I would like to address a problematic part of the definitions of the Lax-operators. In section 7 the authors give an iterative definitions for higher loop Lax operator (7.6), (7.8)

$$
\begin{equation*}
\mathcal{L}_{a_{1} \ldots a_{n}, i}(u)=P_{a_{1}, i} \ldots P_{a_{n}, i} \check{\mathcal{L}}_{a_{1} \ldots a_{n}, i}(u) \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\check{\mathcal{L}}_{a_{1} \ldots a_{n}, i}(u)=\check{\mathcal{L}}_{a_{1} \ldots a_{n}}(u)+g^{2 n} \mathcal{A}_{a_{1} \ldots a_{n}, i}(u) \tag{2}
\end{equation*}
$$

where $\check{\mathcal{L}}_{a_{1} \ldots a_{n}}(u)$ is the $g^{2 n-2}$ order Lax:

$$
\begin{equation*}
\mathcal{L}_{a_{1} \ldots a_{n-1}, i}(u)=P_{a_{1}, i} \ldots P_{a_{n-1}, i} \check{\mathcal{L}}_{a_{1} \ldots a_{n-1}, i}(u) \tag{3}
\end{equation*}
$$

The integrability requires the $R L L$-relation. The $R L L$-relation for the Lax operator $\mathcal{L}_{a_{1} \ldots a_{n-1}, i}(u)$ is

$$
\begin{equation*}
\mathcal{R}_{a_{1} \ldots a_{n-1} ; b_{1} \ldots b_{n-1}}(u) \mathcal{L}_{a_{1} \ldots a_{n-1}, i}(u) \mathcal{L}_{b_{1} \ldots b_{n-1}, i}(v)=\mathcal{L}_{b_{1} \ldots b_{n-1}, i}(v) \mathcal{L}_{a_{1} \ldots a_{n-1}, i}(u) \mathcal{R}_{a_{1} \ldots a_{n-1} ; b_{1} \ldots b_{n-1}}(u)+\mathcal{O}\left(g^{2 n}\right) \tag{4}
\end{equation*}
$$

and for the Lax operator $\mathcal{L}_{a_{1} \ldots a_{n}, i}(u)$ is

$$
\begin{equation*}
\mathcal{R}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}(u) \mathcal{L}_{a_{1} \ldots a_{n}, i}(u) \mathcal{L}_{b_{1} \ldots b_{n}, i}(v)=\mathcal{L}_{b_{1} \ldots b_{n}, i}(v) \mathcal{L}_{a_{1} \ldots a_{n}, i}(u) \mathcal{R}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}(u)+\mathcal{O}\left(g^{2 n+2}\right) \tag{5}
\end{equation*}
$$

But we can truncate this equation in order $\mathcal{O}\left(g^{2 n}\right)$ as

$$
\begin{equation*}
\mathcal{R}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}(u) \mathcal{L}_{a_{1} \ldots a_{n}, i}(u) \mathcal{L}_{b_{1} \ldots b_{n}, i}(v)=\mathcal{L}_{b_{1} \ldots b_{n}, i}(v) \mathcal{L}_{a_{1} \ldots a_{n}, i}(u) \mathcal{R}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}(u)+\mathcal{O}\left(g^{2 n}\right) \tag{6}
\end{equation*}
$$

which obviously do not contain $\mathcal{A}_{a_{1} \ldots a_{n}, i}(u)$, it contains only $\check{\mathcal{L}}_{a_{1} \ldots a_{n-1}, i}(u)$. My question is: what guaranties that if (4) has a solution $\check{\mathcal{L}}_{a_{1} \ldots a_{n-1}, i}(u)$ then this Lax solves the second equation (6), too. Without this proof the recursive definition (2) is not consistent.

There is an other related question. Let us expand the R-matrix in the similar way:

$$
\begin{equation*}
\mathcal{R}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}(u)=\mathcal{R}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}^{0}(u)+g^{2 n} \mathcal{B}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}(u) \tag{7}
\end{equation*}
$$

where $\mathcal{R}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}^{0}=\mathcal{O}\left(g^{2 g-2}\right)$. Clearly the equation (4) contains $\check{\mathcal{L}}_{a_{1} \ldots a_{n-1}, i}(u)$ and $\mathcal{R}_{a_{1} \ldots a_{n-1} ; b_{1} \ldots b_{n-1}}(u)$, the equation (6) contains $\check{\mathcal{L}}_{a_{1} \ldots a_{n-1}, i}(u)$ and $\mathcal{R}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}^{0}(u)$ therefore the matrices $\mathcal{R}_{a_{1} \ldots a_{n-1} ; b_{1} \ldots b_{n-1}}(u)$ and $\mathcal{R}_{a_{1} \ldots a_{n} ; b_{1} \ldots b_{n}}^{0}(u)$ should be connected somehow. My second question is: what is the connection between these matrices.

I also found two typos.

- In eq (3.6) $V^{-1} \rightarrow V^{-1}(u)$.
- In eq (4.7) $P_{2,1} \rightarrow P_{a_{2}, a_{1}}$.

