≤ 1/2. There are three phases: the Neelx , the Neely , and the dimer
phase. Each one of these three phases corresponds to gapped and two-fold degen-
erate ground states in the thermodynamic limit. In each phase, a non-degenerate
ground state is selected by spontaneous symmetry breaking of the symmetry group
Gtot defined in Eq. (3.5). The dimer phase is found on both sides of the open MG line
defined by 0<∆<∞ and J = 1/2. All the phase boundaries with 0<∆<∞ and
J < 1/2 are continuous quantum phase transitions that realize deconfined quantum
criticality [121]. The tricritical point (the large black circle) where the three phases
meet realizes the SU(2)1 conformal field theory in (1+ 1)-dimensional spacetime.

the thermodynamic limit [87–89,137,138]. The phase diagram of the Hamiltonian (4.1) has
been studied by numerical means both in the reduced coupling space (4.3) [145] as well as
without the restriction ∆z = 0 [121,146–149]. Below the MG line (4.4c), the phase diagram
deduced from numerical and analytical arguments is given in Fig. 3.

Since all three phases below the MG line break translation by one lattice spacing, they can
be distinguished by order parameters that break the symmetries in the subgroup

Zr
2 ×Z

x
2 ×Z

y
2 ⊂ Gtot (4.5)

defined in Eq. (3.5). In what follows, we will limit the discussion to this subgroup for simplicity.
We will discuss the duals of the ground states of each gapped phase and the duals of those
operators defined in Eq. (4.8), whose expectations values detect the long-range orders that
distinguish the gapped phases. At the two corners (∆, J) = (0, 0) and (∆, J) = (∞, 0) and
along the MG line (∆, J) = (∆, 1/2), the two-fold degenerate ground states are as follows.

1. At the lower left corner (∆, J) = (0,0), the two degenerate ground states are

|Neelx
o 〉 := | →,←,→,←, · · · 〉, |Neelx

e 〉 := | ←,→,←,→, · · · 〉, (4.6a)

where the kets | →〉 j and | ←〉 j denote the eigenstates of σ̂x
j with eigenvalues +1 and

−1, respectively.

2. At the lower right corner (∆, J) = (∞, 0), the two degenerate ground states are

|Neely
o 〉 := | ↗,↙,↗,↙, · · · 〉, |Neely

e 〉 := | ↙,↗,↙,↗, · · · 〉, (4.6b)

where the kets | ↗〉 j and | ↙〉 j denote the eigenstates of σ̂ y
j with eigenvalues +1 and

−1, respectively.
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3. Along the MG line (∆, J) = (∆, 1/2), the two degenerate ground states are

|Dimero〉 :=
N
⊗

j=1

|[2 j − 1,2 j]〉, |Dimere〉 :=
N
⊗

j=1

|[2 j, 2 j + 1]〉, (4.6c)

where |[ j, j + 1]〉 denotes the singlet state for two spins localized on consecutive sites j
and j + 1.

These ground states are distinguished by the non-vanishing expectations values of the order
parameters

bOo
Neelx :=

1
2N

2N
∑

j=1

(−1) j+1 σ̂x
j ,

bOo
Neely :=

1
2N

2N
∑

j=1

(−1) j+1 σ̂
y
j ,

bOdimer :=
1
N

2N
∑

j=1

(−1) j
1
3
σ̂ j · σ̂ j+1,

(4.7)

respectively. The order parameters for the Neelx and Neely phases are odd under bUrz
π

symme-
try, while the dimer order parameter is even. In other words, the order parameter for the two
Neel phases do not belong to the bond algebra (2.4) and do not have an image in the dual
bond algebras (2.16) and (2.31). For this reason, it is more convenient to define the operators

bC x
j, j+n := σ̂x

j σ̂
x
j+n, (4.8a)

bC y
j, j+n := σ̂ y

j σ̂
y
j+n, (4.8b)

bDj :=
1
3
σ̂ j · σ̂ j+1, (4.8c)

for any j ∈ Λ and any n = 1, · · · , |Λ| − 1, all of which are even under bUrz
π

symmetry. The first
two are bilocal operators, whose expectation values are the two-point correlation functions
detecting the magnetic ordering in x- and y-directions. The last one is the local operator,
whose staggered summation over the lattice is the order parameter of the dimer phase. The
expectation values of the order parameters (4.7) and operators (4.8) in the ground states (4.6)
are given in Table 5.

4.2 Kramers-Wannier dual D8-symmetric spin-1/2 cluster chain

We now study the Hamiltonian dual to the Hamiltonian (4.1) under the KW duality. As in
Sec. 3.2, we select periodic boundary conditions (b′ = 0) after the KW duality. Naive use of
the dual bond algebra (2.16) delivers the Hamiltonian

ÒH ∨b′=0 := J1

∑

j⋆∈Λ⋆

�

∆x τ̂
z∨
j⋆ −∆y

�

τ̂x ∨
j⋆−1 τ̂

z∨
j⋆ τ̂

x ∨
j⋆+1

�

+∆z

�

τ̂x ∨
j⋆−1 τ̂

x ∨
j⋆+1

��

+ J2

∑

j⋆∈Λ⋆

�

∆x τ̂
z∨
j⋆ τ̂

z∨
j⋆+1 +∆y

�

τ̂x ∨
j⋆−1 τ̂

z∨
j⋆ τ̂

x ∨
j⋆+1

��

τ̂x ∨
j⋆ τ̂

z∨
j⋆+1 τ̂

x ∨
j⋆+2

�

+∆z

�

τ̂x ∨
j⋆−1 τ̂

x ∨
j⋆+1

��

τ̂x ∨
j⋆ τ̂

x ∨
j⋆+2

��

,

(4.9)

with the domain of definition H∨b′=0 defined in Eq. (2.14b). However, Hamiltonians (4.1) and
(4.9) only form a dual pair if their domains of definition are restricted to the subspaces Hb=0;+
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Table 5: The expectation values of the order parameters (4.7) and operators (4.8)
in the ground states (4.6) of Hamiltonian (4.1). The states |Neelx〉+ and |Neely〉+

are defined in Eqs. (4.16) and (4.17), respectively.

bOo
Neelx bOo

Neely bOdimer
bC x

j, j+n
bC y

j, j+n
bDj

|Neelx
o 〉 +1 0 0 (−1)n 0 −1

3

|Neelx
e 〉 −1 0 0 (−1)n 0 −1

3

|Neelx〉+ 0 0 0 (−1)n 0 −1
3

|Neely
o 〉 0 +1 0 0 (−1)n −1

3

|Neely
e 〉 0 −1 0 0 (−1)n −1

3

|Neely〉+ 0 0 0 0 (−1)n −1
3

|Dimero〉 0 0 +1 −δ(−1) j ,−1δn,1 −δ(−1) j ,−1δn,1 −δ(−1) j ,−1

|Dimere〉 0 0 −1 −δ(−1) j ,+1δn,1 −δ(−1) j ,+1δn,1 −δ(−1) j ,+1

and H∨b′=0;+, respectively [recall Eq. (2.21)]. With this in mind, we will first study the phase
diagram of Hamiltonian (4.9) in the full Hilbert space H∨b′=0. We will then discuss the duality
of phases in the restricted Hilbert spaces Hb=0;+ and H∨b′=0;+. Without loss of generality, we
consider only the reduced coupling space (4.3) with J ≤ 1/2.

The symmetries of ÒH ∨b′=0 that we shall keep track of are given in Sec. 3.2. Because the
global internal symmetry subgroup G∨int ⊂ G∨tot is represented by a trivial projective repre-
sentation locally, the LSM Theorems 1 and 2 are inoperative. Hence, ÒH ∨b′=0 could exhibit a
non-degenerate gapped ground state in its phase diagram, a possibility that is indeed realized.
We restrict ourselves to the dual of subgroup (4.5), which is the dihedral group D8 defined in
Eq. (3.18b).

By inspection, the energy eigenvalues and eigenvectors of Hamiltonian (4.9) are known in
closed form at the four corners (4.4a). Along the left boundary∆= 0 of the reduced coupling
space (4.3), ÒH ∨b′=0 simplifies to the classical Ising model in a uniform longitudinal magnetic
field. The same is true of the right boundary ∆ = ∞, as the right boundary is unitarily
equivalent to the left boundary [135] 16. When J = 0, the Hamiltonian (4.9) is a linear
combination of two of the spin-1/2 cluster Hamiltonians that were introduced by Suzuki in
1971 [150], each of which is soluble in the sense that it is a sum of pairwise commuting local
Hermitian operators that all square to the identity 17. At the lower left corner (∆, J) = (0,0),
the ground state is the trivial paramagnet

|PM〉 := | ↓, · · · ,↓〉, τ̂z∨
j⋆ | ↓, · · · ,↓〉= −| ↓, · · · ,↓〉, j⋆ ∈ Λ⋆, (4.11)

which is a singlet under the D8 symmetry. The lower right corner (∆, J) = (∞, 0) also cor-
responds to a non-degenerate, gapped, and D8-symmetric ground state |SPT〉 that is defined
implicitly by the eigenvalue equation

τ̂x ∨
j⋆−1 τ̂

z∨
j⋆ τ̂

x ∨
j⋆+1 |SPT〉= +|SPT〉, j⋆ ∈ Λ⋆. (4.12)

The ground state |SPT〉 defines a symmetry-protected topological (SPT) phase on a closed
space manifold (owing to the periodic boundary conditions). This SPT phase is protected by

16 It is precisely this duality that was used in Refs. [87–89] to solve the antiferromagnetic Ising open chain with
nearest- and next-nearest-neighbor couplings.

17 Similarly, the upper corners
(∆, J) = (0,∞), (∆, J) = (∞,∞) (4.10)

in the reduced coupling space (4.3) are exactly solvable and are gapped with two-fold degenerate ground states.
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Figure 4: Phase diagram of Hamiltonian (4.9) with the Hilbert spaceH∨b′=0 as domain
of definition. The red boundaries realize a continuous quantum phase transition that
separate two phases, one of which descends from the other through spontaneous
symmetry breaking by which a symmetry-breaking local order parameter acquires
a non-vanishing expectation value in the symmetry-broken phase, i.e., the Landau-
Ginzburg paradigm of phase transitions. The blue boundary realizes a continuous
topological quantum phase transition between two phases that are distinguished by
a non-local order parameter. These phases are adiabatically connected to the ground
states (4.11) and (4.12) for ∆< 1 and ∆> 1, respectively.

the global internal symmetry Zo
2 × Z

e
2 in the sense that it cannot be adiabatically deformed

to the trivial paramagnetic state |PM〉 without a gap-closing phase transition or the breaking
(spontaneous or explicit) of the Zo

2 ×Z
e
2 symmetry.

We emphasize that the correct KW dualization of the Hamiltonian (4.1) under open bound-
ary conditions is not the Hamiltonian (4.9) under open boundary conditions. With open
boundary conditions, one must modify the definition of the local Gauss operators at the two
ends of the chain when gauging the theory. This change is responsible for the presence of ad-
ditional terms that break the protecting Zo

2×Z
e
2 symmetry at the boundaries. These additional

terms lift the two-fold degeneracy of the SPT ground state of the counterpart to Hamiltonian
(4.9) corresponding to open boundary conditions. The KW dualization with open boundaries
is explained in Appendix B.

