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Summary This paper aims at deriving the quantum field theory associated with a statis-
tical ensemble of recurrent or fully connected neural networks from first principles. The idea
of the paper is to start with the description of the ensemble in terms of a stochastic differen-
tial equation to which one can associate a path integral, and reinterpret it as a field theory.
Using ideas from statistical physics, it is then possible to compute different parameters such
as the Lyapunov exponent and correlation length in terms of the network parameters (such
as the standard deviations of the weights and biases) to characterize the properties of the
network.

This is an important topic in its infancy, and this paper deserves careful attention.
However, the paper in its current form is difficult to follow and the computations do not
seem as general as suggested in the abstract and introduction. It is also difficult to see what
concrete applications can be. As a consequence, before recommending it for publication, I
would recommend a major revision of the presentation.

Strengths

1. Study from first-principle the NN-QFT correspondence, which is an important topic.

2. Computations are overall clear and detailed.

Limitations

1. The presentation is very unbalanced.

2. Many assumptions are introduced along the way without proper discussion.

3. There are no numerical tests to support the approach of the paper.

4. It is not clear how the results are connected to concrete applications.

Review I have some general remarks about the methodology of the paper:

1. The authors introduce many assumptions at various stages of the paper. While they
are necessary to perform analytic computation, it seems that they restrict a lot the
original claims (from the abstract and introduction) and make obscure the physical
meaning of the computations. In particular, each assumption is introduced as a minor
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technical assumption without taking into account the bigger perspective. While the
authors come back on some assumptions in the conclusion, I feel that they should be
discussed earlier, possibly all at the same place before starting the computations.
From a more general point of view, I think it is important for physicists applying
physics methods to computer science to remember that, in the end, what matters
is to make contact with the “real” world and not just build an abstract formalism.
For example, a lot of work has been done at the end of the ’80 to understand neural
networks with statistical physics, but this has played no role in the recent resurgence
of neural networks and the design of new architectures.

2. sec. 2 to 4: I would suggest clarifying the role of the time t, the different assumptions
which are made, and what it means physically. While the assumptions are clearly
needed to make progress, it is important to understand what it means for concrete
neural networks and how much we can expect the current computations to be valid
for numerical experiments.

(a) sec. 2.1: The neural network is originally described by a set of hidden layers
indexed by t ∈ {0, . . . , T}. To reach eq. (2.9), the continuous-time limit is taken.
While it is a useful assumption and allows to reuse the formalism of path integral
for stochastic process, this is not easy to interpret. I can see how it would make
sense for a large set of layers, but I am still slightly uncomfortable (and even
more after taking T →∞, see below).

(b) sec. 2.3, p. 16, above eq. (2.41): The authors introduce the assumption that
“(. . . ) the system exhibits time translation symmetry (. . . )”

While this is necessary for most of the computations of the paper, this is a very
strong assumption and I would suggest spending more time discussing it and what
this means (this is done in the conclusion, p. 59 §2 but this appears far too late
given the importance of this condition). Boundaries are breaking time translation
invariance, so it means that time becomes either periodic or non-compact (the
second being chosen later). What does this mean in terms of neural networks
(beyond what is said in the conclusion)?

(c) sec. 4.3 and 4.4: this section assumes T → ∞ such that T/N is fixed since the
expansion is made in terms of the T/N . However, the fact that the expansion
parameter is T/N is specified quite late, only in sec. 4.3.2, §1, p. 43. More
problematic, the fact that T →∞ is specified only in footnote 37, p. 43 (though
it is also said that it is kept finite to act as a regulator, sec. 4.3.2, §2, p. 43). As
explained above, taking a non-compact continuous time makes the interpretation
as a neural network difficult.

3. sec. 2.1, p. 6, below eq. (2.2): How restricting is the assumption of taking all layers to
have the same width? Could we miss some effects for which relative changes in layer
widths could be important (like autoencoders)?

