
Report on t’ Hooft lines of ADE type and

topological quivers

In his seminal work ‘Supersymmetric gauge theory and the Yangian’
Costello proposed a connection between integrable spin chains and an un-
usual mixed-topological theory now known as 4d Chern-Simons (4dCS). In
particular, the R-matrices of spin chains are realised as the vacuum ex-
pectations of crossing Wilson lines, and concatenating them gives transfer
matrices. The Yang-Baxter equation and RTT relations then follow from
diffeomorphism invariance of 4dCS in the topological direction.

For a number of years a central ingredient was missing from this nar-
rative: the Baxter Q-operator. This omission was resolved by the paper of
Costello, Gaiotto and Yagi: ‘Q-operators are t’ Hooft lines.’ Therein the au-
thors demonstrate how the Baxter Q-operators for SLn(C), SO2n(C), E6(C)
and E7(C) can be realised in 4dCS. They are obtained by concatenating
more primitive objects, L-operators, which arise as vacuum expectations
of crossing Wilson and t’ Hooft lines. The latter are taken to have mag-
netic charge equal to a miniscule coweight of the adjoint form of the group.
As part of this analysis, the authors obtained oscillator constructions of
these L-operators when the Wilson line is in the fundamental of SLn(C) and
SO2n(C), matching known descriptions in the literature. This procedure
was also sketched in the case of E6(C), in which case the resulting oscillator
construction was novel.

In this paper, the above procedure is applied for various choices of rep-
resentations for the Wilson line R and miniscule coweights µ to obtain os-
cillator realisations for L-operators. As the miniscule coweights are a subset
of the fundamental coweights, they can be labelled by a Dynkin index. The
particular cases considered are:

- G = SLn(C): R = n and µ = µk for k = 1, . . . , n− 1.

- G = SO2n(C): R = 2n and µ = µ1 (the vector representation), µ = µn
(one of the two spinor representations).

- G = E6(C): R = 27 and µ = µ1.

- G = E7(C): R = 56 and µ = µ1.
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It’s my understanding that all of these L-operators have appeared in the
literature previously, although the exceptional cases only recently in the
related work ‘On exceptional ’t Hooft lines in 4D-Chern-Simons theory’ by
a subset of the authors. Nevertheless, the present work provides a thorough
exposition of their construction.

The remainder of this paper concerns a procedure for assigning quiver
diagrams, termed topological gauge quivers, to triples (G,R, µ) for G the
gauge group, R the G representation of the Wilson line and µ a miniscule
coweight determining the magnetic charge of the t’ Hooft line. These dia-
grams have a formal similarity to those determining supersymmetric quiver
gauge theories. The topological gauge quiver provides a succinct way of
encoding much of the data relevant in the construction of the corresponding
L-operator. The authors illustrate these quivers for the choices of G and µ
listed above, and for a wider class of representations R. For example, in the
case of G = SLn(C) and µ = µk for k = 1 . . . , n−1 they find the correspond-
ing topological gauge quivers for R = n, S2n, S3n, Λmn (for m ≥ 2) and ad.
In the case of E7(C) the authors note that sequentially specifying miniscule
coweights in the Levi subalgebra generates a chain of ADE type algebras.
In this sense 4dCS for G = E7(C) unifies many of the other examples.

In order to recommend publication, I feel that the following points would
need to be addressed:

- The procedure for assigning a topological gauge quiver to the data
(G,R, µ) is not transparent to me. The choice of miniscule coweight
distinguishes a (reductive) subalgebra l ⊂ g, and the representation
R then decomposes into irreducibles. Am I correct in thinking that
the nodes of the quiver are labelled by these irreducibles? The links
between nodes are then labelled by products of Weyl algebra gener-
ators. How are these determined? An explanation of exactly how a
topological gauge quiver is constructed would help clarify the paper.

- Is it possible to explicitly recover an L-operator from the correspond-
ing quiver? To my knowledge oscillator L-operators are not known
for all choices (G,R, µ) for which topological gauge quivers are con-
structed. The quiver description would be better motivated if it could
be exploited to generate a novel L-operator.

- In the work of Costello, Gaiotto and Yagi it’s proposed that phase
spacse of t’ Hooft lines can be identified with the Coulomb branches of
certain ADE quiver gauge theories. These can naturally be quantized
by Ω deformation. The groups and flavours assigned to the quiver
are related to magnetic charges of the t’ Hooft lines at z = 0,∞.
Is there any connection between these quiver gauge theories and the
topological gauge quivers considered in the manuscript?
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- In figure 30 topological gauge quivers are illustrated for R the ad-
joints of SO2n(C),E6(C), E7(C). However, the adjoint representation
does not lift to the corresponding Yangian in these examples, and so
there are no corresponding Wilson lines in 4dCS. Are the associated
L-operators to be interpreted semi-classically? If so, distinguishing
in which cases semi-classical vs quantum L-operators are being con-
structed would be useful.

- Explicit L-matrices appear in equations (3.61), (3.74), (4.101), (5.168,
(6.204) and (7.242) (and the subsequent equations). I understand
these examples have all appeared in the literature elsewhere, although
in the exceptional cases only in the related paper ‘On exceptional ’t
Hooft lines in 4D-Chern-Simons theory’. If so, it would be useful to
include references to the original works in which they appear. If they
are novel, it would be worth stating this explicitly.

I also have some further minor comments:

- The equation of motion of 4dCS (2.4) is not correct. It should read

dz ∧ (dA+A ∧A) = 0 . (1)

In particular this is not topological in the CP1 direction.

- In equation (2.14) both instances of zµR should be replaced by µR.

- In equation (2.24) does sl1 refer to Zn or C? Presumably the latter?

- I understand that the second column of table (2.26) lists representa-
tions of sl1 ⊕ sln. What is the representation 1̄? On a related note,
in the third row representations appear in pairs, e.g., F−1/N 1̄1/N−1.
Is there an implicit tensor product here? If so surely we can add the
charges and remove the 1̄ factor. (This is repeated elsewhere in the
manuscript.)

- In equation (3.60) the combination Y ρ1̄ appears, but this vanishes by
equation (2.37). I think Y should appear on the r.h.s. of ρ1̄.

- In figure 11 the red arrow and blue arrows connecting the k(N − k)
and lµk nodes appear to be backwards. The charges do not match up.

If these points are addressed I believe the manuscript would meet the
acceptance criteria.

3


