
Report on the paper
Notes on symmetries in particles physics

by Akash Jain

These introductory notes deal with the application of symmetries in quantum field theory
and particle physics.

The first part of these lectures is devoted to a short introduction on group theory. Section
1 is devoted to the description of finite groups and continuous (or Lie) groups. In the latter
case, the notion of Lie algebra is introduced. Sections 3 and 4 are devoted to the description
of unitary groups, central for the Standard Model of particles physics, whilst Section 4 to the
description of spacetime symmetries, namely the Lorentz and the Poincaré algebras. These
four sections could be improved and sometimes the introduced notions are either imprecise
or contain several mistakes (see the remarks below).

The second part of these lecture is devoted to the realisation of symmetries in QFT
or in particle physics. Section 6 deals with the implementation of symmetries in QFT by
means of the Nœther theorem which is proved with some details (even for a non-canonical
theory). The local symmetries or gauge symmetries are then considered. In Section 7 the
Standard Model of particle physics based on the local Lie group SU(3)c × SU(2)L × U(1)Y
is introduced. This is certainly the most interesting part of these lectures. In particular
the goal of Sections 6 and 7 is to give with a lot of details the Lagrangian of the SM. More
precisely the author emphasises on the final Lagrangian obtained after symmetry breaking,
including a nice discussion on flavor physics (CKM matrix). Finally, in Section 8 an interest-
ing discussion on the discrete symmetries P, T and C and on the CPT−theorem is performed.

Since there are, as mentioned by the author, many excellent books or monographs on the
subject (in the reviewer’s opinion, the author should have included more of such references),
this is a quite difficult task to write lectures on group theory with an original approach.
In spite of some interesting (in particular in Sections 6 and 7) and illustrative examples,
it is considered that the lectures do not present enough new pedagogical material in order
to be published. Furthermore, I have seen too many misleading presentations or incorrect
definitions (especially in the first part). Thus I cannot recommend the publication of these
lectures in SciPost Physics Lecture Notes.

In order to improve the manuscript, I will make now my remarks section-by-section.

Section 2.1

1. Eq. (2.6) is not very clear, in fact noting K the generator of (2) we have

R(θ) = lim
n→∞

(1 +
θ

n
K)n .
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Section 2.2

1. p.8 l-2 (2) symmetry transformations are associative. The author has to specify
why the operations are associative. This is due to the fact that in physics, symmetry
operators are represented either by matrices or by differential operators.

Section 2.3

1. p. 10 in the section Representations the author defines a representation of a group G
as a mapping D : G→ GL(n). This is imprecise, as this could be GL(n,R), GL(n,C).
This is not precised. In fact at this point I suggest to the author to present the three
different types of representations: (1) real, (2) complex and (3) pseudo-real.

2. p. 11 in the last bullet the authors should speak about the Wigner Theorem.

Section 2.4

This section in unclear and very confusing. Many points have to be clarified

1. In the paragraph Generators and structure constants the author should specify
that the Lie algebra is finite dimensional.

2. Eq. (2.15) why there is an ~ factor? I understand for the Lie groups of SO(3) or SU(2)
since the generators are related to the angular momentum and have the dimension of
an action. But I do not understand for SU(3) or other Lie groups.

3. Eq. (2.15) the author has to specify that the structure constants belong to the field F.

4. Eq. (2.15) the index structure of the structure constants is fab
c and not fabc (see also

below).

5. Three lines before Eq. (2.15) the author writes X =
∑

a αaTa: (1) the index structure
is not correct; (2) a factor i is missing (for instance for so(2) the generators are purely
imaginary −see Eq.[2.18]−, but an element of so(2) is a real matrix); (3) with the con-
ventions of the author the generators have the dimension of an action, but elements of
the Lie algebra are dimensionless so we have to divide by ~. Thus with the conventions
of the author an element of the Lie algebra writes:

X =
i

~

dim g∑
a=1

αaTa.

Subsequently all expansions have to be corrected (2.24), (2.15), etc.

6. Eq.[2.16] many points to be corrected

(a) In the Lie algebra g the product of two elements is not defined, thus TaTb has
no meaning (only the Lie bracket [Ta, Tb], which is not the commutator has a
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meaning). The metric is then defined through a given representation, say the
adjoint representation (see p. 17). Thus we have

gab = Tr(T adj
a T adj

b ) = −facdfbdc .

This is the definition of the Killing form. We also see that the Lie algebra must be
finite dimensional in order that this definition makes sense, since the dimension
of the adjoint representation is the dimension of the Lie algebra itself.

