
Report on ”Precision magnetometry exploiting

excited state quantum phase transitions”, by

Q.Wang and U.Marzolino

This work discusses the use of excited-state quantum phase transition (ES-
QPT) in the Lipkin-Meshkov-Glick (LMG) model to implement metrological
protocols. The authors first introduce the structure of the LMG excited-state
structure and the presence of ESQPT. They then discuss the sensitivity of the
system to small changes of the Hamiltonian, quantified by the quantum Fisher
information (QFI), which shows super-extensive scaling with the system size.
Finally, they proceed to introduce metrological protocols exploiting this scaling
advantage.

This work provides a valuable contribution to the field of quantum sens-
ing, by showing how the excited-state properties of the LMG could be used to
achieve accuracy up to the Heisenberg scaling. As far as I can tell, the results
are correct and new (I checked sections 1 to 3, as well as parts of section 4 and
5). I think the authors should also mention quantum sensing in systems showing
a dynamical phase transition (for instance [1, 2]), since those are also related
to the ESQPT studied here. Overall, I believe this work should be suitable for
publication in Scipost, but I would like the following points to be adressed first:

My main concern is the claim that the superextensive scaling of the QFI
comes from the presence of the ESQPT. Although I fully agree that the QFI
here shows super-extensive scaling, I am not sure it couldn’t be obtained oth-
erwise. My reasoning is the following: in Fig.2, we see that the QFI scales
like N2 for all values of h. Even for h = 0, when we are seemingly far away
from the transition, we still obtain super-extensive behavior. Hence, it seems
to me that this N2 scaling may not come from the ESQPT directly; rather, it
comes from the fact that we pick up highly-excited states. To be more precise,
consider the two Hamiltonians S2

x/N or Sz constituting the LMG. Taken in-
dividually, they do not display any ESQPT; yet their highly-excited states are
Dicke states with high dipole moment, which can exhibit super-extensive sensi-
tivity. As the authors state themselves on p.2, one would talk about a critical
behavior when we have two phases with a ”normal” extensive behavior, and a
different, super-extensive behavior occuring only at the boundary. This is the
case, for instance when we consider the ground-state of the LMG, for which
the QFI shows O(N4/3) scaling at the critical point only, and O(N) elsewhere.
Here, it seems to me we can find this super-extensive behavior everywhere. I
have included a more detailed discussion in the Appendix below.
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To be clear, this doesn’t affect the validity or interest of the results pre-
sented here; but I think the claims of the paper should be amended. These are
threefold: the QFI allows to witness the presence of the ESQPT, we can de-
sign a protocol showing super-extensive scaling using excited-state preparation,
and this super-extensive scaling comes from the ESQPT. It is this latter claim
which I believe to be incorrect. In this regard, there are multiple statements
that should be rewritten or supressed: for instance ”Fh exhibits a sharp peak
close to the critical energy Ec, and its maximum value... increases with the
system size N” and ”The superextensivity of the QFI... is therefore a signature

of the ESQPT” on p.7, ”both 〈Ek|S2
z |Ek〉 and

〈
Ẽk

∣∣∣S2
z

∣∣∣Ẽk〉 scale as O(N2)

at the critical point” on p.10, ”their critical behavior is the key resource for
enhanced precision” on p.19.

Other points that must be adressed:

� I found the way Σ∗F was defined a bit confusing. From the caption of
Fig.4, I take it it corresponds to the half-peak width of the QFI, but
when expressed as a function of E/N? Could the authors write this down
explicitely in the main text?

� More generally, I found the notations ΣFh
(Ek) and Σ∗Fh

rather cum-
bersome, I would suggest something like Σh(Ek) and Σ∗E(h) instead, to
lighten up the notation and highlight which parameter one takes the width
against.

� After Eq.(8), there is a somewhat complicated argument to conclude that
〈Ek|Sz |Ek〉 behaves like Nκ, with κ ∼ 1.02. Instead, I would simply and
immediately say κ = 1, since magnetization is an extensive quantity...
To which one can add a quick comment stating that numerical analysis
confirms this scaling (the 0.02 deviation is much more likely to come from
finite-size effects or numerical errors in the implementations than from
relevant physical effects, in my opinion).

Minor points/typos:

� After Eq.(12), it could be interesting to show ρ(E)p(E) and F(E) on the
same figure, to illustrate how they overlap when N changes.

� p.8: the notation ĈU2j∆t is fairly cumbersome, I would suggest something
like ĈU (j) instead

� p.9: ”For instance, psucc = 0.9 imples” → ”implies”

� p.13: ”also the metrological performances are probabilistic”→ ”the metro-
logical performances are also probabilistic”

� p.15: ”scale with N much slowly than the spacing”→ ”much more slowly”

� still on p.15, ”we show the robustness magnetometric performances” →
”the robustness of the magnetometric”

� p.15 still, ”We then obtain superextesive QFI” → ”superextensive”
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1 Appendix

Let us write |m〉 the eigenstates of Sx; we have then:

Sx |m〉 = m |m〉

Sz |m〉 =
√
N(N + 1)−m(m− 1) |m− 1〉+

√
N(N + 1)−m(m+ 1) |m+ 1〉

If h is small enough (more precisely, for h � N−2), then hSz can be safely
treated as a perturbation, and the eigenstates of the full LMG Hamiltonian are
still given by |m〉, with energies m2/N .

To compute the QFI, we need to consider terms of the form
(
〈m|Sz|n〉
Em−En

)2

.

Let us consider two neighboring highly-excited states, |m〉 and |m+ 1〉, with
m = kN and k = O(1). Then we have directly 〈m|Sz |n〉 = O(N), and

Em+1 − Em = (m+1)2−m2

N = (2m+ 1)/N = O(1). As the authors state shortly
before Eq.(4) in the main text, these scalings are ultimately responsible for the
superextensive scaling of the QFI. However, as we just showed, this behavior
can be obtained for vanishingly small value of h, deep in the h < 1 phase, where
the ESQPT should not play any role. This suggest that the behavior which
is obtained here comes purely from the excited-state structure of S2

x/N , rather
than from the competition between S2

x/N and Sz.

Alternatively, we could also propose a protocol more in line with Ramsey
interferometric protocol, in which we prepare the eigenstates of S2

x/N , then let
it evolve under a weak field Sz; in this case, we recover again a N2 scaling,
without relying on critical effects at any point. To conclude, it seems to me
that the protocol discussed here may not really be called critical, in that it
doesn’t leverage the competition between two operators to give rise to a different
behavior. Rather, its interest would lie in the preparation scheme, which allows
to differ from usual approaches relying on one-axis twisting operations.
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