4. sec. 2 and 3: There seems to be a problem with the definition of g. First, in sec. 2.1,
g is a function of h and x, see eq. (2.3) or (2.13), and the shortcut gt := g(ht, xt) is
introduced above (2.7). Later, it is written as g(t), see (2.34): while it seems to be
just a generalization of the previous shortcut, my interpretation of (2.34) is that it is
not the case, since below the equation it is written:

“(. . . ) we retain the freedom to choose the diffusion coefficient g(t, x).

which is a different notation from which h has disappeared.
Second, below (3.3) it is written

“(. . . ) the term on the last line is the contribution from the common
stochasticity KB(−g

∑
α z̃

α).”
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Since g depends on x and h (in principle) and both are double-copied (in eq. (3.3),
both variables have an index α), then why is g common to both copies?

5. sec. 3.1, p. 26, below (3.33): The authors claim that their computations apply to fully
connected networks (MLP). However, this seems to be a borderline case:

“(. . . ) in order to study networks at the edge of stability, we will hence-
forth consider the case with γ > 0.”

whereas MLP are characterized by γ = 0, see below (2.16) p. 10.

6. Similarly, the authors write that they work for general activation functions. However,
they make several hypotheses that restrict a lot the domain of application:

(a) sec. 4, p. 31, eq. (4.13): The authors fix φ(h) = ϕ(h) = tanh h and perform a
Taylor expansion, keeping the first two non-trivial terms. At this stage, this is
fine because it looks like the methods would generalize to other functions by just
replacing the Taylor expansion.

(b) sec. 4.1, p. 35, below eq. (4.36):
“This would lead (. . . ) in the Taylor expansion.”

This paragraph is confusing because it looks like a choice, where it is really an
assumption. As stated, more comments appear elsewhere (below (4.48) maybe?),
but the tone is confusing.

(c) sec. 4.1, p. 37, below eq. (4.48), §1:
“Since φ(h) ∈ [−1, 1], we expect the next order term to be less impor-

tant (. . . )”
which is a crucial assumption because it is not true for most activation functions.
In particular, there is no small parameter in the argument of φ(h) so it is not
consistent to truncate its expansion to a finite order (see for example the kind
of computations with an exponential interaction in [1, p. 11]), except in the very
specific case above where the value of the function is bounded.

(d) sec. 4.4: How legal is it to omit higher-order corrections from the Taylor expan-
sions? The argument from the previous point is approximately acceptable, but
this looks more dubious for general activation functions. I understand that it may
be very difficult to include other interactions, but it is important to discuss what
is expected: would it be possible to classify the graphs according to the order of
interactions they contain, or will all graphs be mixed (I expect the second case
since there is no expansion parameter)?

I would suggest to either work with more general activation functions by using a general
Taylor expansion instead of (4.13):

φ(h) = φ0 + hφ′(0) + h2 φ′′(0) + · · · (1)

and to explain clearly the impact of the truncation in sec. 4.4, either to state in the
abstract/introduction that they work only with φ(h) = tanh h (or even more precisely
with a cubic odd polynomial).

7. sec. 5, p. 58, §3:

“This leads to the question whether such a theory is renormalizable: we
have shown that the infinite series of corrections to the two-point function
converge at weak coupling in T/N (. . . )”

This seems to be contradicted by the term in T 2/N found by the authors (which
diverges as T,N →∞, with T/N fixed), see (4.76).
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Clarity Overall, the text is quite unbalanced: it looks like the authors focus a lot on alge-
braic manipulations at the expense of conceptual explanations. Here is a list of suggestions
for improving the presentation:

8. It seems that a lot of content in sections 2 and 3 has been reproduced from [45] and
it is not always easy to understand what are the new contributions from the authors.
Hence, I would suggest stating clearly what are the new results and formula of this
paper. Moreover, if section 2 is strongly inspired from [45], it could be made a bit
shorter (though it is useful to have it self-contained), see the comments below.

9. While I appreciate papers where computations are spelled out in a clear way and where
the reader can easily follow each step, I found that it was slightly too explicit in the
current paper. In particular, given the absence of figures and motivations for some
conceptual aspects, this makes the paper looks quite unbalanced. Also since the paper
is very long and seems to take materials from other sources like [45], I would suggest
reducing the length of some computations. Here are a few examples:

(a) sec. 2.2, p. 11 eq. (2.23): the second and third lines are just completing the square,
this is so trivial that it can be omitted.

