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The submitted article deals with the Anderson transi-
tion on random graphs, a subject that has attracted much
attention recently due to its analogy with the MBL tran-
sition. The article follows an important debate on the
nature of the delocalized phase of this transition, namely
whether it is non-ergodic, i.e. multifractal, or not. After
a number of studies, there is now a consensus on the er-
godic nature of the delocalized phase on random graphs
of infinite effective dimensionality, without boundary but
with loops. The result of this debate has been the inter-
esting discovery of ensembles of random matrices having
a non-ergodic delocalized phase, as well as the finite size
Cayley tree. Now that this question has gained consen-
sus, the question arises as to why it is so difficult to
answer the ergodic–non-ergodic question. The authors,
based on finite-size scaling of different models of random
graphs, propose that in the delocalized phase there is
not one but two characteristic lengths, associated with
two different critical exponents. The delocalization tran-
sition would be controlled by a first length diverging al-
gebraically with an exponent ν = 1/2, while the ergodic
behavior would be reached beyond another length asso-
ciated with an exponent ν = 1. As the second length
diverges faster than the first, this would account for a
very large (diverging at the transition) range of system
sizes where the behavior would be de facto non-ergodic.

This study challenges the theoretical approach of Fy-
odorov and Mirlin and Tikhonov and Mirlin, for this
transition, which predicts a unique 1/2 exponent. This
unique 1/2 exponent has been numerically verified in a
number of studies. The interest of the present study is
that it explains why some of these studies observe this
exponent 1/2 when in fact there is, according to the au-
thors, another exponent 1. Moreover, they explain how
to generalize the determination of the critical disorder
Wc for the Bethe lattice and random regular graphs, to
the different random graph models they consider. This
is often the main source of uncertainty on the critical
properties so that this is a key point of their study. The
authors seem to find the same type of critical behavior
in the different types of random graphs they consider,
therefore their results seem to be universal. All these
points make this study a priori interesting.

I say a priori because unfortunately I disagree with a
number of analysis carried out in this work which lead
me to think that the proposed new exponent ν = 1 is not

well demonstrated. To be more precise, the authors hav-
ing kindly shared their data with me, I will show later in
this report that their data are compatible with a single
critical exponent ν = 1/2. It should be noted, at this
stage, that their work directly contradicts several papers
we published (Refs. [80,81] of the manuscript) or submit-
ted ( arXiv:2209.04337) recently. They use the same type
of scaling approach, some observables we considered, and
even the same smallworld model. It is therefore impor-
tant to compare the two analyses, so as to see which of
the two is right (or at least more accurate).

The authors mainly consider a very popular, although
rather imprecise, observable of localization: the average
gap ratio, which I note here 〈r〉 (they denote it r). This
observable tends towards a value rP ≈ 0.386 in the lo-
calized phase and towards rGOE ≈ 0.53 in the ergodic
phase.
a. Ergodic crossover scale WT (L).– The proof by

the authors of the new critical exponent ν = 1 con-
sists of two steps: first they study the behavior of the
disorder WT (L) below which a system of size L has a
〈r〉 > rGOE − pr where pr is a small threshold, see fig-
ures 5-7. WT (L) controls the crossover to the ergodic
ergodic regime. The authors claim that their data follow
the following behavior at large L: WT (L) −WT

∞ ∼ 1/L
with WT

∞ ≈Wc where Wc is the critical disorder they de-
termine independently. To understand what this could
mean, it is better to consider the corresponding charac-
teristic size LT (W ) (inverse of WT (L)): for L > LT (W ),
a system of size L has an ergodic value 〈r〉 = rGOE .
If WT (L)−WT

∞ ∼ 1/L with WT
∞ = Wc, then LT (W ) ∼

(Wc−W )−1. This is one indication of a critical exponent
ν = 1 controlling the crossover to the ergodic regime.

However, I will propose below an alternative analysis of
the data in this regime which supports instead a critical
exponent ν = 1/2. The starting point is the observation
that 〈r〉 close to rGOE follows a volumic and not a lin-
ear scaling (the fact that these two types of scaling are
distinct and play an important role was shown in [80,81]):