(b) If the Lie algebra is not semisimple (as for example the Poincaré algebra) the
Killing form is degenerate and in this case g−1 does not exist.

(c) If the Lie algebra is semisimple the Killing form is non-degenerate (or invertible),
but not definite positive, for instance for the Lorentz group in four-dimensions
the metric has signature (+ + +−−−). Only for compact Lie algebra we have

Tr(T adj
a T adj

b ) = Cδab, C > 0

(d) When the algebra is compact, since the space is Euclidean, we do not have to care
about the position of the indices, but in general for a simple Lie algebra we have
to raise and lower indices with the metric and its inverse. Thus

fabc = fab
dgcd .

(e) Page 16: The Lie algebra u(n) is not semisimple, but reductive. In this sense,
the Footnote 2 is false, as a semisimple algebra is always non Abelian. Otherwise
it would conflict with the semisimplicity criterion of Cartan, that establishes the
non-degeneracy of the Killing form.

(f) p. 16 In the paragraph Lie algebra representation point (2) the author defines
a representation as satisfying D([X, Y ]) = [D(X), D(Y )]. This is incomplete.
Indeed if V is the vector space on which D(X) acts then D(X) is an endomor-
phism of V . Since the composition of two endomorphisms makes sense the correct
definition is

D([X, Y ]) = [D(X), D(Y )] = D(X)D(Y )−D(Y )D(X) .

Section 2.5

1. p. 17, when the author defines a Lie group by its set of parameters this is correct, but
may be he should make some relations with differentiable manifolds. For instance we
have that the Lie group SU(2) ∼= S3 (the three-sphere).

2. The definition of Lie subgroup is incorrect. Either the subgroup is closed as topological
space, in which case it is indeed a Lie subgroup inheriting the differentiable structure
of G, or it is not closed, in which case it is called an immersed Lie subgroup. Moreover,
in the definition of simple Lie group, the assumption on connectivity is not necessary,
but again, that the group is not Abelian.
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3. Eq.[2.33] is correct only for compact Lie groups since in this case any element of the Lie
group can be obtained exponentiating an element of the Lie algebra. This is wrong for
non-compact Lie groups. For instance if we consider SL(2,R) which is non-compact
then (

−eσ 0
0 −e−σ

)
, σ ∈ R

belongs to SL(2,R). However, for any matrix of sl(2,R)

x =

(
a b
c −a

)
, a, b, c ∈ R

we have
X 6= ex .

The correct result is the following: any element of a Lie group G can be obtained as a
finite product of exponentials of elements of the corresponding Lie algebra.

4. P. 19 in the examples given, the author should define more precisely the various Lie
groups and Lie algebras, and in particular should explain the relationship between a
Lie group G and its Lie algebra g, i.e. for X ∈ G if we write X = 1 + ix with x ∼ 0
how the conditions upon X translate into appropriate conditions for x. For instance

SO(n) = {R ∈Mn(R}, detR = 1, RtR = 1}

and (with R = 1 + ir)

so(n) = {ir ∈Mn(R}, rt + r = 0}

Indeed in physicists literature there is often a confusion between Lie algebras and Lie
groups (confusion not made by the author). The difference between Lie algebras and
Lie groups has to be emphasised in a pedagogical text.

Section 3.

For clarity the author should specify that U(1) = {z ∈ C, |z|2 = 1}.

Section 4.1

1. p. 22, l. 8 the author should specify that su(2) is a real vector space.

2. after Eq.[4.6] there is a problem of label and (2.29) should be (2.30).

Section 4.2

1. I think that equation (4.11) necessitates more details, for instance specifying that
(n− 1)−order fully antisymmetric tensors are isomorphic to the anti-fundamental rep-
resentation through

ψ̄i = εij1···jn−1ψ
(j1···jn−1)

because of (4.10).
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2. I think that the section on Young tableaux (a very important topic) necessitates more
details. For instance in the rules 1-4 given p. 24 there is an ambiguity since it seems
that a Young Tableaux is symmetric in its rows whilst is antisymmetric in its columns.
In fact it is not the case. Indeed if we consider a Young tableaux Y we define the
Young projector as follows: P = AS, where S symmetrises first the row and then A
antisymmetrises the columns. Thus given a tensor T, its corresponding irreducible part
associated to Y is given by

TY = AST .

3. In the tensor decomposition given p. 25, for clarity I suggest to the author to substitute
a1, a2, · · · by b1, b2, · · · since these numbers are associated to the row of B.