(b) sec. 4, p. 33, e. (4.28): it would be much simpler to just take the Fourier transform
of (4.24).

(c) sec. 4, p. 34, e. (4.30): second equality is not necessary (the only change compared
to the next line is i = −1/i).

10. sec. 1: The authors indicate that this paper is part of the NN-QFT correspondence, it is
hard to how it is related to earlier papers such as [7-9] which stated the correspondence
clearly.

11. sec. 1, p. 3, §2: From the opening sentence

“In this work, we explicitly construct (. . . )”

it looks like the authors are building this field theory for the first time. However, it
appears that it was done before in [44-45], which could be cited there.

12. sec. 2: I think it would be useful to summarize in words the method followed in sec. 2
to build the field theory (introducing auxiliary fields, etc.) at the beginning of the
section, such that the reader has an idea of where the paper is going. Currently, it
looks a lot like a series of formal manipulations and it is hard to get an intuition of
why we do this and where we want to stop.

13. sec. 2.1, p. 6: The starting point of the whole paper is equations (2.1) and (2.2) which
are stated without any motivation or intuition. Given how central it is to the paper
and how other points are over-detailed (like completing a square), it would be very
useful to spend some time introducing the model. In particular, how it is related
to recurrent or fully connected networks? What is the interpretation of the different
parameters A, B, etc.? At the top of p. 7, there is a brief note on MLP, however,
this is not sufficient to completely characterize MLP; in fact more information is given
below (2.16) after modifying (2.2) to (2.16): hence, I think it would be very useful to
show how the MLP emerges as a concrete example. Figures could also help.

14. sec. 2.1, p. 6: It is not clear if the last hidden state hT corresponds to the output layer
or not. The output layer is not a hidden layer, so it seems that hT should not be the
last layer, but then how do we read the output values?

15. sec. 2.1, p. 6, eq. (2.2): Why introduce this functional form for f instead of (2.16)
which is used in most of the paper? The form (2.2) for f does not seem important for
sec. 2.1 and using a unique form would simplify the discussion and reduce information
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overload. Moreover, the comment below (2.16) seems to indicate that the latter is
more common in the literature.

16. sec. 2.1, p. 6: It is not clear if the last hidden state hT corresponds to the output layer
or not. The output layer is not a hidden layer, so it seems that hT should not be the
last layer, but then how do we read the output values?

17. sec. 2.2, p. 10, eq. (2.16): What is the intuition for / interpretation of the new pa-
rameter γ? Is it a fixed number (real, positive?), a statistical variable, a matrix? The
paragraph below (2.23) seems to indicate that it is an arbitrarily fixed real “constant”,
but this should be explained earlier.

18. sec. 2.2, p. 10, eq. (2.18): This equation would be better below (2.15).

19. sec. 2.2, p. 12, eq. (2.25): I am quite confused by the phrase:

“introducing the N2-local field variables A, etc.”

A(t1, t2) :=
σ2
A

N

∑
j

hj(t1)hj(t2) (2)

Indeed, it looks like A, etc., are each a single bi-local field: they depend on two times
t1, t2 ∈ [0, T ], and the sum over j = 1, . . . , N means that there is a single compo-
nent. Given the sentence, I would have expected to see (still) bi-local matrix fields
Aij(t1, t2) = hi(t1)hj(t2), as one sees for the general use of the Hubbard-Stratonovich
transformation [2, sec. 21.6] (though given the structure of the Lagrangian it makes
sense to introduce a single bi-local field).

20. sec. 2.2, p. 12, footnote 15: I am confused by the statement of the footnote: it says
that

“(. . . ) N should be sufficiently large for the Gaussian distributions to be
valid (. . . )”

but below (2.29) it is written that:

“(. . . ) up to this point, the result (2.28) is exact, subject to working with
the ensemble average 〈Z〉X,b.”

The first sentence and the last part of the second seem to indicate some approximation,
which seems to be in tension with saying that it is “exact”. Maybe the interplay
between the two sentences could be clarified.

21. sec. 2.2, p. 12, eq. (2.32): The input xi(t) vectors seem to be fixed and independent
of hi and z̃i and are not integrated over in the path integral (see previous equations),
so what is the meaning of computing the expectation values? Moreover, the authors
could note that the auxiliary fields B and U have a slightly different role compared to
A and W since they are built out of non-dynamical variables but still introduced as
new fields in the path integral.

