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Synopsis

This paper computes the supersymmetric ground states for a class of A-twisted and B-twisted 3d N = 4 theories on
Σ×R, where Σ is a Riemann surface of genus g. The technical tools for the computation have been developed by the
authors in a series of earlier papers. The current paper uses these tools to explicitly work out the supersymmetric
ground states for a large class of Lagrangian field theories (under certain assumptions) and checks the consistency
of the computation under 3d mirror symmetry.

The basic idea behind the computation is to first write the 3d theory as an effective gauged supersymmetric
quantum mechanics (SQM) with an infinite-dimensional gauge group and appropriate matter content. The SQM
can be viewed as a sigma model with a target space which is generically infinite-dimensional. In the next step,
one uses supersymmetric localization to arrive at a SQM with a smaller target space. If the target space is smooth
and compact, one can use the standard technique of realizing the ground states as harmonic (p, q) forms on the
target space. If the target space is not compact, one turns on real masses in the Cartan subalgebra of Higgs branch
global symmetry. The fixed locus of the resultant C∗m (or U(1)m) action gives the final target space, which is compact.

For the A-twisted case, the effective SQM is a (2,2) SQM with a target space M , where M is the moduli space
of twisted quasimaps from Σ to the Higgs branch X. Then, localization and turning on of mass parameters reduces
the target space to the locus of quasimaps from Σ to a set of isolated points on the Higgs branch. This locus has a
simple realization in terms of symmetric products of the curve Σ and their tensor products. The ground states can
then be computed from the de Rham cohomology of these symmetric products.

For the B-twisted case, the effective SQM is a (0,4) SQM with a target space X (i.e. the Higgs branch) and
a hyperholomorphic line bundle E , for a generic choice of the FI parameters. Localization and turning on of real
masses, in this case, leads to a fixed locus which is a set of isolated points. In the limit where these real masses are
infinitely large, the supersymmetric ground states are given by the perturbative ground states attached to each point
on the Higgs branch, up to instanton corrections. The authors argue that in the specific case of these (0,4) SQMs,
there exists no suitable instantons. Therefore, the perturbative answer is exact.

The authors work out several examples and confirm that the space of A-twisted ground states of a given theory
agrees with the space of B-twisted ground states and vice-versa. They also confirm that their result agrees with the
appropriate limits of the A-twisted and the B-twisted indices in each case.

Comments and Questions

The paper addresses a very interesting physics question (i.e. finding supersymmetric ground states) for a 3d N = 4
theory and gives a very nice answer in terms of the Higgs branch geometry. I think the paper easily meets the
acceptance criteria for this journal and I recommend its publication. However, I have a few questions/comments
that I would like the authors to address, prior to publication.

• The simplest mirror symmetry: Comparing the computations in Section 5 and Section 7, one observes
that the space of ground states for the A-twisted U(1) theory with a single hyper agrees with that of the
B-twisted free hyper. However, it seems that the ground states for the A-twisted free hyper agrees with that
of the B-twisted mirror only when the degree of the background holomorphic line bundle d = 0 – comparing
equation (5.9) with the statement following equation (7.9). Why is this reasonable?

• The limit of large mass in the B-twisted case: For the A-twisted computation, one justifies the limit

|ζ̃| → ∞ with ζ̃ = e2 vol(Σ) ζ
2π , as the IR/strong-coupling limit. In contrast, taking the large mass limit looks like

a mere computational trick in the B-twisted case. Can one give a physical justification for taking this large

1



real mass limit? For example, is such a limit dictated by mirror symmetry once you have taken |ζ̃| → ∞ in the
A-twisted computation?

• The limit of large FI parameter in the A-twisted case: The authors take the IR limit as |ζ̃| → ∞
where ζ̃ = e2 vol(Σ) ζ

2π and e2 →∞ with ζ held fixed, and comment that this limit is important for matching the
ground states under mirror symmetry. Naively, one could also take the IR limit as e2 → ∞ with ζ → 0, such
that ζ̃ is held fixed. This would mean approaching a wall of the FI chamber, and generically one would have
certain extra states to account for. Is the first limit a simplifying computational trick or is the second limit
inconsistent with mirror symmetry for some reason? I think a comment clarifying this point will be helpful.

Typos

• Equation 2.21: I think there is a missing r′ on the RHS.

• Page 20, first and second sentences : missing references.

• Page 25, last sentence: I think the equation number should be (2.13) instead of (2.14).

There are quite a few (less significant) typos in various parts of the paper.
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