The dual ground states can also be obtained in closed analytical form along the J = 1/2
line in the parameter space of the Hamiltonian (4.9). This is done by dualizing the projectors
onto the MG ground states of the Hamiltonian (4.1) along the MG line (4.4c), as is detailed in
Appendix A. One finds that the ground states of Hamiltonian ÒH ∨b′=0 are gapped and four-fold
degenerate along the open MG line. This is confirmed by performing an exact diagonalization
study of the eigenvalue spectrum of ÒH ∨b′=0. These four ground states are (see Appendix A)

|1〉= | ↓,→,↓,←,↓,→,↓,←, · · · 〉, (4.13a)

|2〉= | ↓,←,↓,→,↓,←,↓,→, · · · 〉, (4.13b)

|3〉= | →,↓,←,↓,→,↓,←,↓, · · · 〉, (4.13c)

|4〉= | ←,↓,→,↓,←,↓,→,↓, · · · 〉, (4.13d)

where we chose the basis for which | →〉 j (| ↑〉 j) is the eigenstate with eigenvalue +1 of τ̂x ∨
j⋆

(τ̂z∨
j⋆ ). These four-fold degenerate ground states spontaneously break the dihedral group D8
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Figure 5: The phase diagram of Hamiltonian (4.1) restricted to the subspace Hb=0;+
of the Hilbert space Hb=0 is dual to the phase diagram of Hamiltonian (4.9) restricted
to the subspace H∨b′=0;+ of the Hilbert space H∨b′=0. The pair of dual subspaces are
to be found in the first line of Table 1. The two states |Neelx〉+ and |Neely〉+ are
defined in Eqs. (4.16) and (4.17), while dimer doublet refers to the ground states
(4.6c). On the dual side, the paramagnetic states |PM〉, and |SPT〉 state are defined
in Eqs. (4.11) and (4.12), respectively. By D+8 doublet, we refer to the states |Dimer∨o 〉
and |Dimer∨e 〉, both of which are in the subspace H∨b′=0;+ and defined in Eq. (4.18).

The symbols* and) denote gauging the diagonal subgroups generated by bUrz
π

and

by its dual bU∨rz
π
, respectively.

down to a Z2 subgroup since

bU∨e bU
∨
rz
π
|1〉= |2〉, bU∨r |2〉= |3〉, bU∨rz

π
|3〉= bU∨r |1〉= |4〉, (4.14a)

bU∨o |1〉= |1〉, bU∨o |2〉= |2〉, bU∨e |3〉= |3〉, bU∨e |4〉= |4〉, (4.14b)

i.e., the states |1〉 and |2〉 are invariant only under the Z2 subgroup generated by bU∨o while
the states |3〉 and |4〉 are invariant only under the Z2 subgroup generated by bU∨e . The phase
diagram of Hamiltonian (4.9) on the full Hilbert space H∨b′=0 is shown in Fig. 4. The phase
boundaries in Fig. 3 carry over to Fig. 4 owing to the duality. As opposed to the deconfined
quantum critical lines in Fig. 3, the phase diagram in Fig. 4 features (i) a topological transition
(blue line) between the two D8-singlet states that are adiabatically connected to states (4.11)
and (4.12), respectively, and (ii) two conventional symmetry breaking transitions (red lines)
between a doublet of states that break completely the symmetry group D8 and the D8-singlet
states that are adiabatically connected to states (4.11) and (4.12), respectively.

The KW duality implies that the expectation value of any operator from the bond algebra
(2.4) restricted to the Hilbert space Hb=0;+ has the same expectation value as its dual in the
bond algebra (2.16) restricted to the Hilbert space H∨b′=0;+. Under the isomorphism between
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the bond algebras (2.4) and (2.16), operators (4.8) dualize to

bC x ∨
j⋆, j⋆+n−1 :=

j⋆+n−1
∏

ℓ= j⋆
τ̂z∨
ℓ⋆ , (4.15a)

bC y ∨
j⋆, j⋆+n−1 := τ̂x ∨

j⋆−1 τ̂
x ∨
j⋆

 

j⋆+n−1
∏

ℓ= j⋆
τ̂z∨
ℓ⋆

!

τ̂x ∨
j⋆+n−1 τ̂

x ∨
j⋆+n, (4.15b)

bD∨j⋆ :=
1
3

�

τ̂z∨
j⋆ − τ̂

x ∨
j⋆−1 τ̂

z∨
j⋆ τ̂

x ∨
j⋆+1 + τ̂

x ∨
j⋆−1 τ̂

x ∨
j⋆+1

�

, (4.15c)

for any j⋆ ∈ Λ⋆ and any n= 1, · · · , |Λ|−1. We observe that operators bC x
j, j+n and bC y

j, j+n defined
in Eqs. (4.8a) and (4.8b), respectively, dualize to non-local string operators, while the local
operator bDj defined in Eq. (4.8c) remains local after dualization.

At the lower left corner (∆, J) = (0, 0) of the phase diagram, only the bonding linear
combination of the two Neel states

|Neelx〉+ :=
1
p

2

�

|Neelx
o 〉+ |Neelx

e 〉
�

, bUrz
π
|Neelx〉+ = +|Neelx〉+, (4.16)

belongs to the subspace Hb=0;+. Under the KW duality, this state is mapped to the paramag-
netic ground state |PM〉 ∈ H∨b′=0;+ defined in Eq. (4.11). The expectation values of the dual
operators (4.15) in the ground state |PM〉 are given in Table 6. The non-vanishing expecta-
tion value of the bilocal operator bC x

j, j+n translates to the non-vanishing expectation value of

the string operator bC x ∨
j⋆, j⋆+n−1 for any j⋆ and n. This is the so-called disorder operator, whose

non-vanishing expectation value detects the disordered paramagnetic phase [93].
At the lower right corner (∆, J) = (∞, 0), only the bonding linear combination of the two

Neel states

|Neely〉+ :=
1
p

2

�

|Neely
o 〉+ |Neely

e 〉
�

, bUrz
π
|Neely〉+ = +|Neely〉+, (4.17)

belongs to the subspace Hb=0;+. Under the KW duality, this state is mapped to the SPT ground
state with periodic boundary conditions |SPT〉 ∈ H∨b′=0;+ defined in Eq. (4.12). The expecta-
tion values of the dual operators (4.15) in the ground state |SPT〉 are given in Table 6. The
non-vanishing expectation value of the bilocal operator bC y

j, j+n translates to the non-vanishing

expectation value of the string operator bC y ∨
j⋆, j⋆+n−1 operator for any j⋆ and n. The string opera-

tor bC y ∨
j⋆, j⋆+n−1 is invariant under the dual internal symmetries bU∨o and bU∨e defined in Eq. (3.12),

owing to the presence of τ̂x ∨
j⋆−1 τ̂

x ∨
j⋆ and τ̂x ∨

j⋆+n−1 τ̂
x ∨
j⋆+n to the left and to right of the string of

(4.15a), respectively, on the right-hand side of Eq. (4.15b). The operator bC y ∨
j⋆, j⋆+n−1 is the so-

called string order parameter that detects the SPT ground state [118,151,152], while having
vanishing expectation value in the trivial ground state (4.11).

Finally, along the MG line (∆, J = 1/2), both dimer ground states (4.6c) belong to the
subspace Hb=0;+. However, out of the four ground states (4.13) of Hamiltonian (4.9), only
the two linear combinations

|Dimer∨o 〉 :=
1
p

2
(|1〉+ |2〉) , bU∨rz

π
|Dimer∨0 〉= +|Dimer∨o 〉, (4.18a)

|Dimer∨e 〉 :=
1
p

2
(|3〉+ |4〉) , bU∨rz

π
|Dimer∨e 〉= +|Dimer∨e 〉, (4.18b)

belong to the subspace H∨b′=0;+. These two states are dual to the dimer states (4.6c), respec-
tively. We refer to this twofold degenerate ground state manifold as the D+8 doublet. The
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Table 6: The expectation values the operators (4.15) in the dual ground states (4.11),
(4.12), and (4.18).

bC x ∨
j⋆, j⋆+n−1

bC y ∨
j⋆, j⋆+n−1

bD∨j⋆

|PM〉 (−1)n 0 −1
3

|SPT〉 0 (−1)n −1
3

|Dimer∨o 〉 −δ(−1) j ,−1δn,1 −δ(−1) j ,−1δn,1 −δ(−1) j ,−1

|Dimer∨e 〉 −δ(−1) j ,+1δn,1 −δ(−1) j ,+1δn,1 −δ(−1) j ,+1

ground states (4.18) break the reflection symmetry spontaneously, while they are both sin-
glets under the internal symmetry group Zo

2×Z
e
2. The expectation values of the dual operators

(4.15) in these ground states are given in Table 6. The phase diagrams of Hamiltonians (4.1)
and (4.9) in the restricted subspaces Hb=0;+ and H∨b′=0;+ are compared in Fig. 5.

4.3 Jordan-Wigner dual interacting Majorana chain

We now study the Hamiltonian dual to the Hamiltonian (4.1) under the JW duality. As in
Sec. 3.3, we select anti-periodic boundary conditions ( f = 1) after the JW duality. Naive use
of the dual bond algebra (2.52a) delivers the Hamiltonian

ÒH ∨f=1 := J1

∑

j∈Λ

�

∆x iβ̂∨j+1 α̂
∨
j +∆y iβ̂∨j α̂

∨
j+1 +∆z β̂

∨
j β̂
∨
j+1 α̂

∨
j α̂
∨
j+1

�

+ J2

2N
∑

j=1

�

∆x β̂
∨
j+1 β̂

∨
j+2 α̂

∨
j α̂
∨
j+1 +∆y α̂

∨
j+1 α̂

∨
j+2 β̂

∨
j β̂
∨
j+1 +∆z β̂

∨
j β̂
∨
j+2 α̂

∨
j α̂
∨
j+2

�

,

(4.19)

with the domain of definition H∨f=1 defined in Eq. (2.22). However, Hamiltonians (4.1) and
(4.19) only form a dual pair if their domains of definition are restricted to the subspacesHb=0;+
and H∨f=1;+, respectively [recall Eq. (2.34)]. With this in mind, we will first study the phase
diagram of Hamiltonian (4.19) in the full Hilbert space H∨f=1. We will then discuss the duality
of phases in the restricted Hilbert spaces Hb=0;+ and H∨f=1;+. Without loss of generality, we
consider only the reduced coupling space (4.3) with J ≤ 1/2.