〈r〉 = F(N/Λ(W )) , (1)

where N is the total number of sites and Λ(W ) is the
correlation volume. We predicted this volumic scaling in
Ref. [80] for the multifractal properties and confirmed it
for the spectral statistics in our recent arXiv:2209.04337
(see Fig. 17 of that paper for the SWN with p = 0.06).
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FIG. 1. Upper panel: Volumic scaling of 〈r〉 close to the
ergodic crossover 〈r〉 ≈ rGOE . The different data for the
RRG D=3 model with 7 ≤ W ≤ 12.5 (system sizes 10 ≤
L ≤ 16) collapse onto a single scaling curve when plotted as a
function of L− ξ(W ) where the scaling length ξ(W ) depends
only on the disorder strength W . Lower panel: WT (L) (or
equivalently LT (W )) is determined by the value of disorder
for which a system of size L has 〈r〉 = 0.52 ≈ rGOE . ξ(W ) is
equal to LT (W ) up to an irrelevant additive constant. We fit
LT by the behavior Eq. (3) with the critical exponent ν = 1/2
andWc = 18.17 (determined by the authors) fixed, and a0 and
a1 two fitting parameters. We find an excellent agreement
with the data. We choose to represent the data as WT as a
function of 1/L as in Fig. 5 of the authors. This figure shows
that WT is well described by a critical exponent ν = 1/2.

Furthermore, we showed that the correlation volume can
be fitted accurately by:

ln Λ = a0 + a1(Wc −W )−ν , (2)

with an exponent ν ≈ 0.5. This form corresponds to
Λ = α0 exp(a1(Wc−W )−ν) with a0 = lnα0 which should
not be omitted, especially far from the transition point
where (Wc −W )−ν is not necessarily large.

In figure 1, I show that these properties are also ob-
served for the data of the authors for the RRG D = 3
model. The upper panel of Fig. 1 demonstrates the volu-
mic scaling of 〈r〉 = f(L− ξ(W )) where ξ(W ) = ln Λ(W )
is the correlation length associated with the correlation
volume Λ(W ). The scaling length ξ(W ) (black dots in

the lower panel) is determined up to an additive constant
that we can fix to reproduce LT (open blue square dots
in the lower panel). This suggests that LT can be fitted
as:

LT = a0 + a1(Wc −W )−ν . (3)

This is what I have done here, taking Wc = 18.17 deter-
mined by the authors and ν = 1/2 fixed while a0 and a1

are two fitting parameters. I find a very good agreement
with the data in the whole range of disorder values close
to the ergodic crossover. In the lower panel of Fig. 1, I
show the corresponding WT as a function of 1/L. This
figure should be compared with Fig. 5 (b) of the authors.
The behavior (3) associated with the critical exponent
ν = 1/2 works perfectly well for all the range of sizes
corresponding to the ergodic regime. Thus, the data for
the ergodic crossover in the RRG model with D = 3 are
compatible with a critical exponent ν = 1/2.

I would like to stress that this very good agreement
comes as a surprise because by definition, WT or LT are
quantities defined very far from the critical regime, where
we can usually expect significant non-linear corrections
to the algebraic behavior of the correlation length ξ ∼
(W −Wc)

−ν . So that this should not be thought as a
controlled determination of the critical exponent ν, but
rather as a compatibility check with ν = 1/2 which works
surprisingly well.

I would suggest that the authors test the behavior (3)
with their data for the other models they have considered
(I have done that for RRG D=4 and it works very well
also) and compare the goodness of fit with the behavior
they propose LT (W ) ∼ (Wc−W )−1. Moreover, it seems
to me that their estimation of WT

∞ depends crucially on
the range of system sizes where they make a linear fit of
WT (L) −WT

∞ as a function of 1/L. Could the authors
quantify that uncertainty?
b. Finite-size scaling close to the transition point.–

The second argument of the authors in favor of a critical
exponent ν = 1 in the delocalized phase mainly lies in
the scaling hypothesis Eq. (11) together with figure 8
which aims to validate this scaling hypothesis. One of
the key elements of the scaling hypothesis (11) is given
by the critical behavior of 〈r〉 at the transition, W =
Wc, described as an algebraic convergence with L to its
Poisson value:

〈r〉(Wc)− rP ∼ L−ω . (4)

This behavior was already discussed in Refs. [27,81]
and has been discussed in some details in our recent
arXiv:2209.04337. One important new point of the ar-
gumentation of the authors is that ω should be equal to
2. In the insets of figure 8, they show that the numerical
data seem to follow this trend at sufficiently large sys-
tem sizes. The value of ω = 2, together with ν = 1,
is crucial to explain the observation of an “effective”
critical exponent νeff = 1/2 for the crossover to delocal-
ization observed in several references, see e.g. [30] and
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FIG. 2. Critical behavior of 〈r〉 at W = Wc (or the closest
W available in the set of data of the authors) as a function
of L, confirming the algebraic decay toward Poisson, Eq. (4).
The fitted ω exponents do not seem to be universal, and are
smaller than 2. The large system sizes do not show a different
behavior as compared to small ones. This figure should be
compared with the insets of Fig. 8 of the authors.

arXiv:1810.07545. I say effective because, according to
the analysis of the authors, the true critical exponent is
ν = 1.

