Dynamical instantons and activated processes in mean-field glass models
Valentina Ros, Giulio Biroli, Chiara Cammarota
SciPost Phys. 10, 002 (2021) · published 4 January 2021
- doi: 10.21468/SciPostPhys.10.1.002
- Submissions/Reports
-
Abstract
We focus on the energy landscape of a simple mean-field model of glasses and analyze activated barrier-crossing by combining the Kac-Rice method for high-dimensional Gaussian landscapes with dynamical field theory. In particular, we consider Langevin dynamics at low temperature in the energy landscape of the pure spherical $p$-spin model. We select as initial condition for the dynamics one of the many unstable index-1 saddles in the vicinity of a reference local minimum. We show that the associated dynamical mean-field equations admit two solutions: one corresponds to falling back to the original reference minimum, and the other to reaching a new minimum past the barrier. By varying the saddle we scan and characterize the properties of such minima reachable by activated barrier-crossing. Finally, using time-reversal transformations, we construct the two-point function dynamical instanton of the corresponding activated process.
Cited by 14
![Crossref Cited-by](https://scipost.org/static/scipost/images/citedby.gif)
Authors / Affiliations: mappings to Contributors and Organizations
See all Organizations.- 1 2 Valentina Ros,
- 2 Giulio Biroli,
- 3 4 Chiara Cammarota
- 1 Université Paris-Saclay / University of Paris-Saclay
- 2 École Normale Supérieure [ENS]
- 3 King's College London [KCL]
- 4 Sapienza – Università di Roma / Sapienza University of Rome