The symmetries of ÒH ∨f=1 that we shall keep track of are given in Sec. 3.3. Because the

global internal symmetry subgroup G∨, F
int ⊂ G∨, F

tot is represented by a trivial projective repre-
sentation locally, the LSM Theorems 1 and 2 are inoperative. Hence, ÒH ∨f=1 could exhibit a
non-degenerate gapped ground state in its phase diagram, a possibility that is indeed realized.
We restrict ourselves to the dual of the subgroup (4.5), which is the subgroup

ZFr
4 ⋉Z

o
2 ×Z

e
2/Z

F
2 ⊂ G∨, F

tot , (4.20a)

where
ZFr

4 :=
�

r, r2 = pF, r3, r4 = e
	

. (4.20b)

By inspection, Hamiltonian (4.19) is quadratic along the (∆, J) = (∆, 0) line. At either
one of the two lower corners (∆, J) = (0, 0) or (∆, J) = (∞, 0), ÒH ∨f=1 simplifies to a Kitaev
chain [153]. We denote the ground states at the points (∆, J) = (0, 0) and (∆, J) = (∞, 0) by
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Table 7: The expectation values the operators (4.15) in the dual ground states (4.11),
(4.12), and (4.18).

bC x ∨
j, j+n

bC y ∨
j, j+n

bD∨j
|Kitaev〉 (−1)n 0 −1

3

|Kitaev〉 0 (−1)n −1
3

|Bonding∨o 〉 −δ(−1) j ,−1δn,1 −δ(−1) j ,−1δn,1 −δ(−1) j ,−1

|Bonding∨e 〉 −δ(−1) j ,+1δn,1 −δ(−1) j ,+1δn,1 −δ(−1) j ,+1

|Kitaev〉 and |Kitaev〉, respectively, such that 18

iβ̂∨1 α̂
∨
2N |Kitaev〉= +|Kitaev〉, iβ̂∨j+1 α̂

∨
j |Kitaev〉= −|Kitaev〉, j = 1, · · · , 2N − 1, (4.21a)

iβ̂∨2N α̂
∨
1 |Kitaev〉= +|Kitaev〉, iβ̂∨j α̂

∨
j+1 |Kitaev〉= −|Kitaev〉, j = 1, · · · , 2N − 1. (4.21b)

These two ground states are both symmetric under the subgroup (4.20). They are the ground
states of two distinct and non-trivial invertible fermionic phases of matter 19. When appropri-
ate open boundary conditions are imposed, the counterpart to Hamiltonian ÒH f=1 has two-fold
degenerate ground states. This degeneracy arises owing to the existence of two Majorana zero
modes, one of which is localized a the left end while the other is localized at the right end, of
the open chain. At the point (∆, J) = (1,0), ÒH ∨f=1 simplifies to free spinless fermions hopping

with a uniform nearest-neighbor hopping amplitude along the chain 20.
By dualization of the projectors onto the MG ground states of Hamiltonian (4.1) along the

MG line (4.4c), it is shown in Appendix A that the ground states of Hamiltonian ÒH ∨f=1 are
two-fold degenerate along the open MG line. We can always choose an orthonormal basis of
ground states such that the basis elements are the dual to the dimer states (4.6c). This dual
basis is given by

|Bonding∨o 〉 :=





N
∏

j=1

1
p

2

�

ĉ∨†
2 j−1 + ĉ∨†

2 j

�



 |0〉,

|Bonding∨e 〉 :=





N
∏

j=1

1
p

2

�

ĉ∨†
2 j + ĉ∨†

2 j+1

�



 |0〉,

(4.22a)

where the complex fermion operators are defined as

ĉ∨†
j :=

1
2
(α̂∨j − iβ̂∨j ), ĉ∨j :=

1
2
(α̂∨j + iβ̂∨j ). (4.22b)

These states spontaneously break the reflection symmetry while preserving the internal Zo
2×Z

e
2

symmetry.
The JW duality implies that the expectation value of any operator from the bond algebra

(2.4) restricted to the Hilbert space Hb=0;+ has the same expectation value as its dual in the

18 Terms iβ̂∨2N+1 α̂
∨
2N = −iβ̂∨1 α̂

∨
2N and iβ̂∨2N α̂

∨
2N+1 = −iβ̂∨2N α̂

∨
1 come with an additional minus sign because of the

anti-periodic boundary conditions ( f = 1).
19 In fact, they are inverse of each other under the fermionic stacking operation [154–156].
20 The upper corners (∆, J) = (0,∞) and (∆, J) = (∞,∞) are gapped and two-fold degenerate nder antiperi-

odic boundary conditions as a consequence of the dualization from Sec. 2.4.1. The image under J → 1/J of the
point (∆, J) = (1, 0), is gapless, as a consequence of the dualization from Sec. 2.4.1.
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|Neelx〉+ |Neely〉+

Dimer doublet

0≤ tanh(∆)≤ 1

0
≤

J
≤

1/
2

Majumdar-Ghosh line

⇋

|Kitaev〉 |Kitaev〉

BDO

0≤ tanh(∆)≤ 1

0
≤

J
≤

1/
2

Majumdar-Ghosh line

Figure 6: The phase diagram of Hamiltonian (4.1) restricted to the subspace Hb=0;+
of the Hilbert space Hb=0 is dual to the phase diagram of Hamiltonian (4.19) re-
stricted to the subspace H∨f=1;+ of H∨f=1. The pair of dual subspaces are to be found
in the third line of Table 2. The two states |Neelx〉+ and |Neely〉+ are defined in Eqs.
(4.16) and (4.17), respectively, while the box “Dimer doublet” refers to the ground
states (4.6c). On the dual side, the two non-trivial and distinct invertible topologi-
cal states |Kitaev〉 and |Kitaev〉 are defined in Eq. (4.21). The box “BDO” stands for
the bond-density ordered phase described by the two-fold degenerate ground states
(4.22) along the MG line. The symbols * and ) denote gauging the diagonal sub-
groups generated by bUrz

π
and by its dual bP∨F defined in Eq. (3.21a), respectively.

bond algebra (2.31) restricted to the Hilbert space H∨f=1;+. Under the isomorphism between
the bond algebras (2.4) and (2.31), operators (4.8) dualize to

bC x ∨
j, j+n :=

j+n−1
∏

ℓ= j

iβ̂∨ℓ+1 α̂
∨
ℓ (4.23a)

bC y ∨
j, j+n :=

j+n−1
∏

ℓ= j

iβ̂∨ℓ α̂
∨
ℓ+1, (4.23b)

bD∨j :=
1
3

�

iβ̂∨j+1 α̂
∨
j + iβ̂∨j α̂

∨
j+1 + β̂

∨
j β̂
∨
j+1 α̂

∨
j α̂
∨
j+1

�

. (4.23c)

As was the case in Sec. 4.2, we observe that operators bC x
j, j+n and bC y

j, j+n defined in Eqs. (4.8a)

and (4.8b), respectively, dualize to non-local string operators, while the local operator bDj
defined in Eq. (4.23c) remains local after dualization.

Under the JW duality, the bonding linear combinations |Neelx〉+ defined in Eq. (4.16)
and |Neely〉+ defined in Eq. (4.17) of Neelx and Neely states dualize to the two topologically

nontrivial ground states |Kitaev〉 and |Kitaev〉 defined in Eq. (4.21), respectively. These states
can be distinguished by the expectation values of the string order parameters bC x ∨

j, j+n and bC y ∨
j, j+n.

As opposed to the KW duality, the Hamiltonian (4.19) that obeys open boundary conditions
is equivalent, up to a unitary transformation, to the dual of the Hamiltonian (4.1) that obeys
open boundary conditions. It is shown in Appendix B that selecting open boundary conditions
removes the consistency conditions on the bond algebra that require the projections of the
Hilbert spaces Hb=0 and H∨f=1 onto their subspaces Hb=0,+ and H∨f=1,+ for duality to hold. The
two-fold degeneracy of the Neelx and Neely ground states dualizes to the two-fold degeneracy
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of the non-trivial invertible topological phases with open boundary conditions. Finally, along
the MG line, the two-fold degenerate dimer ground states (4.6c) of Hamiltonian (4.1) dualize
to the two-fold degenerate bond-density order ground states (4.22) of Hamiltonian (4.19).
The expectations values of the operators (4.23) in the ground states of Hamiltonian (4.19) are
given in Table 7.

The phase diagrams below the MG line of Hamiltonians (4.1) and (4.19) defined on their
domain of definitions Hb=0;+ and H∨f=1;+, respectively, are compared in Fig. 6. Whereas the
vertical phase boundary at ∆= 1 remains a line of quantum critical points (blue line) outside
of the Landau-Ginzburg paradigm, the boundaries separating the two topologically nontriv-
ial singlet phases from the bond-density ordered phase are ordinary Landau-Ginzburg phase
transitions (red lines).

5 Quantum Zn clock models with n mod 2 LSM anomalies

We are going to generalize the spin-1/2 chains with global Z2 symmetry that we have studied
in Secs. 2–4 to clock models with global Zn symmetry whereby n = 2, 3, · · · . Our aim is to
establish how, as a consequence of an LSM anomaly, the crystalline and internal symmetries
become intertwined under dualities obtained by gauging the global Zn symmetry. We are going
to show that the non-trivial mixing of the crystalline and internal symmetries is sensitive to
the parity of n= 2,3, · · · .

5.1 A generalized LSM anomaly

Consider a one-dimensional lattice Λ of cardinality 2Nn with the integers N = 1, 2, · · · and
n = 2,3, · · · . To each site j of the lattice, we assign an n-dimensional complex Hilbert space
Cn on which we may represent the clock operator bZ j and the shift operator bX j obeying the
algebra

bX i
bZ j =

�

ωn

�δi, j
bZ j bX i ,

�

bX j

�n
=
�

bZ j

�n
= b1Hb

, ωn := ei 2π
n , i, j ∈ Λ, (5.1a)

by n-dimensional complex-valued unitary matrices 21. As we will impose the global internal
symmetry Zz

n that is generated by the unitary operator

bUz :=
∏

j∈Λ

bZ j , (5.1b)

we impose the twisted boundary conditions

bX j+2Nn =
�

bUz

�b
bX j

�

bUz

�−b
=
�

ωn

�b
bX j , bZ j+2Nn =

�

bUz

�b
bZ j

�

bUz

�−b
= bZ j , (5.1c)

for any b ∈ Zn on the Hilbert space

Hb :=
⊗

j∈Λ
Cn . (5.1d)

We define the bond algebra

Bb :=
D

bZ j , bX j

�

bX j+1

�−1
�

�

� j ∈ Λ
E

, (5.2a)

21 The shift operator bX j and clock operator bZ j are unitary for any j ∈ Λ, i.e.,
�

bX j

�−1
=
�

bX j

�†
and

�

bZ j

�−1
=
�

bZ j

�†
.
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of operators that are symmetric under the Zz
n symmetry generated by Eq. (5.1b). We decom-

pose the Hilbert space into definite eigenvalue sectors of bUz

Hb =
n−1
⊕

α=0

Hb;α, Hb;α := bPb;αHb, α= 0, · · · , n− 1, (5.3)

where bPb;α is the projector to the subspace with definite eigenvalue
�

ωn

�α
of bUz .

In addition to the global internal Zz
n symmetry of the bond algebra (5.2), we presume

additional crystalline and internal symmetries. To accommodate translation symmetry in a
simple way, we select periodic boundary conditions by choosing b = 0. First, we shall impose
two crystalline symmetries, namely, translations and site-centered reflection of lattice Λ which
are implemented by the unitary operators

bUt
bX j
bU†

t = bX t( j), bUt
bZ j
bU†

t = bZt( j), t( j) = j + 1 mod 2Nn, (5.4a)

bUr
bX j
bU†

r = bX r( j), bUr
bZ j
bU†

r = bZr( j), r( j) = 2Nn− j mod 2Nn, (5.4b)

respectively. Choosing the lattice Λ to be made of an even number of sites ensures that site-
centered reflection exists for any n and has the two fixed points j = Nn and j = 2Nn. The
operators bUt and bUr generate the representation of the space group

Gspa ≡ Z
t
2Nn ⋊Z

r
2. (5.4c)

Next, we impose an additional global internal symmetry Zx
n that is implemented by the unitary

operator

bUx :=
∏

j∈Λ

bX j , (5.5a)

i.e., the product of all local shift operators. Together, bUx and bUz generate a global representa-
tion of the Abelian group Zx

n ×Z
z
n. Thus, the total symmetry group is the direct product

Gtot ≡ Gspa ×Gint, Gint ≡ Z
x
n ×Z

z
n. (5.5b)

While the global representation of Gint is a group homomorphism, it is locally projective due
to the algebra

bX j
bZ j =ωn

bZ j
bX j , j ∈ Λ. (5.6a)

More precisely, distinct projective representations of the group Zn × Zn are labeled by the
equivalence classes [ω] = 0, 1, · · · , n− 1 taking values in the second cohomology group

[ω] ∈ H2
�

Zn ×Zn, U(1)
�

= Zn. (5.6b)

The algebra (5.6a) is a representative of the generator [ω] = 1 of the cohomology group
(5.6b). Because of the projective algebra (5.6a), the following LSM Theorem with translation
symmetry applies.