Section 4.3

1. As for the U(1) section, I suggest to the author to specify that

SU(2) =

{(
a b
−b∗ a∗

)
, a, b ∈ C, |a|2 + |b|2 = 1

}
.

2. Some important part which is missing in this text is the following. Given a represen-
tation of a Lie algebra D(Ta) = Ma, satisfying

[Ma,Mb] = ifab
cMc

then we have three other possible representations: the dual representation −M t
a, the

complex conjugate representation −M∗
a and the dual of the complex conjugate repre-

sentation M †
a . If the representation is unitary then there is possibly only one other

representation since −M∗
a = −M t

a and M †
a = Ma

[−M∗
a ,−M∗

b ] = ifab
c(−Mc)

∗

If Ma 6= −M∗
a and there exists a matrix P such that

−M∗
a = PMaP

−1

the two representations are equivalent, and the representation is said to be pseudo-real.
In the case of the fundamental representation of su(2) we have

−(σi)∗ = σ2σi(σ2)−1.

Thus the fundamental and anti-fundamental representation are isomorphic. May be
some words in this direction should be said.

Section 4.4

1. The definition of unitary representation is crucially missing.
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2. Some important part which also missing is the concept of Cartan subalgebra (which is
mentioned in a subliminal way by the author). The algebra su(3) is of rank two, that
is there exist two self-normalised commuting operators, say T3 and Y .

Let me replace these operators in a more general context: Let g be a compact semisim-
ple Lie algebra of rank rkg and dimension dim g.

(a) The minimal set of operators to characterise unambiguously all vectors in an
arbitrary representation is given by

1

2
(dim g + rkg) = rkg +

1

2
(dim g− rkg)

(b) Any representation are characterised by the eigenvalues of the rkg Casimir oper-
ator. In the case of su(3) representations are classified by the eigenvalues of the
quadratic and cubic Casimir operators given after equation (4.26). This should
be emphasised by the author. Moreover, it should be welcome that the author
explains (even succinctly) formulæ (4.28).

(c) Given a representation specified by the eigenvalues of the Casimir operators,
any states are specified by the eigenvalues of the rkg generators of the Cartan
subalgebra of g, but also internal label operators. In the case of su(3) since
1
2
(dim g− rkg) = 3 one need beyond T3 and Y an additional operator called I2 by

the author (see p. 28, before Eq.[4.27]). Again the author should emphasise this
point in a pedagogical lecture. If not we wonder why I2 is considered.

3. I think that the discussion above, not often given in physical literature should be given
in order to put the results in perspective.

4. I think that the explicit expressions (4.31) are interesting. May be the author should
add some word in order to explains these relations, and surely give some references.
But again in order to put these results in perspective I also suggest to relate the
representation D(p, q) with the highest weight representation introduced by H. Weyl
and in particular explain (even in few words) the algorithm to construct the whole
representation from the highest weight state. This is mentioned very briefly without
any details just after eq.[4.31]. See for instance the Ref. [9] of the author where highest
weigh representations are studied with many details and examples.

Section 5.1

1. The author takes two different definitions for σµ (see p. 35, l. 1 and p.37 after Eq.[5.28]).
He should take a uniform definition.

2. In Footnote 4 the author introduces σ̄µ, not defined at this stage and does not explain
how he raises indices for a matrix.

3. After Eq.[5.16] the author writes

SL(2,C) = SU(2)⊕ SU(2) or sl(2,C) = su(2)⊕ su(2)
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This is a very big mistake often stated in physical literature. The confusion comes
from real form of complex Lie algebras (an important concept note presented in these
lectures). For instance, if we consider the three-dimensional complex Lie algebra
sl(2,C) with Lie brackets

[H,X±] = ±X± , [X+, X−] = 2H

it has two real forms

(a) the compact real form or su(2) ∼= so(3), generated by T1 = 1/2(X+ + X−), T2 =
−i/2(X+ −X1), X3 = H with Lie brackets

[Ta, Tb] = iεab
cTc

(b) the split real form or sl(2,R) ∼= so(1, 2) ∼= su(1, 1), generated by V1 = i/2(X+ +
X−), V2 = −i/2(X+ −X1), V3 = iH with Lie brackets

[V3, V1] = −iV2 , [V1, V2] = iV3 , [V2, V3] = iV1

4. The fact that the equality written in Item 3 above is incorrect is very simple to under-
stand. Indeed for all compact Lie groups unitary representations are finite dimensional
whereas all unitary representations of non-compact Lie groups are infinite dimensional.
Since SU(2) ⊕ SU(2) is compact unitary representations are finite dimensional and
classified by two half-integer numbers. Since SL(2,C) is non-compact unitary repre-
sentations are infinite dimensional, the study of unitary representations of SL(2,C) is
a difficult task. This mistake has to be corrected throughout the lectures.

