
Review: Reconstructing the gluon

In this work the authors propose a novel approach for investigating the structure of the Landau
gauge gluon spectral function. By imposing a series of analytic consistency criteria, the authors
select an appropriate functional basis which allows them to reconstruct the form of the spectral
function given numerical data of the Euclidean propagator.

This is an interesting study, and it’s particularly nice to see that the authors are attempting to
develop a different numerical approach for extracting information about the spectral content of the
gluon. However, there are a few issues which I feel require further clarification, in particular with
regards to the analytic relation derived in Eq. (6) of the paper.

In Eq. (1) the authors write down the Euclidean spectral representation of the propagator. The
representation they write down is correct except that the spectral function must depend on λ2 and

not just λ. In other words, the representation has the form: G(p20) =
∫∞
0

dλ
π
λρ(λ2)
λ2+p20

. Since ρ(λ2)

is non-vanishing only for λ2 ∈ [0,∞), Eq. (2) is rather confusing since the spectral function itself
is not defined for negative values of λ2. What exactly is meant by the spectral function being
anti-symmetric? If one ignores this issue and takes the derivative with respect to p0, it is argued
that one has the relation

∂p0G(p20) = −
∫ ∞
−∞

dλ

π
λp0

ρ(λ2)

(λ2 + p20)
2

which after taking the limit p0 → 0+ on both sides, and using the Poisson kernel representation of
the Dirac delta, gives

lim
p0→0+

∂p0G(p20) =
1
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∫ ∞
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dδ(λ)
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ρ(λ2) = −1
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∫ ∞
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lim
ω→0+

∂ωρ(ω2)

Now the dependence of ρ on ω2 becomes important because the derivative is with respect to ω and
not ω2. By changing variables to s = ω2, the above relation takes the form

lim
p0→0+

∂p0G(p20) = − lim
s→0+

√
s∂sρ(s)

Assuming that ∂sρ(s) is well-behaved at s = 0, it follows that lims→0+
√
s∂sρ(s) = 0, and therefore

Eq. (6) no longer appears to provide a non-trivial connection between the asymptotic behaviour
of the propagator and its corresponding spectral function. It may well be that the statements
made above are invalidated under certain conditions on ρ(s), and a non-trivial connection between
the low-frequency spectral function and infra-red propagator does indeed exist, in which case the
authors need to specify precisely what these conditions are, and whether they have any bearing on
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their results.

Here are some more general comments and optional points to take into consideration:

• In Eq. (11) it is assumed that the spectral function has a sequence of (complex) poles and a
continuous contribution ρA(λ). Is ρA(λ) completely arbitrary, or are there certain conditions
imposed on this component? For example, does ρA(λ) vanish at λ2 = M2

j ? There is also a
typo in Eq. (11): the LHS should presumably read GA(p0), not GA(ω).

• It is stated that Eq. (20) follows from Eq. (6). As with Eq. (6), it would be appreciated if
the authors could provide at least a sketch of this argument.

• In Fig. 6 the systematic error on the gluon spectral function is given. How exactly is this
estimated? Also, given this error on the spectral function, is it possible to translate this into
an error band on the reconstructed propagator? It would perhaps be interesting to see how
this uncertainty translates.

• The authors plot the Schwinger function ∆(t) in Fig 8. As another check of superconvergence
the authors might also consider plotting ∆̇(t), which is proportional to the integral of the
spectral function at t = 0 (see e.g. the discussion in section III of 1310.7897).

In summary, I find this study interesting but I cannot recommend publication in SciPost Physics
until the specific points I’ve raised, in particular with regards to Eq. (6), have been addressed.
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