Theorem 3 (Generalized translation LSM). Consider a one-dimensional lattice Hamiltonian
with the symmetry group Gtot ≡ Zt

|Λ| × Z
x
n × Z

y
n , where the subgroup Zt

|Λ| generates lattice

translations and the subgroup Zx
n × Z

y
n with n = 2,3, · · · generates global internal discrete

clock-rotation symmetry. Let [ω] ∈ H2
�

Zn × Zn, U(1)
�

= Z n denote the second cohomology
class associated with the local representation of Zx

n × Z
z
n at any site of Λ. If [ω] ̸= 0 mod n,

then the ground states cannot be simultaneously gapped, non-degenerate, and Gtot-symmetric.
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Definition 3 (Generalized translation LSM anomaly). When LSM Theorem 3 applies, we say
that there is a translation LSM anomaly.

Remark. Since LSM Theorem 3 holds for any integer n = 2,3, · · · , the dual of bUx is not trans-
lationally invariant for any value of n= 2, 3, · · · .

Unlike with Theorems 1–3, we are not aware of a rigorous proof of the Conjecture 4 that
follows (see Refs. [18,157]). Conjecture 4 is expected to hold based on the lattice homotopy
arguments introduced in Ref. [18] and crystalline equivalence principle introduced in Refs.
[28,55].

Conjecture 4 (Generalized reflection LSM). Consider a one-dimensional lattice Hamiltonian
with the symmetry group Gtot ≡ Zr

2 ×Z
x
n ×Z

z
n, where the subgroup Zr

2 is generated by a site-
centered reflection, while the subgroup Zx

n ×Z
y
n with n = 2, 3, · · · is generated by two global

internal discrete clock-rotation symmetries. Let [ω] ∈ H2
�

Zn × Zn, U(1)
�

= Z n denote the
second cohomology class associated with the local representation of Zx

n ×Z
z
n at any one of the

fixed points of the reflection. If [ω] ̸= 2k mod n for some integer k, then the ground states
cannot be simultaneously gapped, non-degenerate, and Gtot-symmetric.

Definition 4 (Reflection LSM anomaly). When Conjecture 4 applies, we say that there is a
reflection LSM anomaly.

Remark. Conjecture 4 reduces to Theorem 2 for n = 2 and [ω] = 1, which is the only non-
trivial projective representation realized by half-integer spins. Furthermore, when n is odd,
the condition [ω] = 2k mod n is always satisfied for some integer k. Hence, there is no
generalized reflection LSM anomaly when n is odd. For the algebra (5.6a), we have [ω] = 1
which implies that a non-degenerate, gapped, and Gtot-symmetric ground state is possible only
when n = 3, 5, · · · , while it is ruled out by Conjecture 4 when n = 2,4, · · · . In what follows,
we are going to confirm this claim by showing that the operator bUx cannot be dualized and
remain invariant under reflection when n is even, while it can be when n is odd.

5.2 Kramers-Wannier dual of the generalized LSM anomaly

Starting from the bond algebra Bb in Eq. (5.2a), we are going to perform a gauging of bUz . This
gauging furnishes a dual bond algebra, where the duality is nothing but a Zn generalization of
KW duality described in Sec. 2.2. We are then going to invoke an additional Zx

n symmetry that
is generated by bUx defined in Eq. (5.5a) and construct its dual bU∨x under the Zn generalization
of KW duality. Our main result will be that the action of reflection on bU∨x turns out to be
non-trivial (trivial) if n= 0 mod 2 (n= 1 mod2). This result is aligned with the LSM anomaly
conjecture 4.

In order to gauge bUz defined in Eq. (5.1c), we introduce Zn-valued gauge degrees of free-
dom on the dual lattice Λ⋆. To each site j⋆ of the dual lattice Λ⋆, we therefore associate an
n-dimensional Hilbert space. The operator algebra attached to j⋆ ∈ Λ⋆ is generated by the
clock operator bZ⋆j⋆ and the shift operator bX ⋆j⋆ that satisfy the same algebra (5.1a) except for
substituting Λ by Λ⋆. To gauge the global symmetry (5.1b), we define the unitary local Gauss
operator

bG j :=
�

bX ⋆j⋆−1

�−1
bZ j
bX ⋆j⋆ (5.7)

for any site j ∈ Λ. These local Gauss operators commute pairwise on distinct sites. By analogy
to Eq. (5.1c), the twisted boundary conditions

bX ⋆j⋆+2Nn =
�

ωn

�b′
bX ⋆j⋆ , bZ ⋆j⋆+2Nn = bZ

⋆
j⋆ , (5.8)
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are imposed for the Zn-valued gauge degrees of freedom. The extended Hilbert space in-
cluding the original (matter) and Zn-valued gauge degrees of freedom defined on Λ and Λ⋆,
respectively, admits the tensor decomposition

Hb,b′ :=Hb ⊗Hb′ , Hb :=
⊗

j∈Λ
Cn, Hb′ :=

⊗

j⋆∈Λ⋆
Cn. (5.9)

A generic gauge transformation

bZ j 7−→ bZ j , bX j 7−→ω
−λ j
n bX j ,

bX ⋆j⋆ 7−→ bX ⋆j⋆ , bZ⋆j⋆ 7−→ω
(λ j−λ j+1)
n bZ⋆j⋆ ,

(5.10)

is specified by the variables λ j ∈ Zn with j ∈ Λ and implemented by conjugation with the
unitary operator

bGλ :=
∏

j∈Λ

�

bG j

�λ j , λ :=
�

λ1, · · · ,λ2Nn

�

. (5.11)

By minimally coupling the bond algebra (5.2a), we obtain the extended bond algebra

Bb,b′ :=
D

bZ j , bX j
bZ⋆j⋆

�

bX j+1

�−1
�

�

� j ∈ Λ
E

(5.12)

of gauge-invariant operators. As was done in Sec. 2, there exists a unitary operator bUb,b′ that
implements the transformation [51]

bUb,b′
bX j
bU†

b,b′ = bX j , bUb,b′
bZ j
bU†

b,b′ = bX ⋆j⋆−1
bZ j

�

bX ⋆j⋆
�−1

,

bUb,b′
bX ⋆j⋆ bU

†
b,b′ = bX ⋆j⋆ , bUb,b′

bZ⋆j⋆ bU
†
b,b′ =

�

bX j

�−1
bZ⋆j⋆ bX j+1 ,

(5.13a)

for any j ∈ Λ and j⋆ ∈ Λ⋆. In particular, under this transformation, the local Gauss operator
(5.11) becomes

bUb,b′
bG j
bU†

b,b′ = bZ j (5.13b)

for any j ∈ Λ. The subspace of physical states is defined to be the one for which the action
of all local Gauss operators reduces to the identity. Hence, after the unitary transformation
(5.13), the subspace of physical states is defined to be the one for which the action of bZ j for

any j ∈ Λ reduces to the identity. It is the n2Nn-dimensional gauge-invariant subspace H∨b′ of
Hb,b′ . The projection of the bond algebra (5.12) to the subspace H∨b′ delivers the dual bond
algebra

Bb′ :=
D

bX ⋆∨j⋆−1

�

bX ⋆∨j⋆

�−1
, bZ⋆∨j⋆

�

�

� j⋆ ∈ Λ⋆
E

, (5.14a)

which is symmetric under the dual Zz∨
n -symmetry generated by the unitary operator

bU∨z∨ :=
∏

j⋆∈Λ⋆
bZ⋆∨j⋆ . (5.14b)

The projected Hilbert space H∨b′ is isomorphic to the Hilbert space (5.1d). It can be decom-
posed into subspaces with definite eigenvalue of bU∨zn

[as was done in Eq. (5.3)],

H∨b′ =
n−1
⊕

α=0

H∨b′;α, H∨b′;α := bP∨b′;αH
∨
b′ , α= 0, · · · , n− 1, (5.15)
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where bP∨b′;α is the projector to subspace with definite eigenvalue ωαn of bU∨rz∨
n

.
Consistency with the pair of twisted boundary conditions (5.1c) and (5.8) requires the

identification of the pair of operators
 

∏

j∈Λ

bZ j ≡ bUrz
n
,

�

ωn

�b′
b1H∨

b′

!

(5.16a)

on the one hand and the pair of operators
 

�

ωn

�b
b1Hb

,
∏

j⋆∈Λ⋆
bZ⋆∨j⋆ ≡ bU

∨
rz∨
n

!

(5.16b)

on the other hand. This pair of consistency conditions can only be met if the domains of
definition of all dual pairs of operators are restricted to the dual pair of subspaces

Hb; b′ := bPb; b′Hb, H∨b′; b := bP∨b′; b H
∨
b′ . (5.17)

The boundary conditions b on the Hilbert space Hb dictates the definite eigenvalue subspace
of the dual Hilbert space H∨b′ and vice versa. This is the Zn generalization of the KW duality
from Sec. 2.2.

We now turn to obtaining the duals of the crystalline and internal symmetries (5.4) and
(5.5), respectively. We impose periodic boundary conditions for both bond algebras (5.2) and
(5.14a) by choosing b = b′ = 0.

As described in Sec. 3.2, the dual crystalline symmetries are obtained by first extending
the operators to the Hilbert space (5.9) by demanding covariance of the Gauss operators (5.7).
We obtain the duals of operators bUt and bUr defined by their actions on the Hilbert space H∨b′=0

bU∨t bX
⋆∨
j⋆
�

bU∨t
�†
= bX ⋆∨t( j⋆), bU∨t bZ

⋆∨
j⋆
�

bU∨t
�†
= bZ⋆∨t( j⋆), t( j⋆) = j⋆ + 1, (5.18a)

bU∨r bX
⋆∨
j⋆
�

bU∨r
�†
=
�

bX ⋆∨r( j⋆)

�−1
, bU∨r bZ

⋆∨
j⋆
�

bU∨r
�†
=
�

bZ⋆∨r( j⋆)

�−1
, r( j⋆) = 2Nn− j⋆. (5.18b)

as it should be, these transformation rules reduce to those in Eqs. (3.7c) and (3.7d) when
n = 2. Since bX ⋆∨j⋆ and bZ⋆∨j⋆ are akin to electric field eiE and gauge field eiA, respectively, they
are to be Hermitian conjugated under reflection in Eq. (5.18b).

Due to the projective algebra (5.6a), the global symmetry operator bUx is not gauge invari-
ant. We therefore dualize it by expressing it in terms of products of local operators from the
bond algebra (5.2a). This allows us to use the isomorphism between the dual bond algebras
(5.2a) and (5.14a). We treat the cases of n even and n odd separately.