22. sec. 2.3, p. 17-18, eq. (2.45) to (2.47): The paragraph above (2.45) is not very clear.
Moreover, it would be helpful to explain in more detail how one arrives at the Gaussian
measure (2.47) starting from the non-Gaussian measure (2.35).

23. sec. 3: Can you provide more intuition for using a double copy? I am quite confused
by how to interpret it, especially in the context of neural networks.
For example, I don’t understand eq. (3.2): the parenthesis says

“(. . . ) between two identically-prepared copies of the system (. . . )”
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but one still considers different trajectories. So by “identically prepared”, do you mean
“same parameters for the path integral” but then we consider different trajectories (=
solutions) finishing at different times?

24. sec. 3.1, p. 20, footnote 20: Writing [h(1), h2(s)] is superfluous: it is obvious that hα(t)
is a real function and not an operator (which have not been used at all in this paper)
and having a commutator here is more confusing than enlightening.

25. sec. 3.2, p. 25, eq. (3.23): The symbol d(t) is ambiguous: the previous definition of d
in had d(t1, t2) = d(τ), and below in (3.24) we have τ = t− s.

26. sec. 3.2, p. 25, eq. (3.24): The symbol T is already used to denote the upper limit of
t, so it would be clearer to introduce another symbol.

27. sec. 3.2, p. 26, above eq. (3.32): This is confusing because it sounds that all solutions
to the time-independent Schrödinger equation are bound states in the present case,
however, the sentence below (3.38) seems to indicate that scattering states are also
possible. It would help to clarify this point and maybe discuss the properties of V ′′

(which allows it to have bound states) below (3.32).

28. sec. 3.2, p. 27, below eq. (3.38): I am confused by this paragraph and (3.38): the first
sentence that the solution (3.38) is not the ground state, but the paragraph concludes
by saying that it characterizes the edge of stability which in turn is a condition on the
ground state, see below (3.33).

29. sec. 4, p. 28, §1:

“(. . . ) deviations from Gaussianity require the addition of corrections
terms, corresponding to the fact that higher cumulants no longer vanish.
In the language of QFT, these correspond to loop corrections to the leading
order or tree-level result above.”

This sentence is strange: for a free (Gaussian) QFT, cumulants (connected) Green
functions vanish since the Green functions are given purely by disconnected two-point
functions following Wick theorem. Thus, interactions give non-vanishing contributions
to the cumulants. I am sure that the authors are aware of these facts, but this is not
how the paragraph reads.

30. sec. 4.1, p. 37, below eq. (4.48), §2:

“(. . . ) we shall see that the weak coupling condition (. . . )”

Just to be sure, the “weak coupling” means T/N?

31. sec. 4.1, p. 37, below eq. (4.48), §3:

“While this can be done analytically, the resulting expression is exceed-
ingly lengthy and not particularly enlightening, so we refrain from including
it here.”

In view of all the details given in the paper, why omit here a formula?

32. sec. 4.2, p. 40:

“(. . . ) the double-line notation here closely resembles that introduced by
’t Hooft (. . . )”

This is not a resemblance, this is exactly the same idea (a matrix field has two indices
so a ribbon propagator; an n-tensor field has n strands).

33. sec. 4.4.2, p. 50, below eq. (4.76):
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“Therefore, we will obtain a factor of δ(ω = 0) when inverse Fourier
transforming the product c(ω)2.”

The factor δ(0) appears already before the Fourier transform since c(ω) ∼ δ(ω), so
c(ω)2 ∼ δ(0)δ(ω).

There are a few minor typos:

1. sec. 2.1, p. 7, eq. (2.5): Missing index on h and x in the arguments of f and g.

2. sec. 4, p. 30, eq. (4.10): 〈z̃it)〉 → 〈z̃i ( t)〉

3. sec. 4.1, p. 33, between eq. (4.26) and (4.28): there are various typos, most instances
of x should be replaced by t except f̂(x)→ f̂(ω).

4. sec. 4.3.1, p. 42, eq. (4.53): there is an extra comma after dτ ′′
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