I don’t understand the claim of the authors that the
data follow the trend with ω = 2, even at large system
sizes. In Fig. 2, I plot directly ln(〈r〉(Wc)−rP ) as a func-
tion of lnL. I observe clearly a linear behavior, consistent
with Eq. (4) with however ω < 2 and not universal. In
particular, I do not observe a different trend of the data
at “large” system sizes as compared to small ones. Why
do the authors plot in the insets of Fig. 8 their data as
〈r〉 as a function of 1/L2?

The scaling hypothesis (11) is then checked by the au-
thors in the main panels of Fig. 8. Taking the values
ω = 2, Wc determined independently and ν = 1, they
manage, with only a single fitting parameter A, to put
the data for different system sizes and different values
of the disorder into a single scaling function. This scal-
ing function describes the flow towards delocalization for
W < Wc. The fact that this works with a single fitting
parameter A, independent of W , is remarkable.

I have nevertheless several questions here: The data in
the scaling plots reach atW →Wc the value rP . However
the authors have also data for W > Wc, in the localized
regime. How do these data scale? They have values lower
than rP ? How to understand that? The authors suggest
a modified scaling assumption, Eq. (10) to describe this
regime, but how do they justify its form and how pre-
cisely this works in the localized regime? Another ques-
tion is why the authors consider a limited range of system
sizes in their scaling analysis? They have for the SWN
with p = 0.06 data for 7 ≤ L ≤ 16. Could the authors
show the collapse of the data for the whole range of sys-
tem sizes? This is particularly important as the critical
behavior with ω = 2 is clearly not valid for small system
sizes, such that one could expect to observe significant

deviations. My final question is the limited range of W
values shown in Fig. 8. In particular, the authors use this
scaling behavior to recover the behavior of the boundary
of the ergodic region WT (L), see Eq. (12). Therefore,
their scaling hypothesis Eq. (11) should be valid up to
the ergodic regime, i.e. for small values of W far from
the transition point Wc. Could the authors show this
scaling behavior in this regime?

As discussed by the authors, we recently analyzed the
scaling behavior of 〈r〉 in SWN near the transition, see
[81] and arXiv:2209.04337. We found that our data are
consistent with another scaling hypothesis:

〈r〉 − rP
〈r〉(Wc)− rP

= Flin(L/ξ(W )) , (5)

with a scaling length ξ(W ) which depends only on
W . Our approach did not make any assumption on
the behavior of the scaling function F or on ξ(W ).
Wc was determined by a best collapse argument (see
arXiv:2209.04337) and is found close to the value pre-
dicted by the authors for p = 0.06. We found a very
good collapse of our data onto a single scaling function
for 0.8 ≤ W ≤ 2.4 values both in the delocalized and
localized regimes, and for all system sizes 10 ≤ L ≤ 18,
see Fig. 11 of arXiv:2209.04337. The scaling length ξ(W )
is found to diverge at Wc as ξ(W ) ∼ |W −Wc|−ν with
ν ≈ 1/2. We checked these scaling properties for different
values of the p parameter of SWN. I want to stress that
this scaling behavior is valid in the delocalized regime
sufficiently close to the transition, i.e. not in the ergodic
regime. In fact the ergodic regime 〈r〉 ≈ rGOE , is rather
described by a volumic scaling Eq. (1). We have pro-
posed a possible scaling hypothesis which could describe
the two regimes, critical and ergodic as:

〈r〉 = [rP + (〈r〉(Wc)− rP )Flin(L/ξ)]Fvol(N/Λ(W ))

+ rGOE(1− Fvol(N/Λ)) , (6)

with the volumic scaling function Fvol(N/Λ) → 1 for
N � Λ while Fvol(N/Λ)→ 0 for N � Λ. This accounts
for the two types of scaling observed in both critical and
ergodic regimes. It is very difficult to demonstrate the
validity of this latter scaling hypothesis, because it is a
two-parameter scaling hypothesis. In this description,
the finite-size properties are controlled by two scaling
parameters (similarly to what propose the authors), a
length ξ and a volume Λ, but both of them are associ-
ated with the same critical exponent ν = 1/2.