Case of n even. First, we rewrite the unitary operator bUx defined in Eq. (5.5a) as

bUx =
�

bX1

�

bX2

�−1� �
bX2

�

bX3

�−1�2 �
bX3

�

bX4

�−1�3
· · ·
�

bXn−1

�

bXn

�−1�n−1

×
�

bXn+1

�

bXn+2

�−1� �
bXn+2

�

bXn+3

�−1�2
· · ·
�

bX2Nn−1

�

bX2Nn

�−1�n−1
,

(5.19a)

where each term inside the square brackets is a generator of the bond algebra (5.2a). The jth
square bracket on the right-hand side of Eq. (5.19a) becomes gauge invariant upon insertion
of bZ⋆j⋆ between the pair of shift operators on the sites j and j + 1 of Λ. We may then use
the isomorphism between dual bond algebras (5.2a) and (5.14a) to obtain the dual symmetry
generator

bU∨x∨ =
∏

j⋆∈Λ⋆

�

bZ⋆∨j⋆

� j⋆−1/2
. (5.19b)
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Note that the dual operator (5.19b) is neither invariant under translations (5.18a) nor under
reflection (5.18b). Instead, one verifies the algebra

bU∨t bU
∨
x∨
�

bU∨t
�†
=
�

bU∨z∨
�†
bU∨x∨ , bU∨r bU

∨
x∨
�

bU∨r
�†
= bU∨z∨ bU

∨
x∨ . (5.20)

Hence, we find that the total symmetry group (5.5b) dualizes to the symmetry group

G∨tot ≡ G∨spa ⋉G∨int , (5.21a)

with the internal symmetry group

G∨int ≡ Z
z∨
n ×Z

x ∨
n (5.21b)

generated by z∨ and x∨ of order n = 2,3, · · · that are represented by operators (5.14b) and
(5.19b), respectively. The spatial symmetry group

G∨spa ≡ Z
t
2Nn ⋊Z

r
2, (5.21c)

has two generators t and r that are order 2Nn and 2; and represented by operators (5.18a)
and (5.18b), respectively. The semi-direct product structure in the dual total symmetry group
(5.21a) is due to the non-trivial group action

t x∨ t−1 = (z∨)−1 x∨, r x∨ r = z∨ x∨, r z∨ r = (z∨)−1 (5.21d)

of crystalline symmetries G∨spa on the internal symmetries G∨int.

Case of n odd. For the case of n odd, Eq. (5.19a) can be used to reexpress the operator bUx .
However, there is an alternative expression for bUx which was not available when n is even.
We may write

bUx =
�

bX2Nn

�

bX1

�−1�
n+1

2
�

bX1

�

bX2

�−1�
n+3

2 · · ·
�

bXN n−1

�

bXN n

�−1�
n−1

2

×
�

bX2Nn

�

bX2Nn−1

�−1�
n+1

2
�

bX2Nn−1

�

bX2Nn−2

�−1�
n+3

2 · · ·
�

bXN n+1

�

bXN n

�−1�
n−1

2
,

where we have utilized the fact that n is an odd integer when writing the exponents. The jth
square bracket on the right-hand side of Eq. (5.19a) becomes gauge invariant upon insertion
of bZ⋆j⋆ between the pair of shift operators on the sites j and j + 1 of Λ. We may then use
the isomorphism between dual bond algebras (5.2a) and (5.14a) to obtain the dual symmetry
generator

bU∨x∨ =





Nn−1
∏

j=0

�

bZ⋆∨j⋆

�
n+1

2 + j









Nn−1
∏

j=0

�

bZ⋆∨2Nn− j⋆

�
n−1

2 − j



 . (5.22)

While still not invariant under translation symmetry (5.18a), the unitary operator (5.22) is
manifestly invariant under the reflection symmetry (5.18b). Therefore, we find the algebra

bU∨t bU
∨
x∨
�

bU∨t
�†
=
�

bU∨z∨
�†
bU∨x∨ , bU∨r bU

∨
x∨
�

bU∨r
�†
= bU∨x∨ . (5.23a)

As opposed to the algebra (5.20), reflection commutes with the dual symmetry (5.22). The
total symmetry group

Go∨
tot ≡ G∨spa ⋉G∨int. (5.23b)
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differs from the group (5.21a) by the group action

t x∨ t−1 = (z∨)−1 x∨, r x∨ r = x∨, r z∨ r = (z∨)−1 (5.23c)

of crystalline symmetries G∨spa on the internal symmetries G∨int.
The fact that the reflection symmetric decomposition (5.22) is only possible for n odd is

rooted in the LSM anomaly 4, which only applies when n is an even integer 22. Importantly,
while the reflection symmetry has a nontrivial group action on the generator z∨ of the dual
symmetry group Zz∨

n , LSM anomalies 3 and 4 appear as the incompatibility between the image
Zx ∨

n of the ungauged internal symmetry group Zx
n and crystalline symmetries.

We observe that, for any n, operators bU ∨z∨ and bU ∨x∨ implement Zn-charge and Zn-dipole
symmetries, respectively. As was the case with n= 2 in Sec. 3, we find that Zn clock Hamilto-
nians with charge, dipole, and translation symmetries are free from an LSM anomaly for any
n and are dual to Hamitonians with global internal Zn ×Zn symmetry with an LSM anomaly.
A more detailed investigation of dualities between models with multipolar symmetries and
models with uniform symmetries and LSM anomalies is left for future works.

6 Conclusions

In this paper, we studied the dualization induced by the gauging of global internal sub-symmetries
of one-dimensional quantum spin chains with LSM anomalies. We found that when the pre-
gauged theory had a non-trivial LSM anomaly, the dual theory was free from an LSM anomaly
but had a symmetry structure wherein the crystalline and internal symmetries combined to-
gether through non-trivial group extensions. Therefore, the symmetry structure of the gauged
theory was shown to serve as a diagnostic for LSM anomalies. Similar phenomena (restricted
to only internal symmetries) have been studied extensively in the context of quantum field
theory (see for example [66]), where gauging a non-anomalous symmetry participating in a
mixed anomaly delivers a dual theory with a symmetry structure involving a group exten-
sion controlled by the anomaly of the pre-gauged theory. We exemplified our procedure for a
Z2 ×Z2-symmetric quantum spin-1/2 X Y Z chain with LSM anomalies due to translation and
reflection. We established a triality of models by gauging a Z2 ⊂ Z2 × Z2 symmetry in two
ways, which amount to performing Kramers-Wannier or Jordan-Wigner duality, respectively.
We detailed the mapping of the phase diagram of the quantum spin-1/2 X Y Z chain under
the triality and showed that the deconfined quantum critical transitions between Neel and
valence-bond-solid orders of the chain map to either topological transitions or conventional
Landau-Ginzburg-type transitions.

There are several future directions that could be pursued. One avenue is the generalization
of the approach developed in this work to quantum lattice Hamiltonians with LSM anomalies
for higher-dimensional lattices. We expect that in higher dimensions, gauging non-anomalous
subgroups of internal symmetries participating in LSM anomalies delivers dual theories with
novel symmetry structures that may involve higher groups or even non-invertible symme-
tries [41] mixing the dual crystalline and dual internal symmetries. Furthermore, higher-
dimensional space accommodates dualities between phase diagrams that support phases that
are not allowed when space is one dimensional, namely phases supporting symmetry-enriched
(anomalous) topological order or ordered phases with local order parameters that break spon-
taneously a continuous symmetry group. [51]. Another avenue is to construct fermionic mod-
els that support novel deconfined phase transitions by gauging sub-symmetries.

22 Our starting point is the projective algebra (5.6a) which corresponds to [ω] = 1. It can be verified for general
[ω] that a reflection symmetric decomposition is possible only when [ω] = 2k mod n for some integer k.
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A Triality of the Majumdar-Ghosh line

A.1 Definition and properties of the Majumdar-Ghosh line

To study the Majumdar-Ghosh (MG) line (4.4c), we start from the fully SU(2)-symmetric
Hamiltonian

ÒHSU(2) :=
2N
∑

j=1

�

σ̂ j · σ̂ j+1 +
3
2
b1Hb=0

�

+
1
2

2N
∑

j=1

σ̂ j · σ̂ j+2

=
2N
∑

j=1

�

1
4

�

σ̂ j + σ̂ j+1 + σ̂ j+2

�2
−

3
4
b1Hb=0

�

,

(A.1)

where periodic boundary conditions (b = 0) have been imposed.
We shall denote with

|[ j, j + 1]〉 :=
1
p

2

�

| →〉 j ⊗ | ←〉 j+1 − | ←〉 j ⊗ | →〉 j+1

�

, (A.2)

the singlet state for two spin-1/2 localized on two consecutive sites j and j + 1 of Λ in the
basis for which | →〉 j (| ↑〉 j) is the eigenstate with eigenvalue +1 of σ̂x

j (σ̂z
j ). By inspection,

the states

|Dimero〉 :=
N
⊗

j=1

|[2 j − 1,2 j]〉 (A.3a)

and

|Dimere〉 :=
N
⊗

j=1

|[2 j, 2 j + 1]〉 (A.3b)

are orthonormal eigenstates of ÒHSU(2) with the degenerate eigenvalue

EDimer = 0. (A.3c)

Their bonding and anti-bonding linear combinations are defined by

|Dimer〉± :=
1
p

2

�

|Dimero〉 ± |Dimere〉
�

. (A.3d)

Since the square bracket on the right-hand side of the second equality in Eq. (A.1) is positive
definite, this energy is that of the ground state. Shastry and Sutherland have shown that these
are the gapped ground states of Hamiltonian (4.1) along the MG line (4.4c).

49



SciPost Physics Submission

The projectors onto the two dimer states are

bP o
Dimer :=

N
∏

j=1

bP[2 j−1,2 j] (A.4a)

and

bP e
Dimer :=

N
∏

j=1

bP[2 j,2 j+1], (A.4b)

where

bP[ j, j+1] :=
1
4

�

b1Hb=0
− σ̂ j · σ̂ j+1

�

=
1
4

§

b1Hb=0
−

1
2

h
�

σ̂ j + σ̂ j+1

�2
− 6b1Hb=0

i

ª

.
(A.4c)

We have the transformation laws

bUt
bP o

Dimer

�

bUt

�†
=

N
∏

j=1

�

bUt
bP[2 j−1,2 j]

�

bUt

�†�
= bP e

Dimer, (A.5a)

bUr
bP o

Dimer
bUr =

N
∏

j=1

�

bUr
bP[2 j−1,2 j]

bUr

�

= bP e
Dimer, (A.5b)

bUr x
π

bP o
Dimer

bUr x
π
=

N
∏

j=1

�

bUr x
π

bP[2 j−1,2 j]
bUr x
π

�

= bP o
Dimer, (A.5c)

bUrz
π

bP o
Dimer

bUrz
π
=

N
∏

j=1

�

bUrz
π

bP[2 j−1,2 j]
bUrz
π

�

= bP o
Dimer, (A.5d)

and

bUt
bP e

Dimer

�

bUt

�†
=

N
∏

j=1

�

bUt
bP[2 j,2 j+1]

�

bUt

�†�
= bP o

Dimer, (A.5e)

bUr
bP e

Dimer
bUr =

N
∏

j=1

�

bUr
bP[2 j,2 j+1]

bUr

�

= bP o
Dimer, (A.5f)

bUr x
π

bP e
Dimer

bUr x
π
=

2N
∏

j=1

�

bUr x
π

bP[2 j,2 j+1]
bUr x
π

�

= bP e
Dimer, (A.5g)

bUrz
π

bP e
Dimer

bUrz
π
=

2N
∏

j=1

�

bUrz
π

bP[2 j,2 j+1]
bUrz
π

�

= bP e
Dimer. (A.5h)

In words, both translation t and reflection r with the fixed points N and 2N interchange
|Dimero〉 and |Dimere〉. Observe that both rotations r x

π and rz
π map |Dimero〉 to (−1)N |Dimero〉

(they do the same for |Dimere〉),

bUr x
π
|Dimero〉= (−1)N |Dimero〉, bUrz

π
|Dimero〉= (−1)N |Dimero〉, (A.6a)

bUr x
π
|Dimere〉= (−1)N |Dimere〉, bUrz

π
|Dimere〉= (−1)N |Dimere〉. (A.6b)

The multiplicative phase factor (−1)N cancels in either one of the projectors bP o
Dimer and bP e

Dimer.
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It is instructive to compare the dimer states (A.3) with the Neel states

|Neelx
o 〉 := | →〉1 ⊗ | ←〉2 ⊗ · · · ⊗ | →〉2N−1 ⊗ | ←〉2N

≡| →,←, · · · ,→,←〉
(A.7a)

and

|Neelx
e 〉 := bUrz

π
|Neelx

o 〉

≡ | →,←, · · · ,→,←〉.
(A.7b)

The pair of Neel states (A.7) are the two-fold degenerate gapped ground states of Hamiltonian
(4.1) at the lower left corner in the reduced coupling space (4.3).