5. The discussion after Eq.[5.16] (Taking · · · ) is confusing.

Section 5.2

1. Eq.[5.23] are representations of sl(2,C), but these representations are non-unitary
(see item above). This has to be specified.

2. In eq.[5.24] εµνρσ is not defined. It has to be defined.

3. Γ is a Casimir operator. The Lorentz algebra admits a second Casimir operator. May
be it should be given too.

4. Usually left-handed spinors have undoted indices whilst right-handed spinors doted
indices, the author takes the opposite convention, this might lead to some confusions.

5. When the author raises or lowers spinor indices he takes the following conventions
ψα = εαβψβ and ψα = εαβψ

β. The second relation should be explicitly written and
seems to be in contradiction with the last equation p. 37.
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6. We have to be careful with δαβ since

δα
β = εαγε

γβ

implies
εγαδα

βεδβ = −δγδ
For this reason I specify δα

β or δβα and never write δβα.

Section 5.3
This section has to be completely rewritten.

1. First sentence of this section: Poincaré transformations are an extension · · · . I would
not use the word extension, since an algebraic extension has a totally different meaning.

2. This section misses an extremely important feature of the Poincaré algebra. Indeed,
since the Poincaré algebra has a semi-direct structure (as says the author), the study of
its representations follows the method of induced representations of Wigner established
in the seminal paper [V. Bargmann and E. P. Wigner, Group theoretical discussion of
relativistic wave equations, Proc. Nat. Acad. Sci. 34 (1948) 211.] (see also the first
tome of the excellent book of S. Weinberg on Quantum field Theory).

(a) One of the Casimir operator is PµP
µ as said the author. But three cases must

be considered: (i) PµP
µ > 0, (2) PµP

µ = 0 and PµP
µ < 0. The first case

corresponding to massive particles, the second case to massless particles and the
last case to the unphysical tachyons.

(b) Then the so-called little group or little algebra has to be introduced. To obtain
unitary representations of the Poincaré algebra: (1) study representations of the
little algebra in the so-called standard frame, (2) boost these representations to
any frame.

(c) In the massive case since the little group is SO(3) the degrees of freedom are the
mass m (eigenvalue of PµP

µ) and the spin s (related to the eigenvalue of WµW
µ)

and are associated with the two Casimir operators of the Poincaré algebra. The
representation is of dimension either (2s+1) (particle = anti-particle) or 2(2s+1)
(particle and anti-particle).

(d) In the massless case since the little group is E2, considering SO(2) ⊂ E2, the
eigenvalues of the two Casimir operators are not enough and we have to introduce
the so-called helicity. Massless states have two degrees of freedom corresponding
to the two possible values of the helicity ±h, h = 0, 1/2, 1, · · · .

3. P. 42, do not understand when the author says For massless · · · close to the speed
of light, such that pµ → 0.

Section 6.1

Just one remark. P.47 the author mentions that Weyl fermions forbid a mass term,
what he calls a curious feature. In fact this observation can be deduced directly from
representation theory of the Poincaré group (method of induced representations) since
massive and massless particles behave differently.
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Section 6.2

1. In this section the author considers a general symmetry group. He has to specify that in
fact it is a compact Lie group since only in this case finite dimensional representations
are unitary.

2. Up to now the author only considers compact unitary groups, i.e., SU(n), and nothing
is said about the other series or the exceptional groups. In particular he does not
explain how to obtain representations in these cases. Either this has to be clarified or
the author has to specify that Gint = SU(n).

3. Considering a Lie algebra g with generators Ta, given an n−dimensional representation
the author notes D(Ta) the corresponding n × n matrix representation. However, in
this section, the author notes sometimes Ta the matrix representation instead of D(Ta).
This has to be unified.

4. The author has to recall that fab
c are the structure constants of the Lie algebra gint

(he should not write them fabc, see below).

5. The index structure has to be uniformed. Even if the Lie group is compact and the
Killing form reduces to δab meaning that covariant and contravariant indices are the
sames, I think it would be more clear, if the author respects the usual conventions of
summation of repeated indices (see for instance Eq.[6.35, 6.42]). Note that sometimes
the convention is respected (see between eq.[6.35] and [6.35]).