It is interesting to note the similarity between this hy-
pothesis and Eq. (10) of the authors. Indeed, 〈r〉(Wc)−
rP is compatible with ∼ L−ω (with ω < 2, see Fig. 8 of
arXiv:2209.04337). The scaling function f of Eq. (11) of
the authors is replaced by the volumic scaling function
Fvol and f1 corresponds to Flin. In the critical regime
Fvol → 0, so that the linear scaling described by Flin is
observed, and we recover Eq. (5).

The authors state that they have used our scaling
approach to analyse their data for RRG D = 3 and
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FIG. 3. Finite-size scaling of the 〈r〉 data close to the transition Wc. The data for the different models are accurately fitted
by Eq. (7) with Wc given by the authors in the Table 1 of their paper, and ν = 1/2 fixed. ω is a fitting parameter and its
obtained value is given for each model considered. It agrees well with that found in Fig. 4. Non-linear corrections are small but
necessary to describe accurately the data. In the localized phase far from the transition, they lead to non-monotonous behavior
of the scaling function which is an artifact of the Taylor expansion of the scaling function and parameters. An important note
is that all L and W data in the W range indicated have been used and considered.

D = 4 and find critical exponents ν ≈ 0.64 and 0.67,
and that they find deviations from our scaling for data
with 〈r〉 ≥ 0.4 which is quite small and could indicate
that our scaling behavior Eq. (5) would have for these
models a very limited range of validity. I am surprised
by these observations because I found I am able to fit
accurately the data of the authors for these models with
our assumption Eq. (5), using the critical disorder deter-
mined by the authors and the critical exponent taken as
ν = 1/2. More precisely, I fit the data with

〈r〉 − rP = L−ωF (L1/νw) , (7)

equivalent to (5), with w = (W −Wc) +A2(W −Wc)
2 +

A3(W−Wc)
3 and F (X) =

∑5
k=0BkX

k. In this analysis,
the fitting parameters are the Aks, Bks and ω, whereas
Wc and ν = 1/2 are fixed. All curves for different W ,
in a range that I indicate for each model, are fitted si-
multaneously. The data that the authors kindly gave to

me did not have error bars such that the goodness of fit
cannot be evaluated, but I indicate the value of the χ2

defined as:

χ2 =
∑
W,L

[
(〈r〉 − rP )− L−ωF (L1/νw)

]2

. (8)

The results are shown in figure 3. The agreement with
the data is very good as shown by the χ2 ≈ 10−5. The
fitted ω values correspond well to that found in Fig. 4.
Note that the non-linear corrections are quite small but
nevertheless have to be taken into account to describe
accurately the data. An important final note is that I
have considered all system sizes available, and indicated
clearly the range of W values considered for the fit. The
restriction is rather in the delocalized side where too far
from the transition the data deviate from linear scaling
and crossover to a volumic scaling as shown in Fig. 1.
Note that the minimal disorder considered corresponds to
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rather large values of 〈r〉: RRG D=3 〈r〉max = 0.45, RRG
D=4 〈r〉max = 0.51, SWN p=0.06 〈r〉max = 0.44, URG8
〈r〉max = 0.52. In the localized side far from the transi-
tion, the non-monotonous behavior of the fitted scaling
function is an artifact of the Taylor expansion and related
to the fluctuations of the data at very small 〈r〉.

This figure 3 shows quantitatively that the data of the
authors close to the transition are also compatible with
a critical exponent ν = 1/2. I think the authors should
compare the χ2 they obtain from their fit with the χ2 I
have indicated, taking into account all system sizes in the
range of W considered. After all, the scaling considered
here is L/ξ and one should allow for L to vary in the
largest range to have a significant determination of the
relevant scaling function and critical exponent.

c. Conclusion of the report.– In this long and de-
tailed report, I have offered an alternative analysis to
that of the authors of their data. I first showed that
the characteristic scale WT (L) of the crossover to the er-
godic regime 〈r〉 ≈ rGOE was perfectly compatible with
a critical exponent ν = 1/2. Eq. (3) takes into account
the authors’ prediction for the critical disorder Wc with
only two fitting parameters, and describes all the data for
the different accessible system sizes corresponding to the
ergodic regime crossover. Also, I showed that the data
in the vicinity of the transition were also perfectly com-
patible with a critical exponent ν = 1/2 and the linear
scaling assumption, Eq. (7).

I think the authors’ data are precise enough to deter-
mine quantitatively which of the two scenarios, mainly
ν = 1/2 or ν = 1 and ω = 2 is more likely. I therefore
invite the authors to make this quantitative comparison.
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