The projectors onto the Neel states are

bP o
Neelx =

2N
∏

j=1

1
2

h

b1Hb=0
+ (−1) j+1 σ̂x

j

i

(A.8a)

and

bP e
Neelx = bUrz

π

bP o
Neelx bUrz

π

=
2N
∏

j=1

1
2

h

b1Hb=0
− (−1) j+1 σ̂x

j

i (A.8b)

respectively. The Neel projectors corresponding to the orthonormal pair of bonding and anti-
bonding linear combinations

|Neelx〉± :=
1
p

2

�

|Neelx
o 〉 ± |Neelx

e 〉
�

(A.9a)

are

bP±Neelx :=
1± bUrz

π

2

�

bP o
Neelx + bP e

Neelx

�

. (A.9b)

The projector bP+Neelx is a linear combination of string of σ̂x ’s of even length. The projector
bP−Neelx is a linear combination of string of σ̂x ’s of odd length.

We have the transformation laws

bUt
bP o

Neelx

�

bUt

�†
= bP e

Neelx , (A.10a)

bUr
bP o

Neelx bUr = bP
o

Neelx , (A.10b)

bUr x
π

bP o
Neelx bUr x

π
= bP o

Neelx , (A.10c)

bUrz
π

bP o
Neelx bUrz

π
= bP o

Neelx , (A.10d)

and

bUt
bP e

Neelx

�

bUt

�†
= bP o

Neelx , (A.10e)

bUr
bP e

Neelx bUr = bP
e

Neelx , (A.10f)

bUr x
π

bP e
Neelx bUr x

π
= bP e

Neelx , (A.10g)

bUrz
π

bP e
Neelx bUrz

π
= bP e

Neelx . (A.10h)
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In words, translation t interchanges |Neelx
o 〉 and |Neelx

e 〉. Reflection r with the fixed points N
and 2N in Λ leaves each Neel state unchanged. The same is true of rotation r x

π. Observe that
rotation rz

π maps |Neelx
o 〉 to |Neelx

o 〉 (it does the same for |Neelx
e 〉),

bUr x
π
|Neelx

o 〉= (−1)N |Neelx
o 〉, bUrz

π
|Neelx

o 〉= |Neelx
o 〉, (A.11a)

bUr x
π
|Neelx

e 〉= (−1)N |Neelx
e 〉, bUrz

π
|Neelx

e 〉= |Neelx
e 〉. (A.11b)

The multiplicative phase factor (−1)N cancels in either one of the projectors bP o
Neelx and bP e

Neelx .
Define the local order parameters

bO o
Neelα :=

1
2N

2N
∑

j=1

(−1) j+1 σ̂αj , α= x , y, z, (A.12a)

bO o
dimer :=

1
N

2N
∑

j=1

(−1) j
1
3
σ̂ j · σ̂ j+1. (A.12b)

Define the two-point operator

bCαj, j+n := σ̂αj σ̂
α
j+n, α= x , y, z. (A.13)

We will replace the staggered magnetization (A.12a) with the two-point operator (A.13) to
detect Neel order as the former cannot be dualized when α= x , y . We recall the definition of
the unitary operator

bUr :=
N−1
∏

j=1

1
2

�

b1Hb=0
+ σ̂ j · σ̂r( j)

�

(A.14a)

that implements reflection with the fixed points N and 2N (the upper bound is N − 1 in the
product because the two fixed points N and 2N must be removed from the product) and the
unitary operators

bUrαπ
:=

2N
∏

j=1

σ̂αj , α= x , y, z, (A.14b)

bU o (2n)
rαπ

:=
2 j−1+2n−1
∏

k=2 j−1

σ̂αk , α= x , y, z, j = 1, · · · , 2N , n= 1, · · · , N , (A.14c)

bU e (2n)
rαπ

:=
2 j+2n−1
∏

k=2 j

σ̂αk , α= x , y, z, j = 1, · · · , 2N , n= 1, · · · , N , (A.14d)

that implement rotations by π around the α axis in the Bloch spheres labeled by the lattice
sites j = 1, · · · , 2N on strings of consecutive 2n lattice sites. Their expectation values in the
four Neel and four Dimer states are given in Table 8. Observe that of the eight states in Table
8, only six are eigenstates of bUrz

π
, namely

|Neelx〉+, |Neelx〉−, |Dimero〉, |Dimere〉, |Dimer〉+, |Dimer〉−. (A.15)

Moreover, we can distinguish |Dimero〉 and |Dimere〉 from |Dimer〉+ and |Dimer〉− by using the
fact that the two elements of the first pair are interchanged by reflection about the lattice site
N , while the two elements of the second pair transform like the eigenstates of reflection about
the lattice site N .
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Table 8: The expectation values of nine operators in eight states. The domain of
definition of all nine operators is Hb=0. The first four Neel states are defined in
Eqs. (A.7) and (A.9). The next four dimer states are defined in Eqs. (A.3) All nine
operators are defined in Eqs. (A.12), (A.13), and (A.14).

bC x
j, j+n

bO o
dimer

bUr
bUr x
π

bUrz
π

bU o (2n)
r x
π

bU e (2n)
r x
π

bU o (2n)
rz
π

bU e (2n)
rz
π

|Neelx
o 〉 (−1)n 0 +1 (−1)N 0 (−1)n (−1)n 0 0

|Neelx
e 〉 (−1)n 0 +1 (−1)N 0 (−1)n (−1)n 0 0

|Neelx 〉+ (−1)n 0 +1 (−1)N +1 (−1)n (−1)n 0 0

|Neelx 〉− (−1)n 0 +1 (−1)N −1 (−1)n (−1)n 0 0

|Dimero〉 −δ
(−1) j ,−1

δn,1 +1 0 (−1)N (−1)N (−1)n 0 (−1)n 0

|Dimere〉 −δ
(−1) j ,+1

δn,1 −1 0 (−1)N (−1)N 0 (−1)n 0 (−1)n

|Dimer〉+ −
δn,1

2 0 +(−1)N (−1)N (−1)N (−1)n
2

(−1)n
2

(−1)n
2

(−1)n
2

|Dimer〉− −
δn,1

2 0 −(−1)N (−1)N (−1)N (−1)n
2

(−1)n
2

(−1)n
2

(−1)n
2

A.2 Kramers-Wannier dualization of the Majumdar-Ghosh line

The projectors that are the Kramers-Wannier dual to those for the pair of dimer states are built
out of

bP o∨
Dimer :=

2N
∏

j=1

bP ∨[(2 j−1)⋆,(2 j)⋆] (A.16a)

and

bP e∨
Dimer :=

2N
∏

j=1

bP ∨[(2 j)⋆,(2 j+1)⋆], (A.16b)

where

bP ∨[ j⋆, j⋆+1] =
1
4

�

b1H∨
b′=0
− τ̂z∨

j⋆ + τ̂
x ∨
j⋆−1 τ̂

z∨
j⋆ τ̂

x ∨
j⋆+1 − τ̂

x ∨
j⋆−1 τ̂

x ∨
j⋆+1

�

=
1
2

�

b1H∨
b′=0
− τ̂z∨

j⋆

�

1
2

�

b1H∨
b′=0
− τ̂x ∨

j⋆−1 τ̂
x ∨
j⋆+1

�

, (A.16c)

by restriction to the subspace H∨b′=0 from Table 1. As a consequence of the fact that each
of bP ∨[2 j−1,2 j] and bP ∨[2 j,2 j+1] acts non-trivially on three consecutive sites, we are going to show

that each of projectors bP o∨
Dimer and bP e∨

Dimer has two degenerate orthonormal eigenstates with
eigenvalue one.

The projector

bP o∨
Dimer :=

2N
∏

j=1

bP ∨[(2 j−1)⋆,(2 j)⋆] (A.17a)

has the degenerate pair

|1〉= | ↓,→,↓,←; · · · ;↓,→,↓,←;↓,→,↓,←; · · · ↓,→,↓,←〉 (A.17b)

and

|2〉= | ↓,←,↓,→; · · · ;↓,←,↓,→;↓,←,↓,→; · · · ;↓,←,↓,→〉

= bU ∨rz
π
|1〉

(A.17c)

of orthonormal eigenstates with eigenvalue one. The projector

bP e∨
Dimer :=

2N
∏

j=1

bP ∨[(2 j)⋆,(2 j+1)⋆] (A.18a)
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has the degenerate pair

|3〉= | →,↓,←,↓; · · · ;→,↓,←,↓;→,↓,←,↓; · · · ;→,↓,←,↓〉

= bU ∨r |2〉
(A.18b)

and

|4〉= | ←,↓,→,↓; · · · ;←,↓,→,↓;←,↓,→,↓; · · · ;←,↓,→,↓〉

= bU ∨rz
π
|3〉

= bU ∨r |1〉

(A.18c)

of orthonormal eigenstates with eigenvalue one. Hence, the dual of the dimer phase when
periodic boundary conditions (b = 0) apply has the two degenerate and orthonormal ground
states along the MG line

|Dimer∨o 〉
+ =

1
p

2
(|1〉+ |2〉) (A.19a)

and

|Dimer∨e 〉
+ =

1
p

2
(|3〉+ |4〉) . (A.19b)

The two degenerate and orthonormal states

|Dimer∨o 〉
− =

1
p

2
(|1〉 − |2〉) (A.20a)

and

|Dimer∨e 〉
− =

1
p

2
(|3〉 − |4〉) (A.20b)

are the ground states along the MG line when twisted boundary conditions (b′ = 1) apply.
Observe that

bU ∨r |Dimer∨o 〉
+ = +|Dimer∨e 〉

+, (A.21a)

bU ∨r |Dimer∨o 〉
− = −|Dimer∨e 〉

−. (A.21b)

We can dualize all operators entering Eqs. (A.12), (A.13), and (A.14) except for σ̂x
j and

σ̂
y
j . The dimer order parameter (A.12b) dualizes to

bO o∨
dimer =

1
N

∑

j⋆∈Λ⋆
(−1) j

⋆−1/2 1
3

�

τ̂z∨
j⋆ − τ̂

x ∨
j⋆−1 τ̂

z∨
j⋆ τ̂

x ∨
j⋆+1 + τ̂

x ∨
j⋆−1 τ̂

x ∨
j⋆+1

�

. (A.22)

The x x two-point operator (A.13) dualizes to the string operator made of n consecutive sites
from the dual lattice given by

bC x ∨
j⋆, j⋆+n =

n
∏

k=1

τ̂z∨
j⋆+(k−1). (A.23)

The reflection with no fixed point on the dual lattice dualizes to

bU ∨r =
N
∏

j=1

1
2

�

b1H∨
b′=0
+ τ̂x ∨

j⋆ τ̂
x ∨
r( j⋆) + τ̂

y ∨
j⋆ τ̂

y ∨
r( j⋆) + τ̂

z∨
j⋆ τ̂

z∨
r( j⋆)

�

(A.24)

(the upper bound is now N in the product instead of N − 1 because there are no invariant
dual lattice points under reflection, i.e., we need not remove the invariant fixed points). We
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choose to dualize the global rotation by π around the x and y axis of the Bloch spheres la-
beled by j = 1, · · · , 2N to the rotation by π around the z axis of the Bloch spheres labeled by
j⋆ = 1+ 1