6. Footnote 11 (and also the discussion on p. 86) are not correct. In general relativ-
ity, as said the author, the symmetry group is the diffeomorphism group, but these
transformations correspond to a gauging of spacetime translations and not of Lorentz
transformations. Indeed, because of the principle of equivalence in any point of the
spacetime we can find a frame where gravitation has been eliminated. It is in this
tangent flat spacetime that we have local Lorentz invariance (a Lorentz transformation
in a curved space has no meaning).

7. P. 50 the authors speaks of “curious” byproduct. This is in fact not a curious observa-
tion but more precisely a consequence of the Nœther procedure which implies in what
way matter couples to gauge fields. This is a general property of gauges theories.

8. In Eq.[6.44] and the following, the author has to recall his notations concerning left,
right and Dirac spinors.

9. In Eq[6.45] the author has to specify that q is the charge of the various fields.

10. P. 52, the author says that the kinetic term of gauge fields is introduced by hand. In
fact we can show that if we don’t introduce such a kinetic term, energy is not conserved.
Thus conservation of the energy implies such kinetic terms

11. Between Eqs[6.55] and [6.56], when we do not speak of representation tr(TaTb) has no
meaning (see also my remark related to Section 2.6).

12. P. 53 εµνρσ has to be defined.
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Section 6.3

1. P. 54 when the author gives the vertex interactions, may be he should give also the
corresponding Feynman rules. For instance for the first vertex for a Dirac fermion it
will be −ieγµ.

Section 6.4

1. In this section the author wants to be general, i.e., doesn’t specify the gauge group.
This is a little bit confusing and the distinction between Higgs space and Goldstone
space is not very clear. [I suggest the very good reference K. Huang, Quarks Leptons
and Gauge Fields.]

2. In all scalar potentials the author has to specify λ > 0, in order that potentials are
bounded from below. Similarly he has to say µ2 > 0 (in (6.73) and (6.68), but in
(6.68) the potential has the term +~µ2 and not −~µ2 (or equivalently −µ2 < 0). This
misprint should be corrected.

3. When the field φ develops the vev (7.74) the author does not specify under which group
Gint is broken too. For SU(n) it would be down to SU(n− 1).

4. Eq.[6.75] is not very clear φ̂0 is an n−dimensional vector, the exponential term an n×n
matrix, v is a number, but what is η (I suppose that it is an excitation around the
minimum). This has to be specified.

5. In [6.75] again the count of the degrees of freedom is also confusing. If the gauge
group is SU(n), since the unbroken group is SU(n − 1), in the exponential factors
only the D(Ta) corresponding to SU(n)/SU(n − 1) act non-trivially on φ̂0. Since
SU(n)/SU(n− 1) is of dimension 2n− 1 and η is a real scalar the field φ has 2n real
degrees of freedom.

6. P. 58, the author explains in which way Higgs mechanism gives a mass to the gauge
bosons. He should explain that it is the only way to have a renormalisable theory with
massive gauge bosons.

Section 6.5

1. May be recall that χ is a left-handed spinors whereas ψ is a right-handed spinor
throughout.

2. In Eq.[6.89] precise that φ0 =
(
0 1

)t
.

3. After relations (6.94-6.97), may be recall the Gell-Mann-Nishijima formula.

4. In the “Mexican-hat” potential (6.88) precise λ > 0, µ2 > 0, when he set v = µ/
√
λ

what is the sign of µ =
√
µ2?

5. In the vertices of interactions p. 64 and p. 65, may be it should be interesting to
precise the Feynman rules.
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6. What about propagators?

7. What about ghost sector?

Section 7

1. When considering a compact Lie group as the unitary group, SU(n), any representa-
tions of the Lie algebra su(n) can be exponentiate to a representation of the Lie group
SU(n). Conversely, to any representation of the Lie group SU(n), by differentiation
we can associate a representation of the Lie algebra su(n). Thus, the discussion in
the first paragraph of Section 7.1 is confusing. For instance for su(2), I wonder why
the author makes the distinction between su(2) and SU(2) representations. I think
that the author should say that A,B, · · · = 1, 2, 3 and I, J, · · · ,= 1, 2 are indices in
respectively the adjoint or fundamental representation.

2. In Eq.[7.17] we can identify easily the part which leaves φ̂0 invariant, i.e., when π = π0,
could the author make some conclusion of this observation? In fact I wonder why the
coupling constants are not present (see Eq. [6.89]). See also Footnote 1 of Section 6.4
above.

Section 8

1. P. 80, in Symmetry operators algebra the author writes P 2, T 2, C2 ∝ 1, but in fact
we have P 2, T 2, C2 = 1 since the group is Z3

2.
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