2 , 3 + 1
2 , · · · , 2N − 3+ 1

2 , 2N − 1+ 1
2 and j⋆ = 2+ 1

2 , 4 + 1
2 , · · · , 2N − 2+ 1

2 , 2N + 1
2 ,

respectively, i.e., by

bU ∨r x
π
=

N
∏

j=1

τ̂z∨
2 j−1+ 1

2
≡ bU ∨o (A.25)

and

bU ∨
r y
π
=

N
∏

j=1

τ̂z∨
2 j+ 1

2
≡ bU ∨e , (A.26)

respectively.
The global rotation by π around the z axis of the Bloch spheres labeled by j = 1, · · · , 2N

dualizes to the identity
bU ∨rz
π
= b1H∨

b′=0
. (A.27)

The rotation by π around the x axis of the Bloch spheres labeled by j = 1, · · · , 2N on a string
of 2n consecutive sites from the lattice Λ starting from an odd site dualizes to the rotation by
π around the z axis of the Bloch spheres labeled by j⋆ = 1 + 1

2 , · · · , 2N + 1
2 on a string of n

consecutive odd sites from the dual lattice starting from an odd dual site Λ⋆, i.e., by

bU o (2n)∨
r x
π

=
n
∏

k=1

τ̂z∨
2 j−1+2(k−1)+ 1

2
≡ bU o∨

n , j = 1, · · · , 2N , n= 1, · · · , N . (A.28)

The rotation by π around the x axis of the Bloch spheres labeled by j = 1, · · · , 2N on a string
of 2n consecutive sites from the lattice Λ starting from an even site dualizes to the rotation by
π around the z axis of the Bloch spheres labeled by j⋆ = 1 + 1

2 , · · · , 2N + 1
2 on a string of n

consecutive even sites from the dual lattice Λ⋆ starting from an even dual site, i.e., by

bU e (2n)∨
r x
π

=
n
∏

k=1

τ̂z∨
2 j+2(k−1)+ 1

2
≡ bU e∨

n , j = 1, · · · , 2N , n= 1, · · · , N . (A.29)

The rotation by π around the z axis of the Bloch spheres labeled by j = 1, · · · , 2N on a string
of 2n consecutive sites from the lattice Λ starting from an odd site dualizes to the rotation by
π around the x axis of the Bloch spheres labeled by j⋆ = 1 + 1

2 , · · · , 2N + 1
2 on the two end

points of a string of 2n+1 consecutive sites from the dual lattice Λ⋆ starting from an even dual
site, i.e., by

bU o (2n)∨
rz
π

= τ̂x ∨
2 j−1−1+ 1

2
τ̂x ∨

2 j−1+2n−1+ 1
2

j = 1, · · · , 2N , n= 1, · · · , N . (A.30)

The rotation by π around the x axis of the Bloch spheres labeled by j = 1, · · · , 2N on a string
of 2n consecutive sites from the lattice Λ starting from an even site dualize to the rotation by
π around the z axis of the Bloch spheres labeled by j⋆ = 1 + 1

2 , · · · , 2N + 1
2 on the two end

points of a string of 2n+1 consecutive sites from the dual lattice Λ⋆ starting from an odd dual
site, i.e., by

bU e (2n)∨
rz
π

= τ̂x ∨
2 j−1+ 1

2
τ̂x ∨

2 j+2n−1+ 1
2
, j = 1, · · · , 2N , n= 1, · · · , N . (A.31)

We seek the duals of the states

|Neelx〉+, |Dimero〉, |Dimere〉, (A.32)
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Table 9: The expectation values of nine operators in three states. The domain of
definition of all nine operators is H∨b′=0. The Neel state is defined in Eq. (A.33). The
next two dimer states are defined in Eq. (A.19). All nine operators are defined in
Eqs. (A.22)-(A.31).

bC x ∨
j, j+n

bO o∨
dimer

bU ∨r bU ∨r x
π

bU ∨rz
π

bU o (2n)∨
r x
π

bU e (2n)∨
r x
π

bU o (2n)∨
rz
π

bU e (2n)∨
rz
π

|Neelx ∨〉+ (−1)n 0 +1 (−1)N +1 (−1)n (−1)n 0 0

|Dimer∨o 〉 −δ
(−1) j ,−1

δn,1 +1 0 (−1)N (−1)N (−1)n 0 (−1)n 0

|Dimer∨e 〉 −δ
(−1) j ,+1

δn,1 −1 0 (−1)N (−1)N 0 (−1)n 0 (−1)n

that all have the eigenvalue +1 under the global π rotation about the z axis of the Bloch
spheres labeled by j = 1, · · · , 2N and are annihilated by either bU o (2n)

r x
π

or bU e (2n)
r x
π

for the dimer

states. These are the ground states of the dual Hamiltonian ÒH ∨b′=0 defined in Eq. (4.9) with
the domain of definition H∨b′=0;+ with either J = ∆ = 0 for the dual to |Neelx〉+ or J = 1/2
for the dual to the dimer states |Dimero〉 and |Dimere〉 in the reduced coupling space (4.3).
The ground state of the dual Hamiltonian ÒH ∨b′=0 with the domain of definition H∨b′=0;+ when
J =∆= 0 in the reduced coupling space (4.3) is non-degenerate and given by

|Neelx ∨〉+ = | ↓〉1 ⊗ · · · ⊗ | ↓〉2N

≡| ↓, · · · ,↓〉,
(A.33a)

where

τ̂z∨
j+ 1

2
| ↓〉

j+ 1
2
= −| ↓〉

j+ 1
2
, τ̂z∨

j+ 1
2
| ↑〉

j+ 1
2
= +| ↑〉

j+ 1
2
, j = 1, · · · , 2N . (A.33b)

The ground state of the dual Hamiltonian ÒH ∨b′=0 with the domain of definition H∨b′=0;+ when
J = 1/2 in the reduced coupling space (4.3) is two-fold degenerate with the eigenstates
|Dimer∨o 〉

+ and |Dimer∨e 〉
+ defined in Eq. (A.19). The expectation values in the Neel and two

dimer states are tabulated in Table 9. These entries agree with the corresponding ones in Table
8 (lines three, five, and six).

A.3 Jordan-Wigner dualization of the Majumdar-Ghosh line

The projectors that are the Jordan-Wigner dual to those for the pair of dimer states are built
out of

bP o∨
Dimer :=

N
∏

j=1

bP ∨[2 j−1,2 j] (A.34a)

and

bP e∨
Dimer :=

N
∏

j=1

bP ∨[2 j,2 j+1], (A.34b)

where
bP ∨[ j, j+1] :=

1
4

�

b1H∨f=1
− iβ̂∨j α̂

∨
j+1 − iβ̂∨j+1 α̂

∨
j − β̂

∨
j β̂
∨
j+1 α̂

∨
j α̂
∨
j+1

�

, (A.34c)

by restriction to the subspace H∨f=1 from Table 2. Unlike in the case of Eq. (A.16), each of
bP ∨[2 j−1,2 j] and bP ∨[2 j,2 j+1] acts non-trivially on two consecutive sites. This is why each of the

projectors bP o∨
Dimer and bP e∨

Dimer has a non-degenerate eigenstate with eigenvalue one.
It is instructive to trade the Majorana operators for fermionic ones. To this end, define for

any j = 1, · · · , 2N

ĉ∨†
j :=

1
2

�

α̂∨j − iβ̂∨j
�

, ĉ∨j :=
1
2

�

α̂∨j + iβ̂∨j
�

, (A.35a)
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i.e.,
α̂∨j = ĉ∨j + ĉ∨†

j , β̂∨j = −i
�

ĉ∨j − ĉ∨†
j

�

. (A.35b)

There follows the identities

iβ̂∨j α̂
∨
j =

�

ĉ∨j − ĉ∨†
j

��

ĉ∨j + ĉ∨†
j

�

= ĉ∨j ĉ∨†
j − ĉ∨†

j ĉ∨j

=1− 2 ĉ∨†
j ĉ∨j

≡1− 2 n̂∨j , n̂∨j := ĉ∨†
j ĉ∨j , (A.36a)

β̂∨j β̂
∨
j+1 α̂

∨
j α̂
∨
j+1 =

�

iβ̂∨j α̂
∨
j

��

iβ̂∨j+1 α̂
∨
j+1

�

=
�

1− 2 n̂∨j
��

1− 2 n̂∨j+1

�

, (A.36b)

iβ̂∨j α̂
∨
j+1 =

�

ĉ∨j − ĉ∨†
j

��

ĉ∨j+1 + ĉ∨†
j+1

�

= ĉ∨j ĉ∨j+1 + ĉ∨j ĉ∨†
j+1 − ĉ∨†

j ĉ∨j+1 − ĉ∨†
j ĉ∨†

j+1, (A.36c)

iβ̂∨j α̂
∨
j+1 + iβ̂∨j+1 α̂

∨
j = ĉ∨j ĉ∨j+1 + ĉ∨j ĉ∨†

j+1 − ĉ∨†
j ĉ∨j+1 − ĉ∨†

j ĉ∨†
j+1

+ ĉ∨j+1 ĉ∨j + ĉ∨j+1 ĉ∨†
j − ĉ∨†

j+1 ĉ∨j − ĉ∨†
j+1 ĉ∨†

j

= − 2
�

ĉ∨†
j+1 ĉ∨j + ĉ∨†

j ĉ∨j+1

�

, (A.36d)

and

bP ∨[ j, j+1] :=
1
4

�

b1H∨f=1
+ 2

�

ĉ∨†
j+1 ĉ∨j + ĉ∨†

j ĉ∨j+1

�

−
�

1− 2 n̂∨j
��

1− 2 n̂∨j+1

�

�

. (A.36e)

On the Hilbert space

H
j+ 1

2 , j+1+ 1
2

:= span

�

�

ĉ∨†
j

�n j
�

ĉ∨†
j+1

�n j+1 |0, 0〉
�

�

�

�

n j , n j+1 = 0,1,

ĉ∨j |0,0〉= ĉ∨j+1 |0,0〉= 0

�

,

(A.37a)

iβ̂∨j α̂
∨
j+1 is represented by the matrix











0 0 0 −1

0 0 −1 0

0 −1 0 0

+1 0 0 0











, (A.37b)

while bP ∨[ j, j+1] is represented by the matrix

1
4





















+1 0 0 0

0 +1 0 0

0 0 +1 0

0 0 0 +1











+ 2











0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0











−











+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 +1





















=
1
2











0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0











(A.37c)
that annihilates the three orthonormal eigenstates

|0,0〉,
1
p

2
(|1,0〉 − |0,1〉) , |1, 1〉, (A.37d)
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and projects onto the eigenstate
1
p

2
(|1,0〉+ |0,1〉) . (A.37e)

Hence, the two orthonormal states

|Bonding∨o 〉 :=





N
∏

j=1

1
p

2

�

ĉ∨†
2 j−1 + ĉ∨†

2 j

�



 |0〉 (A.38)

and

|Bonding∨e 〉 :=





N
∏

j=1

1
p

2

�

ĉ∨†
2 j + ĉ∨†

2 j+1

�



 |0〉 (A.39)

are ground states of ÒH ∨f=1 along the MG line. We set N to be an even integer, so that these
states have even fermion parity and belong to the subspace H∨f=1;+. Their transformation laws
under the symmetry group (3.27a) are

bU∨t |Bonding∨o 〉= |Bonding∨e 〉, bU∨t |Bonding∨e 〉= |Bonding∨o 〉, (A.40a)

bU∨r |Bonding∨o 〉= |Bonding∨e 〉, bU∨r |Bonding∨e 〉= |Bonding∨o 〉, (A.40b)

bU∨o |Bonding∨o 〉= |Bonding∨o 〉, bU∨o |Bonding∨e 〉= |Bonding∨e 〉, (A.40c)

bU∨e |Bonding∨o 〉= |Bonding∨o 〉, bU∨e |Bonding∨e 〉= |Bonding∨e 〉. (A.40d)

Proof. Without loss of generality, we consider the case of N = 2. We do the substitutions

ĉ∨†
1 → â†, ĉ∨†

2 → b̂†, ĉ∨†
3 → ĉ†, ĉ∨†

4 → d̂†, (A.41)

to simplify the notation. The basis of the Hilbert space is chosen to be

|a, b, c, d〉=
�

â†
�a �

b̂†
�b �

ĉ†
�c �

d̂†
�d
|0〉

â |0〉= b̂ |0〉= ĉ |0〉= d̂ |0〉= 0

«

a, b, c, d = 0,1. (A.42)

In this basis,

|Bonding∨o 〉=
1
2
(|1,0, 1,0〉+ |1,0, 0,1〉+ |0, 1,1,0〉+ |0,1, 0,1〉) , (A.43a)

|Bonding∨e 〉=
1
2
(|0,1, 0,1〉+ |1,1, 0,0〉+ |0, 0,1,1〉+ |1,0, 1,0〉) . (A.43b)

Translation j 7→ j + 1 mod 4 by one lattice spacing corresponds to

â 7→ b̂, b̂ 7→ ĉ, ĉ 7→ d̂, d̂ 7→ (−1) â, (A.44a)

under which
|Bonding∨o 〉 7→ |Bonding∨e 〉, |Bonding∨e 〉 7→ |Bonding∨o 〉. (A.44b)

Reflection j 7→ 2N − j mod 4 corresponds to

â 7→ −iĉ, b̂ 7→ −ib̂, ĉ 7→ −iâ, d̂ 7→ +id̂, (A.45a)

(and not â 7→ b̂, b̂ 7→ â, ĉ 7→ d̂, d̂ 7→ ĉ) under which

|Bonding∨o 〉 7→ |Bonding∨e 〉, |Bonding∨e 〉 7→ |Bonding∨o 〉. (A.45b)
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The representation of
bU∨o =

�

bU∨o
�†

(A.46a)

after normal ordering is

bU∨o =
�

â b̂+ b̂† â† − b̂† â− â† b̂
� �

ĉ d̂ + d̂† ĉ† − d̂† ĉ − ĉ† d̂
�

. (A.46b)

On the one hand,

bU∨o |Bonding∨o 〉=
1
2

�

â b̂+ b̂† â† − b̂† â− â† b̂
� �

ĉ d̂ + d̂† ĉ† − d̂† ĉ − ĉ† d̂
�

× (|1,0, 1,0〉+ |1, 0,0, 1〉+ |0,1, 1,0〉+ |0,1, 0,1〉)

=
1
2

�

â b̂+ b̂† â† − b̂† â− â† b̂
�

×
�

−d̂† ĉ (|1, 0,1, 0〉+ |0,1, 1,0〉)− ĉ† d̂ (|1,0, 0,1〉+ |0, 1,0, 1〉)
�

=
1
2

�

â b̂+ b̂† â† − b̂† â− â† b̂
�

× (−1) (|1,0, 0,1〉+ |0, 1,0, 1〉+ |1,0, 1,0〉+ |0, 1,1, 0〉)

=
1
2

�

b̂† â (|1,0, 0,1〉+ |1, 0,1, 0〉) + â† b̂ (|0,1, 0,1〉+ |0, 1,1, 0〉)
�

=
1
2
(|0, 1,0, 1〉+ |0,1, 1,0〉+ |1, 0,0, 1〉+ |1,0, 1,0〉)

= |Bonding∨o 〉. (A.47)

On the other hand,

bU∨o |Bonding∨e 〉=
1
2

�

â b̂+ b̂† â† − b̂† â− â† b̂
� �

ĉ d̂ + d̂† ĉ† − d̂† ĉ − ĉ† d̂
�

× (|0,1, 0,1〉+ |1, 1,0,0〉+ |0,0, 1,1〉+ |1, 0,1, 0〉)

=
1
2

�

â b̂+ b̂† â† − b̂† â− â† b̂
�

×
�

ĉ d̂ |0, 0,1,1〉+ d̂† ĉ† |1, 1,0, 0〉 − d̂† ĉ |1,0, 1,0〉 − ĉ† d̂ |0, 1,0, 1〉
�

=
1
2

�

â b̂+ b̂† â† − b̂† â− â† b̂
�

× (−1) (|0,0, 0,0〉+ |1, 1,1,1〉+ |1,0, 0,1〉+ |0, 1,1, 0〉)

=
1
2
× (−1)

�

â b̂ |1, 1,1, 1〉+ b̂† â† |0, 0,0, 0〉 − b̂† â |1, 0,0, 1〉 − â† b̂ |0, 1,1, 0〉
�

=
1
2
(|0,0, 1,1〉+ |1,1, 0,0〉+ |0,1, 0,1〉+ |1,0, 1,0〉)

= |Bonding∨e 〉. (A.48)

We can deduce the action of bU∨e on |Bonding∨o 〉 and |Bonding∨e 〉 from the facts that
�

bU∨o , bU∨e
�

= 0, (A.49a)

bU∨o bU
∨
e = bU∨e bU

∨
o = bP

∨
F , (A.49b)

�

bU∨o
�2
=
�

bU∨e
�2
= b1H∨f

, (A.49c)

bP∨F |Bonding∨o 〉= |Bonding∨o 〉, (A.49d)

bP∨F |Bonding∨e 〉= |Bonding∨e 〉. (A.49e)
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We then infer that

bU∨e |Bonding∨o 〉=
�

bU∨e bU
∨
o

� �

bU∨o |Bonding∨o 〉
�

=
�

bP∨F
�

|Bonding∨o 〉
= |Bonding∨o 〉 (A.50)

and

bU∨e |Bonding∨e 〉=
�

bU∨e bU
∨
o

� �

bU∨o |Bonding∨e 〉
�

=
�

bP∨F
�

|Bonding∨e 〉
= |Bonding∨e 〉. (A.51)

B Triality with open boundary conditions

To treat the case of open boundary conditions, we need to modify the bond algebras

Bb, Bb′ , B f , (B.1)

defined in Secs. 2.1, 2.2, and 2.3, respectively. The following changes must be done as one
repeats all steps of Sec. 2.

One must remove the term σ̂x
2N σ̂

x
2N+1 from Bb as the dual lattice

Λ⋆ =

�

j⋆ = j +
1
2

�

�

�

�

j = 1, · · · , 2N − 1

�

(B.2a)

has one less site than the direct lattice

Λ=
¦

j = 1, · · · , 2N
©

(B.2b)

when open boundary conditions are imposed.
One must modify the bond algebras (B.1) according to

Bb→Bσ :=
D

σ̂z
i , σ̂x

j σ̂
x
j+1

�

�

� i ∈ Λ, j ∈ Λ \ {2N}
E

, (B.3a)

Bb,b′ →Bσ,τ :=
D

σ̂z
i , σ̂x

j τ̂
z
j⋆ σ̂

x
j+1

�

�

� i ∈ Λ, j ∈ Λ \ {2N}
E

, (B.3b)

Bb, f →Bσ,βα :=
D

σ̂z
i , σ̂x

j

�

iβ̂ j α̂ j+1

�

σ̂x
j+1

�

�

� i ∈ Λ, j ∈ Λ \ {2N}
E

, (B.3c)

with the Hilbert space

Hb,b′ :=Hb ⊗Hb′ →Hσ,τ :=Hσ ⊗Hτ

∼=

�

⊗

j∈Λ
C2

�

⊗

�

⊗

j⋆∈Λ⋆
C2

�

= C22N
⊗C22N−1

= C24N−1 (B.3d)

of dimension 24N−1 and that

Hb, f :=Hb ⊗H f →Hσ,βα :=Hσ ⊗Hβα

∼=

�

⊗

j∈Λ
C2

�

⊗

�

⊗

j∈Λ
C2

�

= C22N
⊗C22N

= C24N (B.3e)
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of dimension 24N as domain of definition, respectively.
One must modify the local Gauss operators (2.9) and (2.24) according to

bGb,b′; j → bGσ,τ; j :=















σ̂z
1 τ̂

x
1+ 1

2
, j = 1,

τ̂z
j−1+ 1

2
σ̂z

j τ̂
z
j+ 1

2
, j = 2, · · · , 2N − 1,

τ̂z
2N−1+ 1

2
σ̂z

2N , j = 2N ,

(B.4a)

and

bGb, f ; j → bGσ,βα; j := iβ̂ j σ̂
z
j α̂ j , j ∈ Λ, (B.4b)

respectively.
One must modify the dualized bond algebras (2.16) and (2.31) according to

Bb′ →Bτ :=
D

�

τ̂x ∨
i⋆−1

�1−δi,1
�

τ̂x ∨
i⋆
�1−δi,2N , τ̂z∨

j⋆

�

�

� i ∈ Λ, j ∈ Λ \ {2N}
E

(B.5)

and
B f →Bβα :=

D

iβ̂∨j α̂
∨
j , iβ̂∨j α̂

∨
j+1

�

�

� i ∈ Λ, j ∈ Λ \ {2N}
E

, (B.6)

respectively.
One must modify the consistency conditions (2.20a) and (2.33c) by identifying the dual

pairs
 

∏

j∈Λ
σ̂z

j = bUrz
π
, b1H∨τ

!

(B.7a)

and
 

∏

j∈Λ
σ̂z

j = bUrz
π
,

∏

j∈Λ

�

iβ̂ j α̂ j

�

= −bP ∨F

!

, (B.7b)

respectively. Here, H∨τ (H∨
βα

) is the projection of Hσ,τ (H
σ,βα) to the subspace on which

all local Gauss operators reduce to the identity. Correspondingly, the dual pairs of Hilbert
subspaces are

�

Hdual
σ , H∨dual

τ

�

, H∨dual
τ :=H∨τ , (B.8a)

where Hdual
σ is the 22N − 1-dimensional subspace of Hσ on which bUrz

π
reduces to the identity,

and
�

Hdual
σ , H∨dual

βα

�

, Hdual
σ :=Hσ, H∨dual

βα :=H∨βα, (B.8b)

respectively.
The Kramers-Wannier dual of the Hamiltonian (4.1) when open boundary conditions are

imposed in the reduced coupling space (4.3) is 23
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(B.9)

23 We emphasize that the dual of the Hamiltonian (4.1) when open boundary conditions are imposed is not the
Hamiltonian (4.9) when open boundary conditions are imposed.
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The terms that are underlined once only act non trivially on the left boundary. The terms that
are underlined twice only act non trivially on the right boundary. These boundary terms break
explicitly the global internal symmetry (3.12). These boundary terms gap the zero modes, if
present, of the bulk contributions (all terms that are not underlined) to the Hamiltonian.

The Jordan-Wigner dual of the Hamiltonian (4.1) when open boundary conditions are
imposed in the reduced coupling space (4.3) is

ÒH ∨βα =
2N−1
∑

j=1

�

iβ̂∨j α̂
∨
j+1 +∆ iα̂∨j β̂

∨
j+1

�

+ J
2N−2
∑

j=1

�

iβ̂∨j β̂
∨
j+1 α̂

∨
j+1 α̂

∨
j+2 +∆ iα̂∨j α̂

∨
j+1 β̂

∨
j+1 β̂

∨
j+2

�

.

(B.10)

If we do the unitary transformation

β̂∨j 7→ +α̂
∨
j , α̂∨j 7→ −β̂

∨
j , (B.11)

we recover Hamiltonian (4.19) in the reduced coupling space (4.3) with open boundary con-
ditions. The two-fold degeneracy of the Neelx or Neely phases is now interpreted by the
existence of a single Majorana zero mode localized at the left and right ends of the open
chain.
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